

UNIVERSIDAD SURCOLOMBIANA

GESTIÓN DE BIBLIOTECAS

 CARTA DE AUTORIZACIÓN

CÓDIGO AP-BIB-FO-06 VERSIÓN 1 VIGENCIA 2014 PÁGINA 1 de 2

Vigilada Mineducación
La versión vigente y controlada de este documento, solo podrá ser consultada a través del sitio web Institucional www.usco.edu.co, link
Sistema Gestión de Calidad. La copia o impresión diferente a la publicada, será considerada como documento no controlado y su uso

indebido no es de responsabilidad de la Universidad Surcolombiana.

Neiva, 23 de agosto de 2024

Señores

CENTRO DE INFORMACIÓN Y DOCUMENTACIÓN

UNIVERSIDAD SURCOLOMBIANA

Neiva, Huila

El (Los) suscrito(s):

__Nathash Abbarig Guerrero Gonzalez_____________, con C.C. No. __1075315565_________,

__Juan David Daza Perez_______________________, con C.C. No. __1075309776__________,

__, con C.C. No. ______________________,

__, con C.C. No. ______________________,

Autor(es) de la tesis y/o trabajo de grado __

titulado___ DISEÑO E IMPLEMENTACIÓN DE UN LABORATORIO PERSONAL DE TEMPERATURA PARA
LA ASIGNATURA DE CONTROL _____

presentado y aprobado en el año __2024___ como requisito para optar al título de

______Ingeniero Electrónico_______________;

Autorizo (amos) al CENTRO DE INFORMACIÓN Y DOCUMENTACIÓN de la Universidad Surcolombiana para
que, con fines académicos, muestre al país y el exterior la producción intelectual de la Universidad
Surcolombiana, a través de la visibilidad de su contenido de la siguiente manera:

 Los usuarios puedan consultar el contenido de este trabajo de grado en los sitios web que administra la
Universidad, en bases de datos, repositorio digital, catálogos y en otros sitios web, redes y sistemas de
información nacionales e internacionales “open access” y en las redes de información con las cuales tenga
convenio la Institución.

 Permita la consulta, la reproducción y préstamo a los usuarios interesados en el contenido de este trabajo,
para todos los usos que tengan finalidad académica, ya sea en formato Cd-Rom o digital desde internet,
intranet, etc., y en general para cualquier formato conocido o por conocer, dentro de los términos
establecidos en la Ley 23 de 1982, Ley 44 de 1993, Decisión Andina 351 de 1993, Decreto 460 de 1995 y
demás normas generales sobre la materia.

 Continúo conservando los correspondientes derechos sin modificación o restricción alguna; puesto que, de
acuerdo con la legislación colombiana aplicable, el presente es un acuerdo jurídico que en ningún caso
conlleva la enajenación del derecho de autor y sus conexos.

http://www.usco.edu.co/

UNIVERSIDAD SURCOLOMBIANA

GESTIÓN DE BIBLIOTECAS

 CARTA DE AUTORIZACIÓN

CÓDIGO AP-BIB-FO-06 VERSIÓN 1 VIGENCIA 2014 PÁGINA 2 de 2

Vigilada Mineducación
La versión vigente y controlada de este documento, solo podrá ser consultada a través del sitio web Institucional www.usco.edu.co, link
Sistema Gestión de Calidad. La copia o impresión diferente a la publicada, será considerada como documento no controlado y su uso

indebido no es de responsabilidad de la Universidad Surcolombiana.

De conformidad con lo establecido en el artículo 30 de la Ley 23 de 1982 y el artículo 11 de la Decisión Andina
351 de 1993, “Los derechos morales sobre el trabajo son propiedad de los autores” , los cuales son
irrenunciables, imprescriptibles, inembargables e inalienables.

EL AUTOR/ESTUDIANTE: Juan David Daza Perez

Firma: ___________________________

EL AUTOR/ESTUDIANTE: Nathash Abbarig Guerrero González

Firma: ___________________________

http://www.usco.edu.co/

https://v3.camscanner.com/user/download

https://v3.camscanner.com/user/download

https://v3.camscanner.com/user/download

DISEÑO E IMPLEMENTACIÓN DE UN LABORATORIO PERSONAL DE
TEMPERATURA PARA LA ASIGNATURA DE CONTROL

JUAN DAVID DAZA PÉREZ

NATHASH ABBARIG GUERRERO GONZÁLEZ

UNIVERSIDAD SURCOLOMBIANA
FACULTAD DE INGENIERÍA

PROGRAMA DE INGENIERÍA ELECTRÓNICA
NEIVA – HUILA

2024

DISEÑO E IMPLEMENTACIÓN DE UN LABORATORIO PERSONAL DE
TEMPERATURA PARA LA ASIGNATURA DE CONTROL

JUAN DAVID DAZA PÉREZ Cod. 20161148107
NATHASH ABBARIG GUERRERO GONZÁLEZ Cod. 20161146145

Trabajo de grado para aplicar
al título de ingeniero electrónico

Director:
Mag. Diego Fernando Sendoya

UNIVERSIDAD SURCOLOMBIANA
FACULTAD DE INGENIERÍA

PROGRAMA DE INGENIERÍA ELECTRÓNICA
NEIVA – HUILA

2024

Notas de aceptación

__
__
__
__
__
__
__

Firma del director de Tesis

Firma del Jurado

Firma del Jurado

Neiva, 20 de mayo de 2024

Desde este momento, veo mi vida desde otra perspectiva y puedo ver claramente el
camino que me ha traído hasta aquí, incluso soy consciente de las personas a las que
este título les pertenece tanto como a mí. Es difícil encontrar las palabras para
agradecer, sin embargo, aquí va un intento desde lo profundo de mi corazón.

A mi abuelo, Jorge González le agradeceré siempre lo hecho por mí, las tardes de
pláticas sobre circuitos y electrónica que nadie más entendía y toda la sabiduría que me
infundo, puedo imaginar su sonrisa, la felicidad de saber que al fin lo logré y aunque ya
no esté más aquí, espero que desde el cielo este muy orgulloso. A mí madre, Claudia
González, por ser siempre mi ejemplo, mi más fiel compañera en este camino lleno de
desafíos, por recordarme siempre vivir todas las etapas y por hacerme mi mejor versión.
A mí padre, Vismark Guerrero, por todos los conocimientos, por mostrarme todo lo que
puedo hacer y a ambos, por la paciencia, por el cariño y por fundar las bases para lo
que hoy soy. A mi colega y amigo, David Alejandro Murcia cuyo recuerdo quedará
siempre en mi alma, gracias por enseñarme tanto, por las ocurrencias, los asados y
sobre todo por mostrarme una parte de mí misma que no conocía. A los demás amigos
que conocí en la carrera, Luis, Mar, Andrés, Paula, Howard, entre otros, con los que nos
reuníamos en las tardes a estudiar y a hacer tareas, por las trasnochas y el café, fueron
indispensables en todo este proceso, a mi compañero y pareja, Juan David, por la
excepcional compañía a través de los años, por cumplir esta meta juntos y por el futuro
que nos espera.

Quiero agradecer a don Juan y a doña Angelica, padres de Alejo, por recibirnos en su
hogar, por vernos crecer y por darnos el cariño que solo los padres saben brindar a un
hijo. Al ingeniero Jimy Aguirre, por ofrecerme sus conocimientos, su apoyo y por
terminar de formar a la profesional en mí.

Agradezco a la vida por permitirme conocerlos y vivir todo esto, ha sido maravilloso,
ahora llevo algo de cada uno que me pertenece y estará para siempre en mí.

Nathash

Quiero primero agradecerle a mi madre por todo el apoyo que me ha brindado a lo largo
de mi vida, por estar ahí en cada momento porque, aunque no fue fácil hacerlo sola,
siempre encontró la forma de asegurarse de que ni a mí ni a mis hermanos nos hiciera
falta nada, por proporcionarme todo lo necesario para sacar adelante esta carrera, por
darme consejo y ánimo cuando me hizo falta. Agradezco a mis hermanos por su cariño
y los buenos momentos que hemos compartido, por escucharme cuando quería hablar.

Quiero agradecer a mi familia, a mis tíos, mis primos y abuelos que siempre me
aconsejaron y animaron con cariño, los cuales pusieron su grano de arena en mi para
terminar esta carrera. A mi pareja Nathash, por brindarme su amor y apoyo
incondicional en todo este proceso, porque al ser mi compañera pudimos disfrutar de
una experiencia muy agradable en esta carrera. Les agradezco a todos por la paciencia
y por esa fe puesta en mí que me impulsó a esforzarme más para pasar los obstáculos
que muchas veces yo mismo me ponía.

Quiero agradecer a todas las personas que aportaron a mi crecimiento académico, a
todos los docentes que me dieron su sabiduría en cada tema impartido y que siempre
recordare con gran estima, a cada persona que me ayudo cuando tal vez me costaba
entender algo en clase, a mis compañeros que hicieron todo este proceso más ameno y
cálido, recordando las noches de estudio y reuniones para hacer trabajos, apoyándonos
mutuamente y dándonos ánimos cuando tal vez no alcanzábamos las notas que
queríamos.

En este espacio quiero mencionar a un compañero en especial, el cual fue un pilar
demasiado importante en mi proceso académico y vida personal, porque me brindo su
amistad sincera convirtiéndose en una de las personas más cercanas a mí. David
Alejandro Murcia Llanos fue una persona indispensable a lo largo de estos años
porque, aunque ya no este con nosotros siempre será para mí una referencia de
felicidad y esfuerzo. Gracias a él empecé a diseñar PCB’s y esto fue la base
fundamental para realizar con más facilidad este proyecto. Quiero mencionar a don
Juan y a doña Angelica, padres de Alejo, quiero agradecerles por cada palabra y cada
momento que pudimos compartir y seguiremos compartiendo, por abrirme las puertas
de su hogar, por las noches en las que nos tocaba estudiar y ustedes con su
hospitalidad nos hacían más agradable los ratos, por hacerme sentir como parte de su
familia. Al ingeniero Jimmy Alexander Aguirre por su consejo, por orientarme y
ayudarme en muchas ocasiones, además de brindarme la oportunidad de iniciar a
desempeñarme como ingeniero. Él me brindo conocimientos esenciales que me
ayudaron en la elaboración de esta tesis, además de una que otra jalada de orejas
cuando fue necesario.

Finalmente, gracias a todas las personas que, aunque no mencioné explícitamente en
estas líneas, comparten mi felicidad y emoción con la finalización de esta etapa de mi
vida.

Juan David

AGRADECIMIENTOS

Agradecemos a todos los docentes del programa de ingeniería electrónica por contribuir
en nuestro desarrollo como profesionales, principalmente al ingeniero Diego Fernando
Sendoya por su guía en el proceso de la elaboración de este proyecto, por sus consejos
y mentoría en cada paso, por su paciencia y por siempre estar atento a los momentos en
que lo necesitamos. A Sonia por su amabilidad y por siempre brindarnos una sonrisa y la
colaboración cuando se necesitó.

Agradecemos a todos nuestros compañeros y amigos que han sido un pilar importante
para cumplir nuestro objetivo, haciendo más agradable y glorioso este recorrido.

7

TABLA DE CONTENIDO
Pág.

1. INTRODUCCIÓN ... 16

2. OBJETIVOS ... 17

2.1 OBJETIVO GENERAL ... 17

2.2 OBJETIVOS ESPECÍFICOS .. 17

3 DISEÑO DE LA PLANTA DE TEMPERATURA .. 18

4 IMPLEMENTACIÓN DEL CIRCUITO IMPRESO (PCB) 24

5 DESARROLLO DE LA INTERFAZ GRÁFICA ... 33

6 ADQUISICIÓN DE DATOS A TRAVÉS DE LA PLANTA 41

7 CONCLUSIONES .. 48

8 RECOMENDACIONES ... 49

9 TRABAJOS FUTUROS ... 50

BIBLIOGRAFIA .. 51

8

LISTA DE FIGURAS
Pág.

Figura 1. Diagrama de bloques del diseño de la planta. .. 19

Figura 2. Diseño básico de amplificador operacional no inversor. 19

Figura 3. Diseño básico de amplificador operacional seguidor. 22

Figura 4. Conexiones físicas del USB C de alimentación. 24

Figura 5. Conexiones físicas de los sensores de temperatura de los transistores con
el amplificador operacional no inversor. ... 25

Figura 6. Conexiones físicas del sensor de temperatura ambiente con el amplificador
operacional no inversor. ... 25

Figura 7. Conexiones físicas de los transistores con el amplificador operacional
seguidor. .. 26

Figura 8. Conexiones físicas de los conectores externos del Arduino mediante los
conectores en la PCB diseñada. .. 27

Figura 9. Conexiones físicas de los conectores externos I2C del Arduino mediante
los conectores en la PCB diseñada. .. 27

Figura 10. Conexiones físicas de los leds indicadores de temperatura en la PCB
diseñada. ... 27

Figura 11. Líneas externas de corte de la placa de desarrollo de Arduino, basada en
sus archivos originales. .. 29

Figura 12. Líneas externas de corte de la placa diseñada junto a los elementos
cargados y organizados. .. 30

Figura 13. Calculadora de KiCad para definir el ancho de la traza del ruteo. 31

Figura 14. Diseño de la PCB ruteada. ... 31

Figura 15. Diseño de la PCB ruteada con las zonas de tierra. 32

Figura 16. Vista 3D de la PCB. .. 32

Figura 17. Editor de la ventana principal de la interfaz gráfica. 33

9

Figura 18. Ventana de programación de acciones de los elementos insertados. .. 34

Figura 19. Diagrama de flujo botón iniciar. .. 34

Figura 20. Diagrama de flujo botón parar. ... 35

Figura 21. Diagramas de flujo botones T1 y T2. .. 36

Figura 22. Diagrama de flujo botón insertar PID. ... 36

Figura 23. Editor de la ventana secundaria de la interfaz gráfica. 37

Figura 24. Diagrama de flujo botón inicio. .. 38

Figura 25. Diagrama de flujo función controlador. ... 38

Figura 26. Diagrama de flujo botón parar. ... 39

Figura 27. Diagramas de flujo check box Q1 y Q2. .. 39

Figura 28. Ventana principal del funcionamiento de la interfaz gráfica. 41

Figura 29. Selección de PWM enviado al transistor 1. ... 42

Figura 30. Archivo de Excel con los datos recolectados. 42

Figura 31. Ventana de organización para las tablas de datos. 43

Figura 32. Gráfica generada con los datos tomados a través de la planta. 43

Figura 33. Pestaña de System Identification en Matlab. .. 44

Figura 34. Pestaña de System Identification para importar los datos. 44

Figura 35. Función de transferencia adquirida a través de System Identification. . 45

Figura 36. Ventana secundaría de la interfaz gráfica con los datos del controlador
PID. .. 46

Figura 37. Gráfica de la respuesta de la planta al controlador aplicado. 47

Figura 38. Vista preliminar de la planta de temperatura. 53

Figura 39. Ventana principal de la interfaz gráfica. .. 54

Figura 40. Selección de administrador de dispositivos. ... 55

Figura 41. Puertos COM y LPT desde el dispositivo. ... 55

10

Figura 42. Graficación tomada de los sensores LM35. .. 56

Figura 43. Graficación tomada de los sensores LM35 después de enviar el PWM.
 ... 57

Figura 44. Ventana secundaria de la interfaz gráfica. .. 58

Figura 45. Vista superior de la planta de temperatura. .. 65

Figura 46. Vista transversal de la planta de temperatura acoplada al Arduino. 66

11

LISTA DE TABLAS

Pág.

Tabla 1: BOM del diseño realizado. ... 28

12

LISTA DE ANEXOS

Anexo A: Manual de usuario. ... 53

Anexo B: Creación de variables globales en ventana primaria. 59

Anexo C: Función iniciar en ventana principal. .. 59

Anexo D: Función parar en ventana principal. ... 60

Anexo E: Función T1 y T2 en ventana principal. ... 60

Anexo F: Función insertar PID en ventana principal. ... 61

Anexo G: Creación de variables globales en ventana secundaria. 61

Anexo H: Función iniciar en ventana secundaria. .. 61

Anexo I: Función controlador en ventana secundaria. ... 64

Anexo J: Función checkbox Q1 y Q2 en ventana secundaria. 64

Anexo K: Función parar en ventana secundaria. ... 64

Anexo L: Fotografías del acople de la planta de temperatura con el Arduino Uno.65

13

GLOSARIO

I2C: Es un puerto y protocolo de comunicación serial, el cual incluye dos cables de
comunicación, SDA y SCL, permite conectar hasta 127 dispositivos esclavos.

KICAD: Es un paquete de software de código abierto para la automatización del
diseño electrónico (EDA). Los programas gestionan la captura de esquemas y el
diseño de PCB con salida Gerber e IPC-2581. El paquete funciona en Windows,
Linux y macOS y está licenciado bajo GNU GPL v3.

MULTIVARIABLE: Es una característica de un sistema o proceso físico que
presenta múltiples entradas y salidas que están interconectadas y pueden
influenciarse mutuamente.

P: Es un dispositivo que permite controlar un sistema en lazo cerrado para generar
a la salida el estado deseado, está compuesto por un elemento que proporciona
una acción proporcional.

PCB: Es un circuito cuyos componentes y conductores están contenidos dentro de
una estructura mecánica, cumple su función a través de trazas de cobre, terminales,
disipadores de calor o conductores planos y su estructura se realiza con material
laminado aislante entre capas de material conductivo (placa de circuito impreso).

PI: Es un dispositivo que permite controlar un sistema en lazo cerrado para generar
a la salida el estado deseado, está compuesto por dos elementos que proporcionan
una acción proporcional e integral.

PID: Es un dispositivo que permite controlar un sistema en lazo cerrado para
generar a la salida el estado deseado, está compuesto por tres elementos que
proporcionan una acción proporcional, integral y derivativa.

PWM: Es un tipo de señal de control que cuenta con una frecuencia fija y una
amplitud variable.

SMD: Es una forma de ensamblar y soldar los componentes electrónicos
directamente sobre la placa de circuito impreso (tecnología de montaje superficial).

THT: Es una forma de ensamblar y soldar los componentes electrónicos
atravesando la placa de circuito impreso (orificios pasantes).

14

RESUMEN

El objetivo de este proyecto es diseñar un dispositivo y su interfaz gráfica, el cual
pueda ser utilizado fácilmente por el estudiante para realizar pruebas y aplicaciones
de control sin la necesidad de asistir a un laboratorio presencial y utilizar los
elementos presentes en ese espacio. Este trabajo se realiza con el fin de mitigar las
dificultades que surgieron durante la pandemia, modernizando la forma en la que
se desarrollan usualmente los laboratorios de control y brindando una nueva
experiencia al estudiante.

Para cumplir con este propósito se realiza el diseño y la implementación de una
planta de temperatura personal y compacta, que brindará las mismas características
que las plantas robustas presentes en las instalaciones de la universidad.

15

ABSTRACT

The objective of this project is to design a device and its graphical interface, which
can be easily used by the student to perform tests and control applications without
the need to attend an on-site laboratory and use the elements present in that space.
This work is done to mitigate the difficulties that arose during the pandemic,
modernizing the way in which control laboratories are usually developed and
providing a new experience to the student.

To fulfill this purpose, the design and implementation of a personal and compact
temperature plant is carried out, which will provide the same characteristics as the
robust plants present in the university facilities.

16

1. INTRODUCCIÓN

En respuesta a los desafíos impuestos por la pandemia del año 2019 y las
restricciones asociadas al distanciamiento social, surge la necesidad de encontrar
soluciones innovadoras que permitan a los estudiantes de ingeniería electrónica en
la Universidad Surcolombiana continuar con su formación práctica en el campo del
control, sin la necesidad de asistir físicamente a un laboratorio. En este contexto,
este proyecto se propone diseñar e implementar un dispositivo junto con su
correspondiente interfaz gráfica, con el objetivo de proporcionar una plataforma
accesible y flexible para la realización de prácticas de control en remoto.

La propuesta se centra en el desarrollo de una planta de temperatura multivariable,
compacta y versátil, que emule las características y funcionalidades de los equipos
presentes en los laboratorios convencionales de la Universidad Surcolombiana.
Este enfoque busca no solo mitigar los obstáculos surgidos durante la pandemia,
sino también modernizar y enriquecer la experiencia de aprendizaje de los
estudiantes en el área de control. En este documento se presenta una visión integral
del proyecto, el desarrollo de la metodología propuesta para el diseño, la interfaz
gráfica de usuario y la implementación de la planta de temperatura.

La ejecución exitosa de esta solución no solo beneficia a los estudiantes al
ofrecerles una herramienta útil y eficiente para la realización de prácticas de control,
sino que también contribuye al avance de la educación en ingeniería al proporcionar
una alternativa eficiente y adaptable a los desafíos actuales. Este proyecto
representa un paso significativo hacia la transformación digital de los métodos de
enseñanza en ingeniería, promoviendo la accesibilidad, la flexibilidad y la calidad en
la formación de los futuros ingenieros en la Universidad Surcolombiana.

17

2. OBJETIVOS

2.1 OBJETIVO GENERAL

Diseñar e implementar una planta de temperatura multivariable que mediante
una interfaz gráfica permite la visualización y toma de datos para facilitar al
estudiante la realización práctica de los laboratorios de las asignaturas de
control.

2.2 OBJETIVOS ESPECÍFICOS

 Diseñar una planta de temperatura multivariable.

 Diseñar el hardware para el acople de señales en Arduino.

 Diseñar la interfaz gráfica para interacción con el usuario.

 Diseñar e implementar el circuito impreso PCB.

 Realizar el manual de usuario.

 Realizar prueba de la planta utilizando Control Digital explicado paso a paso.

18

3 DISEÑO DE LA PLANTA DE TEMPERATURA

En el diseño de la planta se presenta el interés de cumplir con tres características
importantes, primero la planta debe ser compacta debido a que lo que se pretende
es que cada estudiante pueda usarla en cualquier espacio sin necesidad de
accesorios extensos, facilitando así la interacción para realizar las pruebas de
control exento de asistir a las instalaciones de la universidad, segundo y ligada a la
anterior esta debe ser de bajo costo con la finalidad de ser asequible y de claro
funcionamiento, proporcionando al estudiante la posibilidad de realizar por sí mismo
su ensamble, tercero esta debe ser multivariable con el fin de garantizar que los
factores que interactúan en la misma sean de mayor complejidad, mejorando la
calidad de los controles que se pueden aplicar en las plantas presentes en los
laboratorios de la universidad, para esto es necesario que se tengan dos o más
variables de entrada y salida y estén interconectadas de manera en que el más
mínimo cambio en una, afecte a la otra.

Con base en las características anteriores se propone una planta (ver Figura 1.) con
dos calentadores y tres sensores de temperatura, la cual debe ser compatible con
el hardware Arduino. Para cumplir con las proporciones de tamaño se define que
los calentadores son remplazados por transistores y es que además estos permiten
entrelazar su funcionamiento con el hardware a utilizar. Un transistor de potencia se
puede utilizar como un generador de calor por la disipación que presenta debido a
la gran corriente que maneja. En este caso se planea el uso del transistor TIP31 y
el sensor de temperatura LM35 por el cumplimiento de las características
necesarias en el diseño (dispositivo compacto, de bajo costo y multivariable).

Físicamente la planta se proyecta de forma en que los dos transistores estén uno al
lado del otro, para que de ese modo la variación en la temperatura de uno afecte al
otro, junto a cada transistor debe haber un sensor de temperatura y adicionalmente
un sensor que indique la temperatura ambiente. Teniendo en cuenta la manera en
que se desea entrelazar la planta y el hardware de Arduino, se realizan los cálculos
para implementar amplificadores operacionales no inversores en las salidas
respectivas de los sensores de temperatura y amplificadores operacionales
seguidores para las salidas de corriente de los transistores buscando adaptar el
rango de los datos obtenidos según la resolución de trabajo del Arduino, que en los
pines analógicos es de 10 bits, así que se puede dividir el rango de voltajes de
entrada en 1024 niveles distintos, lo significa que el ADC (Analog to Digital
Converter) puede convertir un voltaje de entrada analógico en un número entero
entre 0 y 1023.

19

Figura 1. Diagrama de bloques del diseño de la planta.

Normalmente el rango de voltaje de funcionamiento es el mismo rango en el que se
obtienen los datos, pero en este caso teniendo en cuenta que se va a trabajar con
el amplificador operacional LM358 se define que, con el objetivo de evitar la
saturación de estos, la toma de datos se realiza en el rango de 0 a 4V.

Figura 2. Diseño básico de amplificador operacional no inversor.

En este diseño (ver Figura 2) el voltaje de entrada es aplicado al pin no inversor, y
el pin inversor está conectado a tierra (GND). Esta configuración se determina

20

porque permite la amplificación de la señal y la ecuación para determinar la salida
es la siguiente:

𝑉𝑠 = 𝑉𝑒 ቀ1 +
ோଵ

ோଶ
ቁ Ecuación (1)

Se determina el rango de funcionamiento de los sensores de temperatura (ver
Figura 5), según el datasheet del LM35 el sensor entrega 10mV por cada grado
centígrado medido, es decir que, si los sensores de los transistores miden en un
rango entre 20 y 100 °C respectivamente se obtiene del sensor 0,2V y 1V y la salida
que se requiere debe estar en un rango entre 0V Y 4V, por ende, la adaptación del
rango se realiza con los amplificadores operacionales usando una ganancia de 4,
definiendo R2 de un valor de 10KΩ, se procede a hallar R1 despejando la ecuación
(1).

𝑅1 = 𝑅2 ቀ
௏௦

௏௘
− 1ቁ Ecuación (2)

𝑅1 = 10𝐾Ω ቀ
ସ௏

ଵ௏
− 1ቁ Ecuación (3)

Según la ecuación (3), el valor de R1 es de 30KΩ. Seguidamente se realiza la
comprobación con los rangos de temperatura definidos:

0,2𝑉 ቀ1 +
ଷ଴௄Ω

ଵ଴௄Ω
ቁ = 0,8𝑉 Ecuación (4)

1𝑉 ቀ1 +
ଷ଴௄Ω

ଵ଴௄Ω
ቁ = 4𝑉 Ecuación (5)

Con la temperatura en 20 °C se tiene una salida de 0.8V como se muestra en la
ecuación (4) y con la temperatura máxima estimada en 100 °C se tiene una salida
de 4V como se muestra en la ecuación (5).

El sensor de temperatura ambiente (ver Figura 6) no va a tener medidas por encima
de los 50°C, así que se define un rango entre 20 y 50°C donde respectivamente se
obtiene del sensor 0,2V y 0,5V y la salida que se requiere debe estar en un rango
entre 0V Y 4V, por ende, la adaptación del rango se realiza con el amplificador
operacional usando una ganancia de 8, definiendo R2 de un valor de 20KΩ y
tomando la ecuación (2) se procede a hallar R1 en este caso:

𝑅1 = 20𝐾Ω ቀ
ସ௏

଴,ହ௏
− 1ቁ Ecuación (6)

Según la ecuación (6), el valor de R1 es de 140KΩ. Seguidamente se realiza la
comprobación con los rangos de temperatura definidos:

21

0,2𝑉 ቀ1 +
ଵସ଴௄Ω

ଶ଴௄Ω
ቁ = 1,6𝑉 Ecuación (7)

0,5𝑉 ቀ1 +
ଵସ଴௄Ω

ଶ଴௄Ω
ቁ = 4𝑉 Ecuación (8)

Con la temperatura en 20 °C se tiene una salida de 1.6V como se muestra en la
ecuación (7) y con la temperatura máxima estimada en 50 °C se tiene una salida de
4V como se muestra en la ecuación (8).

El circuito del transistor (ver Figura 7) debe diseñarse con amplificadores
operacionales seguidores, debido a que en este caso se pretende obtener la
corriente que pasa a través de este mientras está en funcionamiento, con el fin de
dejar abierta la posibilidad de realizar otro tipo de control; para poder registrar la
corriente se coloca una resistencia de precisión de 1 ohm en el pin del emisor a
tierra. La señal de PWM para activar el transistor se coloca en la base y se debe
calcular la resistencia que evita que se exceda la corriente que puede entregar el
Arduino, además de definir la zona de trabajo del transistor, la cual funciona en la
región activa. Para hallar la resistencia se tienen presentes los datos importantes
del datasheet como lo es la corriente de base máxima (la cual no debe superar 1A)
y el voltaje base emisor en la región activa (1.8V). Con esos datos presentes, se
define que la corriente 𝐼௕ debe ser menor a 20mA (salida máxima de un pin del
Arduino), para el diseño se toman 10mA.

Primero se determina la caída de voltaje en la resistencia y esta se puede calcular
como la diferencia entre el voltaje de entrada a la base y el voltaje base-emisor así:

𝑉𝑅 = 𝑉𝑒𝑛𝑡𝑟𝑎𝑑𝑎 − 𝑉𝐵𝐸 Ecuación (9)

5𝑉 − 1.8𝑉𝑚á𝑥 = 3.2𝑉 Ecuación (10)

Teniendo esto, usando la ley de Ohm se procede a encontrar el valor de la
resistencia:

𝑅𝑏 =

௏ோ

ூ௕
 Ecuación (11)

𝑅𝑏 =
ଷ.ଶ௏௠á௫

ଵ଴௠஺
= 320Ω Ecuación (12)

Para garantizar que la corriente no supere los 10mA, se toma una resistencia de
470Ω.

22

Teniendo en cuenta que los transistores podrán llegar a temperaturas muy altas, el
suministro de corriente exigido puede llegar hasta 3A por ende no puede ser
proporcionado por el Arduino, ya que este supera los 500mA máximos
recomendados para evitar daños en la placa de desarrollo. Por esta razón, para
evitar sobrecargas se plantea una alimentación externa para la etapa de
alimentación de los transistores, aun cuando todo el diseño funciona a 5V.
Finalmente los sensores y amplificadores operacionales pueden trabajar con la
alimentación suministrada por el Arduino y los transistores con la alimentación
externa proporcionada por el USB asegurando el correcto funcionamiento de todo
el sistema.

Figura 3. Diseño básico de amplificador operacional seguidor.

La salida del amplificador operacional cuenta con un circuito RC (ver Figura 7), que
busca filtrar y suavizar la señal antes de ser recibida por el Arduino, para esto se
define un capacitor de 100µF y se procede a encontrar la resistencia así:

Con 𝜏 = 1 segundo, usando la fórmula de la constante de tiempo:

𝜏 = 𝑅 × 𝐶 Ecuación (13)

Despejando R:

𝑅 =

ఛ

஼
=

ଵ௦௘௚

ଵ଴଴µி
= 10𝐾Ω Ecuación (14)

Adicionalmente se colocan dos leds en el diseño (ver Figura 10), los cuales
proporcionan la posibilidad de interactuar con la placa de otra forma, principalmente
como indicadores.

Para hallar la resistencia de los leds se usa la siguiente ecuación y se obtienen los
datos del datasheet del led escogido:

𝑅𝐿 =
௏௦ ି ௏௟௘ௗ

ூ௟௘ௗ
 Ecuación (15)

23

𝑅𝐿 =
ହ௏ ି ଵ.଼௏

ଵ଴௠஺
= 320Ω Ecuación (16)

Para garantizar que la corriente no supere los 10mA, se toma una resistencia de
470Ω.

24

4 IMPLEMENTACIÓN DEL CIRCUITO IMPRESO (PCB)

Al momento de realizar la implementación del circuito, se decide usar un software
libre de diseño como lo es KiCad. La mayoría de los símbolos de los elementos
utilizados en el diseño vienen previamente cargados en la biblioteca del software.
Anteriormente se realiza un análisis para elegir la forma de la placa y se define que
para lograr una implementación sencilla con la placa de desarrollo de Arduino esta
va a tener la misma forma y organización de sus conectores externos, además de
facilitar el uso del Arduino aun con la PCB de la planta de temperatura conectada.

Inicialmente se desarrolla la organización del esquemático, el cual incluye todas las
conexiones físicas del circuito mismas que se dividen en secciones según su
funcionamiento.

Figura 4. Conexiones físicas del USB C de alimentación.

Como se describe en la sección anterior, la alimentación de los transistores (ver
figura 4) debe realizarse de forma externa debido a la gran corriente que exigen
para su funcionamiento, se determina el uso de un USB C pensando en que los
adaptadores de corriente más comúnmente usados en el presente son los mismos
utilizados para cargar los teléfonos inteligentes.

La etiqueta llamada VBUS se encarga de nombrar la conexión de los 5V de
alimentación proporcionados por este. El pin SHIELD forma parte del recubrimiento
del conector, este por defecto puede dejarse flotante, pero en este caso se utiliza

25

un circuito RC (ver figuras 5 y 6) para la estabilización de la señal y evitar la
interferencia electromagnética.

 Figura 5. Conexiones físicas de los sensores de temperatura de los transistores
con el amplificador operacional no inversor.

Figura 6. Conexiones físicas del sensor de temperatura ambiente con el
amplificador operacional no inversor.

26

Se inserta el símbolo del sensor LM35 el cual se conecta en el pin 1 a la alimentación
de 5V proveniente del Arduino (por esta razón la etiqueta es diferente), el pin 3 se
conecta a la tierra global del circuito y el pin 2, que es la salida de la medición de
temperatura a la entrada no inversora del amplificador operacional. Previamente se
determina el uso del amplificador LM358 debido a su bajo costo y a que en su
encapsulado vienen dos amplificadores, en el esquema se pueden diferenciar por
el nombre que posee, en el caso de la figura 3 el elemento es llamado U5 y en el
caso de la figura 4 el elemento es llamado U2, para la diferenciación del amplificador
operacional dentro del encapsulado se utiliza adicionalmente la letra A o B, la
alimentación se indica con la letra C.

Seguidamente se realiza la conexión con las resistencias según la configuración y
el valor definido en los cálculos de la sección anterior. Las salidas de los
amplificadores tienen por nombre etiquetas según los pines analógicos del Arduino
a donde van conectadas.

Figura 7. Conexiones físicas de los transistores con el amplificador operacional
seguidor.

27

Se añaden los TIP31 al esquema, se alimentan desde VBUS en el colector (pin 2),
la base (pin 1) se conecta a las etiquetas llamadas Q1 y Q2 las cuales son las
señales PWM provenientes de los pines digitales del Arduino, la resistencia de la
base la cual regula Ib, el emisor (pin 3) se conecta a la entrada no inversora del
amplificador y a su vez este se conecta a una resistencia pequeña (1Ω) con la
finalidad de registrar la corriente que pasa por este nodo e ingresa al amplificador
operacional. A la salida del amplificador operacional se encuentra un filtro RC (ver
figura 7), el cual sirve para limpiar la señal antes de que las etiquetas las conecten
al Arduino.

Figura 8. Conexiones físicas de los conectores externos del Arduino mediante los
conectores en la PCB diseñada.

Las etiquetas previamente mencionadas (ver figura 8) se conectan a cada conector
dependiendo de la organización predefinida del Arduino para que este encaje
perfectamente encima. En el conector J1 se puede encontrar la alimentación del
resto de la placa, la cual proviene del Arduino.

Figura 9. Conexiones físicas de los conectores externos I2C del Arduino mediante
los conectores en la PCB diseñada.

Se implementan las conexiones de los conectores I2C en la PCB (ver figura 9) para
cumplir con el propósito de dejar los pines del Arduino totalmente asequibles aun
cuando esté conectado a la planta de temperatura.

Figura 10. Conexiones físicas de los leds indicadores de temperatura en la PCB
diseñada.

28

La señal D7 y D8 vienen de etiquetas manejadas a través del Arduino (ver figura
10), esto con la finalidad de determinar una temperatura máxima para tener
precaución, puesto que cada transistor puede llegar a una temperatura de 100 °C y
se requiere informar que es sumamente peligroso tocarlo después de que el LED
este encendido.

Después de completar el esquemático se procede a realizar el llenado del BOM o
la lista de materiales utilizados en el diseño (ver tabla 1), como anteriormente se
menciona, a cada elemento se le asigna una letra y un número, cuando se abre esta
pestaña en el software se puede ingresar detalles acerca del elemento, algunos son
opcionales y otros son necesarios como por ejemplo el footprint o huella, esto indica
la forma que debe incluirse en la placa para poder soldar el elemento real en ella,
otro ejemplo es el valor, en elementos como las resistencias es por ejemplo 10KΩ,
los datos opcionales son el costo, el fabricante, el vendedor y el datasheet.

Es importante verificar el datasheet u hoja de datos de cada elemento para
comprobar que la huella escogida sea acorde al elemento vendido por el fabricante
que se va a utilizar.

Tabla 1: BOM del diseño realizado.

El vendedor determinado para la compra y además ensamble de los elementos
SMD es JLCPCB, este vendedor provee la fabricación de los circuitos impresos en
China, es reconocido por su calidad y buen precio, adicionalmente también provee

REFERENCE VALUE FOOTPRINT DATASHEET COST (usd) Mfg PN Vendor link Vendor PN Cantidad
 C1 4.7nF Capacitor_SMD:C_0805_2012Metric https://datasheet.lcsc.com/lcsc/2006121004_YAGEO-CC0805KRX7RBBB472_C113868.pdf0.02 CC0805KRX7RBBB472 https://jlcpcb.com/partdetail/Yageo-CC0805KRX7RBBB472/C113868C113868 1

> C2, C3 100uF Capacitor_Tantalum_SMD:CP_EIA-3528-15_AVX-H https://datasheet.lcsc.com/lcsc/1809031213_KEMET-T491B107K006AT_C115391.pdf0.12 T491B107K006AT https://jlcpcb.com/partdetail/Kemet-T491B107K006AT/C115391C115391 2
> D1, D2 LED LED_SMD:LED_0805_2012Metric https://datasheet.lcsc.com/lcsc/2006291920_HONGLITRONIC-Hongli-Zhihui--HONGLITRONIC--HL-PSC-2012S35FC-CZ_C497953.pdf0.05 HL-PSC-2012S35FC-CZ https://jlcpcb.com/partdetail/509680-HL_PSC_2012S35FCCZ/C497953C497953 2
> J1, J3 Conn_01x08 Connector_PinSocket_2.54mm:PinSocket_1x08_P2.54mm_Vertical ~ 2

 J2 Conn_01x06 Connector_PinSocket_2.54mm:PinSocket_1x06_P2.54mm_Vertical ~ 1
 J4 Conn_01x10 Connector_PinSocket_2.54mm:PinSocket_1x10_P2.54mm_Vertical ~ 1
 J5 USB_C_Receptacle SamacSys_Parts:MOLEX_105450-0101 https://datasheet.lcsc.com/lcsc/1811131824_MOLEX-1054500101_C134092.pdf0.66 1054500101 https://jlcpcb.com/partdetail/Molex-1054500101/C134092C134092 1

> J6, J7 Conn_02x03 Connector_PinSocket_2.54mm:PinSocket_2x03_P2.54mm_Vertical ~ 2
> Q1, Q2 TIP 31 Package_TO_SOT_THT:TO-220-3_Vertical 2

 R1 1M Resistor_SMD:R_0805_2012Metric https://datasheet.lcsc.com/lcsc/1912111437_TyoHM-RMC-0805-1M-F-N_C325768.pdf0.01 RMC 0805 1M F N https://jlcpcb.com/partdetail/Tyohm-RMC_0805_1M_FN/C325768C325768 1
 R2 20k Resistor_SMD:R_0805_2012Metric https://datasheet.lcsc.com/lcsc/2008171905_YAGEO-AT0805BRD0720KL_C723531.pdf0.11 AT0805BRD0720KL https://jlcpcb.com/partdetail/Yageo-AT0805BRD0720KL/C723531C723531 1
 R3 140k Resistor_SMD:R_0805_2012Metric https://datasheet.lcsc.com/lcsc/1810311324_YAGEO-AC0805FR-07140KL_C228303.pdf0.1 AC0805FR-07140KL https://jlcpcb.com/partdetail/Yageo-AC0805FR07140KL/C228303C228303 1

> R4, R5, R12, R13 10k Resistor_SMD:R_0805_2012Metric https://datasheet.lcsc.com/lcsc/1810311310_YAGEO-AC0805JR-0710KL_C138260.pdf0.01 AC0805JR-0710KL https://jlcpcb.com/partdetail/Yageo-AC0805JR0710KL/C138260C138260 4
> R6, R7 30k Resistor_SMD:R_0805_2012Metric https://datasheet.lcsc.com/lcsc/1811091710_YAGEO-AC0805FR-0730KL_C144565.pdf0.01 AC0805FR-0730KL https://jlcpcb.com/partdetail/Yageo-AC0805FR0730KL/C144565C144565 2

> R8, R9, R14, R15 470 Resistor_SMD:R_0805_2012Metric https://datasheet.lcsc.com/lcsc/1811141528_YAGEO-AC0805JR-07470RL_C229215.pdf0.01 AC0805JR-07470RL https://jlcpcb.com/partdetail/Yageo-AC0805JR07470RL/C229215C229215 4
> R10, R11 1 Resistor_SMD:R_2512_6332Metric https://datasheet.lcsc.com/lcsc/1811151154_Resistor-Today-AECR2512F1R00T9_C328414.pdf0.1 AECR2512F1R00T9 https://jlcpcb.com/partdetail/resistortoday-AECR2512F1R00T9/C328414C328414 2

> U1, U3, U4 LM35-LP Package_TO_SOT_THT:TO-92L_Inline 3
> U2, U5, U6 LM358 Package_SO:SOIC-8_3.9x4.9mm_P1.27mm https://datasheet.lcsc.com/lcsc/1811100911_onsemi-LM358DR2G-_C7950.pdf0.12 LM358DR2G https://jlcpcb.com/partdetail/Onsemi-LM358DR2G/C7950C7950 3

29

el servicio de ensamble, la mayoría de los elementos se eligen SMD por su tamaño
y costo, cumpliendo con las características importantes en el desarrollo de este
proyecto. Los elementos restantes, que no poseen detalles del vendedor, son
aquellos que son fáciles de conseguir en el Huila, sencillos de soldar por ser THT y
además los que tienen más posibilidades de generar un daño o falla, así mismo son
de simple remplazo.

Seguidamente se realiza el diseño de la PCB, para esto se accede a la base de
datos de Arduino en su página oficial, al ser un producto tan comercial y de uso libre
se puede tener acceso al diseño de la placa de desarrollo en el mismo software
utilizado para diseñar la PCB de la planta de temperatura.

Figura 11. Líneas externas de corte de la placa de desarrollo de Arduino, basada
en sus archivos originales.

Con los archivos de diseño descargados, se toma la forma de la placa de desarrollo
(ver figura 11) y la ubicación de sus conectores como base para realizar el diseño
de la planta, teniendo esto se realiza la carga de los elementos definidos en el
esquema a la placa, este software no acomoda automáticamente los elementos,
esto se debe realizar de forma manual.

30

Figura 12. Líneas externas de corte de la placa diseñada junto a los elementos
cargados y organizados.

Se realiza la acomodación de los elementos en el espacio de la placa (ver figura 12)
y se inicia el ruteo de las líneas, se encuentran disponibles dos capas, la superior
también llamada F.Cu y la inferior también llamada B.Cu, sus colores
predeterminados por el software son rojo y azul respectivamente, se define el
tamaño de la traza en cuanto al ancho, esto por lo general se realiza teniendo en
cuenta la corriente que va a pasar a través de esta, en este caso todas las líneas
pueden ser del ancho mínimo que predeterminadamente viene en 0,2mm a
excepción de las líneas conectadas a la resistencia de 1Ω del transistor TIP31, ya
que aproximadamente la corriente que maneja este es de 2,1A. El mismo software
posee una calculadora integrada (ver figura 13) para realizar el cálculo del ancho de
la pista, el cual según la información brindada es de 0.8mm.

Para aprovechar el espacio presente en la PCB y para generalizar el tamaño de las
trazas, todas las líneas se rutean con un ancho de 0.8mm. Adicionalmente se
agregan zonas de relleno en ambas capas con la línea de tierra para favorecer la
disipación del calor si se requiere.

31

Figura 13. Calculadora de KiCad para definir el ancho de la traza del ruteo.

Finalmente se realiza el ruteo de la placa y se agregan nombres para diferenciar las
conexiones con el Arduino y otros elementos importantes de la placa, además del
nombre de la planta y el logo de la Universidad Surcolombiana para hacer la
personalización de la PCB.

Figura 14. Diseño de la PCB ruteada.

Actualizando las zonas de relleno tanto superior como inferior se tiene la PCB
terminada (ver figura 14 y 15).

32

Figura 15. Diseño de la PCB ruteada con las zonas de tierra.

Por último, se utiliza la herramienta de vista 3D para observar cómo luce la PCB
después de ser fabricada y ensamblada (ver figura 16).

Figura 16. Vista 3D de la PCB.

33

5 DESARROLLO DE LA INTERFAZ GRÁFICA

La interfaz gráfica se desarrolla en el software de MATLAB, dando uso a la licencia
con la que cuenta la Universidad Surcolombiana, más específicamente se usa una
herramienta llamada App Designer, la cual permite crear aplicaciones desde los
componentes visuales para luego programar fácilmente su comportamiento.

En la pestaña de diseño (ver figura 17) se encuentran todas las posibles opciones
para incorporar a la aplicación, teniendo en cuenta las fases que se desarrollan
entre la identificación de la planta y la puesta en marcha del control definido por el
estudiante, en la primera ventana se determina usar 3 gráficas para lograr observar
la temperatura tomada por los 3 sensores LM35 al mismo tiempo.

Figura 17. Editor de la ventana principal de la interfaz gráfica.

Al momento de realizar la conexión de la placa de desarrollo Arduino con la
aplicación se utilizaron varios códigos con el fin de implementar el reconocimiento
automático del puerto y el tipo de placa de Arduino, ya que el diseño de la PCB y la
interfaz está disponible para las placas de desarrollo de Arduino UNO, MEGA y
LEONARDO, pero surgieron varios inconvenientes por lo que se determina que es
necesario realizar esta conexión de forma manual para evitar fallas en la toma de
datos. El slider funciona seleccionando el valor de PWM que se desea enviar a los
transistores, además de que el valor seleccionado es mostrado en un pequeño
cuadro de texto según el transistor para observar y tener presente su valor.

34

Esta sección bajo las gráficas en tiempo real cuenta con 5 botones, 2 se usan para
enviar los datos PWM a los transistores, (Iniciar) corre la simulación y empieza a
leer los datos de sensores además de mostrarlos en la gráfica, (Parar) detiene la
simulación, termina la conexión con el Arduino y cierra la ventana, por último,
(Insertar PID) abre la ventana diseñada para ingresar el PID cuando sea calculado.
Cuando se han creado todos los elementos de la aplicación, App Designer genera
automáticamente las funciones de cada elemento que se usa en el apartado de
Code View, es aquí donde se programan todas las acciones que se desean realizar
en la aplicación.

Figura 18. Ventana de programación de acciones de los elementos insertados.

Figura 19. Diagrama de flujo botón iniciar.

35

En esta primera sección de código se muestra la función principal del programa, el
botón iniciar habilita la funcionalidad global de este y las demás secciones. En este
se crean las variables globales de la aplicación que se usan en diferentes funciones,
se guardan las variables que indican las características de la conexión entre el
Arduino y el programa, una vez se establece la conexión con el Arduino, la
aplicación solicita la asignación de la ruta para guardar el archivo generado .CSV
con las lecturas tomadas.

Seguidamente se inicia un bucle que funciona mientras la variable parar sea falso,
como primer paso en el bucle se guardan los valores de PWM usados en ambos
transistores para imprimirlos en el archivo en cada instante de tiempo, luego se
generan las lecturas de cada sensor, aquí se tomó un cálculo en cada sensor para
establecer la temperatura, se tomaron varias muestras y se compararon con las de
una termocupla calibrada con el fin de calibrar los sensores correctamente. El
condicional IF controla cada uno de los leds, los cuales indican cuando los sensores
captan una temperatura mayor a 40 °C y así se le advierte al estudiante que debe
tener precaución al manipular el dispositivo.

A continuación, se les da formato a los datos y se crea la matriz que se guarda en
el archivo final para ser manipulada con mayor facilidad, finalmente el contador de
iteraciones aumenta y se hace una pausa de 1 segundo para dar tiempo al sistema
de generar nuevas lecturas.

Figura 20. Diagrama de flujo botón parar.

Esta función (ver figura 20) se encarga de cambiar el estado de la variable bool
parar a verdadero para luego utilizarla en el diagrama de la figura 19, adicionalmente
también se encarga de limpiar la variable donde se almacenan los datos de

36

conexión con el Arduino y cortar la conexión con el mismo para finalmente cerrar la
ventana de la aplicación.

Figura 21. Diagramas de flujo botones T1 y T2.

Estas dos funciones (ver figura 21) están construidas de la misma forma, se
encargan de tomar los valores de PWM seleccionados con el slider y enviarlos a los
pines digitales del Arduino para aplicarlos a los transistores, aquí se realiza un
mapeo donde se transforma el valor tomado y lo coloca en un rango de 0 a 1, en el
recuadro de texto se muestra el valor real antes de ser transformado y enviado a los
pines correspondientes.

Figura 22. Diagrama de flujo botón insertar PID.

37

En esta última función (ver figura 22) de la ventana principal, se abre la pestaña
diseñada para el controlador PID y cierra la pestaña actual para no generar
conflictos con la conexión del Arduino.

Figura 23. Editor de la ventana secundaria de la interfaz gráfica.

En esta segunda ventana (ver figura 23) se configuran las herramientas necesarias
para que el estudiante pueda poner a prueba el diseño de su control aplicado a la
planta Heater Home Lab USCO.

Nuevamente se parte del diseño y la distribución de los elementos gráficos de la
aplicación, en este se determina el uso de dos gráficos donde se muestra el
comportamiento del controlador en la temperatura y el PWM que se genera al
ingresar los datos calculados en el control P, PI o PID según lo requiera el
estudiante.

En esta primera sección de código se muestra la función principal del programa (ver
figura 24), el botón iniciar habilita la funcionalidad global de este y las demás
secciones siguientes. En este se establecen las variables globales, se crean dos
vectores vacíos para cada transistor los cuales se usan para aplicar el control. Se
crea de nuevo la matriz para guardar los datos en el archivo .CSV y una cadena de
texto vacía para el nombre del archivo, adicionalmente también se establecen y se
guardan los parámetros de conexión al Arduino y se define la ruta que tiene el
archivo para su guardado. Para definir el tipo de control a utilizar, se crea un Tab
Bar que, al ser seleccionado, guarda el dato en una variable y desarrolla un case
para realizar los cálculos necesarios según el controlador determinado.

38

Figura 24. Diagrama de flujo botón inicio.

Seguidamente el ciclo while toma las lecturas de los sensores de cada transistor,
además de encender el respectivo led si la temperatura del transistor es mayor o
igual a 40 °C. Dependiendo de la necesidad del estudiante, se puede usar el
transistor uno o dos, lo que determina que IF activarse, ambos se encargan de
actualizar los vectores creados anteriormente, el error en el instante actual toma el
tercer valor del vector y desplaza los valores anteriores una posición a la izquierda,
de igual forma se actualizan las señales de salida del controlador, así los vectores
para el cálculo del PWM se actualizan con cada iteración. Seguidamente se mapea
el PWM para validar el rango a enviar al pin del Arduino.

Figura 25. Diagrama de flujo función controlador.

39

En esta sección se genera nuevamente la matriz para guardar los datos relevantes
de la simulación (ver figura 25), realiza las gráficas de las señales, el contador de
muestras se actualiza y se realiza una pausa de tiempo “t” que equivale al tiempo
de muestreo ingresado por el estudiante en la interfaz gráfica. Finalmente, para salir
del ciclo while se crea la función que usa como parámetros de entrada los valores
de control y los vectores en diferentes instantes de tiempo, además de asegurarse
con el método anti-windup que la acción integral del sistema no siga creciendo,
definiendo el valor del PWM en 0 o 100 dependiendo del caso.

Figura 26. Diagrama de flujo botón parar.

Esta función (ver figura 26) realiza las mismas acciones que en la ventana principal,
cambiando el valor de la variable a true, lo que hace que el ciclo while deje de correr,
además de limpiar la conexión con el Arduino y cerrar la ventana de la aplicación.

Figura 27. Diagramas de flujo check box Q1 y Q2.

40

Por último, estas dos funciones (ver figura 27) se encargan de mantener el transistor
actualizado al momento de presionar cualquier opción, cambia a falso el estado del
otro lo que asegura que se esté trabajando con un solo transistor para evitar errores
en el programa.

41

6 ADQUISICIÓN DE DATOS A TRAVÉS DE LA PLANTA

Para iniciar la interacción con la planta de temperatura, se realiza la identificación
en la ventana principal de la interfaz gráfica (ver figura 28), aquí se coloca la
información necesaria para realizar la conexión con el Arduino y la aplicación, para
esto se selecciona el tipo de Arduino usado y el puerto COM que el computador
selecciona al conectar el dispositivo, después de esto se inicia a correr el programa
para empezar a guardar las lecturas.

Figura 28. Ventana principal del funcionamiento de la interfaz gráfica.

Se define la ruta donde se guarda el archivo .CSV que genera el programa y con el
slide se selecciona el PWM que se usa para el proceso de identificación, en este
caso se usara 100% y se presiona enviar en el transistor con el que se desee
trabajar.

42

Figura 29. Selección de PWM enviado al transistor 1.

En este caso se trabaja con el primer transistor, se puede notar que en el cuadro de
texto marca un PWM de 1(ver figura 29), la escala que admite la función de Matlab
esta entre 0 y 1, el valor seleccionado es mapeado para que se ajuste a esta escala
y se espera un tiempo hasta que se recolecten datos suficientes para poder adquirir
la información de funcionamiento de la planta.

Figura 30. Archivo de Excel con los datos recolectados.

43

Al revisar los datos generados por el programa (ver figura 30) es recomendable
realizar el ajuste necesario para que el formato sea el más cómodo para trabajar,
con ese fin se crea un código en Matlab que organiza la tabla y recorta los datos
menores al valor de PWM indicado, así se genera una nueva tabla con los datos
que se usaran para la identificación y se crea una gráfica donde se puede observar
el comportamiento.

Figura 31. Ventana de organización para las tablas de datos.

Figura 32. Gráfica generada con los datos tomados a través de la planta.

44

Habiendo hallado esto se tienen los recursos suficientes para realizar el proceso de
identificación y desarrollo del control usando la herramienta de Matlab System
Identification.

Figura 33. Pestaña de System Identification en Matlab.

Se procede con la configuración de la herramienta importando los datos obtenidos
en la simulación(ver figura 34).

Figura 34. Pestaña de System Identification para importar los datos.

45

Se revisa que la configuración de la herramienta sea adecuada al sistema que se
posee de primer orden con retraso para así poder estimar la función de
transferencia. Al cerrar la herramienta se ha obtenido la función de transferencia de
la planta trabajada y se puede realizar el diseño del PID.

Figura 35. Función de transferencia adquirida a través de System Identification.

Hay bastantes opciones para este paso, es posible apoyarse en la herramienta PID
tunner para seleccionar un controlador a medida, con las especificaciones deseadas
o realizar todas las operaciones matemáticas para obtener el control PID de la
planta. En este caso se realizan los cálculos matemáticos según la documentación
para realizar un controlador PID Ziegler-Nichols que presenta las ecuaciones para
el diseño donde:

𝐾𝑝 = 1.2 ∗
ఛ

௄௅
 Ecuación (17)

𝜏௜ = 2 ∗ 𝐿 Ecuación (18)

𝜏ௗ = 0.5 ∗ 𝐿 Ecuación (19)

𝐿 = 𝑇ℎ𝑒𝑡𝑎 +
௧௦

ଶ
 Ecuación (20)

Reemplazando con los datos obtenidos se tiene que:

𝐾𝑝 = 1.2 ∗
ଷଶ.ଷ଼ଵ

଴.ଽଷ଺ଶ∗଼.ଵସଶ
= 5.097 Ecuación (21)

𝐿 = 7.642 +

ଵ

ଶ
= 8.142 Ecuación (22)

𝜏௜ = 2 ∗ 8.142 = 16.284 Ecuación (23)

𝜏ௗ = 0.5 ∗ 8.142 = 4.071 Ecuación (24)

46

Con estos datos se puede realizar la prueba de funcionamiento del controlador para
analizar su marcha y corregir el comportamiento de ser necesario.

Figura 36. Ventana secundaría de la interfaz gráfica con los datos del controlador
PID.

Se ingresan los datos obtenidos (ver figura 36) y se lanza la simulación, aquí se
puede observar una buena respuesta del control, un pequeño sobre impulso al llegar
a la temperatura, pero se estabiliza rápidamente, además se aplica una perturbación
en el sistema cerca al segundo 400 de la simulación, enfriando un poco el transistor
dando como resultado la corrección del PWM para compensar la pérdida de
temperatura.

47

Figura 37. Gráfica de la respuesta de la planta al controlador aplicado.

Se puede concluir que el controlador tiene una respuesta exitosa como practica y
cumple con los parámetros deseados (ver figura 37).

48

7 CONCLUSIONES

El proyecto de grado expuesto en este documento muestra el proceso para el
desarrollo del diseño y la implementación de una planta de temperatura y su interfaz
gráfica. Las conclusiones obtenidas del presente trabajo se indican a continuación.

 Por las razones mencionadas anteriormente usando como base las
características del transistor TIP31, se logra el diseño de una planta de
temperatura multivariable ajustando los rangos de temperatura a las
condiciones típicas de funcionamiento.

 Debido al uso de las librerías disponibles de acceso libre de Arduino, se
obtiene el diseño del hardware tipo plug and play que permite la
compatibilidad con los modelos de Arduino Uno, Arduino Mega y Arduino
Leonardo, además de favorecer el uso del Arduino aún con la planta de
temperatura acoplada.

 La evidencia presentada anteriormente demuestra que se consigue el diseño
de una interfaz gráfica intuitiva y de cómodo manejo para el usuario, esto
debido al uso de la herramienta App Designer de Matlab.

 Se logra diseñar e implementar el circuito impreso de la planta de
temperatura, todas las pruebas, el desarrollo de la interfaz gráfica y la
calibración de la planta se realizó en la PCB fabricada.

 Se ejecutó la fabricación de dos versiones, la primera versión se usó para
verificar que el diseño funcionaba correctamente, con esta se logró corregir
un error de conexión entre la planta de temperatura y el Arduino,
seguidamente se fabricó la segunda y última versión, cuyo trabajo fue
exitoso.

 Con el funcionamiento correcto del proyecto se logra crear la guía de usuario
que introduce al estudiante en el funcionamiento y manejo de la planta de
temperatura y la interfaz gráfica para adelantar pruebas aplicando el control.

 Este proyecto se enfoca en el control exitoso de la planta de temperatura a
través del manejo del PWM, sin embargo, la placa se diseñó teniendo en
cuenta que puede surgir la necesidad de aplicar otros métodos por lo que se
incluyó una etapa de medición de corriente.

 Finalmente se implementa un control digital usando el método Ziegler–
Nichols enseñando el proceso y las herramientas, demostrando el correcto
funcionamiento de todo el proyecto.

49

8 RECOMENDACIONES

 Verifique que todas las partes de la planta están funcionales el mismo día
que esta se le es entregada, así puede rectificar que está en buen estado.

 Trate con cuidado las partes THT de la placa (sensores y transistores) no
doble ni golpee estas partes ya que puede generar un desprendimiento de la
soldadura o dañar alguna vía de la PCB.

 Cualquier modificación o reemplazo de componentes debe ser consultado y
autorizado por el tutor o profesor de la materia.

 Cualquier daño que sufra la planta de temperatura después de ser entregada
al estudiante debe ser pagada por el estudiante, ya sea reemplazo de alguna
parte por mal uso o la fabricación de una nueva placa.

 Recuerde que la PCB es solo para uso académico, no se le permite el uso
de esta planta para otros fines.

 Asegure que el Arduino que se va a usar en las practicas sea reconocido por
su computadora antes de correr el programa de identificación de la planta.

 Para una mejor respuesta de la planta, puede usar algún tipo de pasta
térmica. Esto puede mejorar la transferencia de calor, ayudando a la
precisión de lectura de los sensores.

 Utilice un cargador USB tipo C que pueda suministrar mínimo 2A.
 Una vez se realice el proceso de identificación de la planta, usar siempre el

mismo cargador para trabajar con la planta.
 Cuando la planta de temperatura esté funcionando asegúrese de no tocar los

transistores cuando el led de seguridad este encendido. El transistor puede
llegar a temperaturas muy altas por lo que podría causar lesiones de no ser
manejado con cuidado.

50

9 TRABAJOS FUTUROS

La interfaz gráfica tiene algunos detalles que se pueden llegar a mejorar, al usar la
herramienta App Designer en Matlab se genera una facilidad en el diseño de la
aplicación, pero se pueden generar retrasos en la ejecución del programa porque
este debe cargar todas las características necesarias desde Matlab. Se puede
realizar una interfaz gráfica usando un lenguaje de programación como Python para
acelerar la respuesta de la aplicación y además para disminuir la carga en el
computador.
Como mejora en la pestaña de control (ver Figura 23.) agregar una función que
permita aplicar control a ambos transistores además de una función donde se pueda
agregar un PWM constante a un transistor mientras se le aplica control al otro.

51

BIBLIOGRAFIA

ABOUT KICAD [Anónimo]. KiCad EDA - Schematic Capture & PCB Design Software
[página web]. [Consultado el 19, julio, 2023]. Disponible en Internet:
<https://www.kicad.org/about/kicad/>.

A COMPILAR. Comunicación serial arduino matlab en app designer| tutorial español
[video]. YouTube. (17, octubre, 2020). [Consultado el 28, julio, 2024]. 22:10 min.
Disponible en Internet: <https://www.youtube.com/watch?v=BK9_7io_cGE>.

AMPLIFICADOR OPERACIONAL Eléctronica [Anónimo]. Blog Arduino, LabVIEW y
Electrónica [página web]. [Consultado el 19, julio, 2023]. Disponible en Internet:
<https://electronicamade.com/amplificador-operacional/>.

[Consultado el 19, mayo, 2024]. Disponible en Internet: <https://hetpro-
store.com/TUTORIALES/i2c/#google_vignette>.

CONTROLADOR PID - Control AutomÃ¡tico - Picuino [Anónimo]. PÃ¡gina principal
- Picuino [página web]. [Consultado el 19, julio, 2023]. Disponible en Internet:
<https://www.picuino.com/es/control-pid.html>.

¿EN QUÉ consiste el montaje SMD de circuitos electrónicos? - AMMi Technologies
[Anónimo]. AMMi Technologies [página web]. [Consultado el 19, mayo, 2024].
Disponible en Internet: <https://ammitechnologies.com/montaje-smd-que-es/>.

GOODWIN, Graham C., et al. Emulation-Based virtual laboratories: a low-cost
alternative to physical experiments in control engineering education. En: IEEE
Transactions on Education [en línea]. Febrero, 2011. vol. 54, no. 1 [consultado el
19, julio, 2023], p. 48-55. Disponible en Internet:
<https://doi.org/10.1109/te.2010.2043434>. ISSN 1557-9638.

HARB MECATRÓNICA. Constantes Kp, Ki, Kd y Función de transferencia de
controlador PID con Ident MatLab y SimuLink [video]. YouTube. (7, septiembre,
2019). [Consultado el 19, julio, 2023]. 21:31 min. Disponible en Internet:
<https://www.youtube.com/watch?v=VPC5LNaps1g>.

KALÚZ, Martin, et al. ArPi lab: a low-cost remote laboratory for control education.
En: IFAC Proceedings Volumes [en línea]. 2014. vol. 47, no. 3 [consultado el 19,
julio, 2023], p. 9057-9062. Disponible en Internet:
<https://doi.org/10.3182/20140824-6-za-1003.00963>. ISSN 1474-6670.

PCB PROTOTYPE & PCB fabrication manufacturer - JLCPCB [Anónimo]. PCB
Prototype & PCB Fabrication Manufacturer - JLCPCB [página web]. [Consultado el
19, mayo, 2023]. Disponible en Internet: <https://jlcpcb.com/>.

52

PWM: ¿Qué es? ¿Cómo puedo utilizarlo? DigiKey [Kohlhase, Kaleb.] [página web].
[Consultado el 19, mayo, 2024] Disponible en Internet:
<https://www.digikey.com/es/blog/pulse-width-modulation>.
¿QUÉ ES una PCB o placa de circuito impreso? | altium [Anónimo]. Altium [página
web]. [Consultado el 19, mayo, 2024]. Disponible en Internet:
<https://resources.altium.com/es/p/what-is-a-pcb>.

TODO sobre Ziegler Nichols - Sintonia de Control PID [Anónimo]. Control
Automático Educación [página web]. [Consultado el 19, julio, 2023]. Disponible en
Internet: <https://controlautomaticoeducacion.com/control-realimentado/ziegler-
nichols-sintonia-de-control-pid/>.

53

ANEXO

Anexo A: Manual de usuario.

Inicialmente se recomienda dar un vistazo a la placa de la planta de temperatura
(ver figura 38) para reconocer como interactúan los compuestos que facilitan su
funcionamiento:

Figura 38. Vista preliminar de la planta de temperatura.

1. Se encuentran los transistores TIP 31 utilizados como fuente de calor y medio
principal para poder interactuar con la planta y el control definido.

2. Aquí podrá observar dos leds de color rojo que pretenden indicar que los
transistores han pasado los 40°C por lo que es recomendable que cuando
alguno de los dos este encendido, manipule con precaución el dispositivo
para que evite tocarlos directamente.

3. Los pines externos son necesarios para realizar la conexión de la planta de
temperatura con el Arduino, están diseñados para que encaje perfectamente
encima de cualquier placa de desarrollo que utilice, puede escoger entre el
Arduino Uno, Arduino Mega y Arduino Leonardo.

4. Entrada de alimentación USB C para los transistores. Debe recordar que esta
placa se alimenta únicamente con 5V, pero hay dos fuentes de alimentación
dentro de ella, la primera es la alimentación 5V que brinda el Arduino, esta

54

se usa para todos los componentes como sensores, resistencias,
amplificadores operacionales y leds, la segunda es el USB C que ve en la
imagen 27, donde puede conectar un cargador común de 5V, preferiblemente
que proporcione 2A o más, para alimentar los transistores. Siempre deben
conectarse ambas alimentaciones para utilizar la planta de temperatura.

5. Sensores LM35 para la lectura de la temperatura, U3 y U4 son los
encargados de tomar los datos de los transistores, mientras que U1 toma la
temperatura ambiente.

Es recomendable que aplique algún tipo de pasta térmica entre los sensores y los
transistores con el fin de mejorar la transmisión de calor y así poder tener lecturas
más precisas y confiables.

Después de tener en cuenta los componentes básicos de la planta de temperatura
y las recomendaciones, puede proceder con la interacción de la interfaz gráfica, a
continuación, se encuentra la ventana principal:

Figura 39. Ventana principal de la interfaz gráfica.

55

Una vez se abra la aplicación se encuentra con esta ventana (ver figura 39), la cual
tiene lo necesario para llevar a cabo la identificación de su planta y se divide en
secciones:

En el primer recuadro, debe tener en cuenta la información de conexión, donde tiene
que seleccionar la placa que usa y el puerto COM en el que su computadora detecta
el Arduino usado para poder establecer de forma correcta la conexión entre la
aplicación y la placa, para esto tendrá que ir al administrador de dispositivos dando
clic derecho en el icono de Windows (ver figura 40).

Figura 40. Selección de administrador de dispositivos.

Seguidamente busque el apartado de puertos (COM y LPT) (ver figura 41) donde
está el puerto usado que se debe tener en cuenta para seguir la configuración de la
interfaz gráfica.

Figura 41. Puertos COM y LPT desde el dispositivo.

56

Teniendo esta información, asegure que la placa Heater Home Lab está conectada
correctamente al Arduino y alimentada externamente al puerto tipo C en esta.
Deberá iniciar la recolección de datos presionando el botón, una vez haga esto se
desplegará una ventana de Windows que le pedirá seleccionar la ruta donde se va
a guardar el archivo .CSV que genera la aplicación con los datos recolectados, como
recomendación elija la carpeta donde tiene guardado el ejecutable de la interfaz.

Después de esto, en el recuadro 2 se muestran las 3 gráficas donde puede observar
la temperatura tomada por los sensores (ver figura 42).

Figura 42. Graficación tomada de los sensores LM35.

En este punto la aplicación está guardando todos los datos que se muestran en las
gráficas para posteriormente realizar su análisis.

El tercer recuadro muestra la barra donde puede seleccionar el PWM que quiere
enviar a cualquiera de los dos transistores de la placa, necesario para el proceso de
identificación, después de seleccionar el valor deseado presione enviar al transistor
a trabajar, se mostrara el valor real que se le envía al transistor en la parte superior
llamado pwm1 y pwm2.

57

Figura 43. Graficación tomada de los sensores LM35 después de enviar el PWM.

Después de enviar el PWM, puede observar cómo los sensores detectan el cambio
en la temperatura. Luego de tomar los datos por el tiempo que desee, presione en
parar para detener la simulación.

En este punto su archivo esta creado en la ruta seleccionada con los datos
obtenidos en el proceso, por lo que puede realizar los procesos necesarios para la
identificación de su planta.

Una vez realice todos los procesos de identificación y diseño del controlador podrá
ver en el recuadro número 4 (ver figura 43) un botón para insertar los datos que
obtuvo en una nueva pestaña.

58

Figura 44. Ventana secundaria de la interfaz gráfica.

Una vez aquí (ver figura 44), debe tener en cuenta que la pestaña debe establecer
la conexión nuevamente con Arduino, por lo que para iniciar de forma correcta tiene
que seleccionar la placa que está usando y el puerto COM ocupado, como se
menciona anteriormente.

Para trabajar en esta pestaña, seleccione que tipo de controlador quiere trabajar P,
PI o PID, esto se ve en el recuadro número 2 de la imagen anterior, ingrese los
datos que arrojaron los cálculos que realizó para su controlador después de la
identificación y seguidamente puede pasar al recuadro 3 donde debe seleccionar
con que transistor está trabajando, además de la temperatura de referencia a la que
quiere que llegue su controlador. Verifique que todos los datos estén ingresados de
forma correcta y proceda con la simulación. Su gráfica inicia a mostrarse en los axis.
Al igual que antes en esta ventana se le pide seleccionar la ruta para que los datos
medidos a lo largo de toda la simulación sean guardados para poder ser analizados
de ser necesario.

59

Anexo B: Creación de variables globales en ventana primaria.

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17

 properties (Access = private)

 matriz1 = [];
 file_path = '';

 end

 properties (Access = public)

 parar = true;
 guardar = true;
 valorpwm1 = 0;
 valorpwm2 = 0;
 a

 end

Anexo C: Función iniciar en ventana principal.

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28

 function IniciarButtonPushed(app, event)
 usada = app.PlacaDropDown.Value;
 pcom = app.PuertoCOMEditField.Value;
 elcom = strcat('COM', pcom);
 app.a = arduino(elcom, usada);
 app.parar = false;
 app.file_path = uiputfile('*.csv', 'Guardar como');
 k = 1;
 while ~app.parar
 pwm1(k) = app.valorpwm1;
 pwm2(k) = app.valorpwm2;
 muestra(k) = k;

 ambiente(k) = readVoltage(app.a,'A0')* 12.66;
 lectura1(k) = readVoltage(app.a,'A1')* 25;
 lectura2(k) = readVoltage(app.a,'A2')* 25;

 if lectura1(k) >= 40
 writeDigitalPin(app.a, 'D7', 1);
 else
 writeDigitalPin(app.a, 'D7', 0);
 end

 if lectura2(k) >= 40
 writeDigitalPin(app.a,'D8',1);
 else
 writeDigitalPin(app.a, 'D8', 0);
 end

60

29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50

 format bank;

 app.matriz1(1, 1) = muestra(k);
 app.matriz1(1, 2) = round(ambiente(k), 2);
 app.matriz1(1, 3) = round(lectura1(k), 2);
 app.matriz1(1, 4) = round(lectura2(k), 2);
 app.matriz1(1, 5) = round(pwm1(k) * 100, 2);
 app.matriz1(1, 6) = round(pwm2(k) * 100, 2);
 writematrix(app.matriz1, app.file_path, 'WriteMode',
'append');

 plot(app.grafica, muestra, ambiente);
 plot(app.grafica_2, muestra, lectura1);
 plot(app.grafica_3, muestra, lectura2);

 k = k + 1;

 %set(app.inicioButton,'BackgroundColor',[0
0],'FontColor',[0.96 0.96 0.96],'Text','Sensando...');

 pause(1);
 end
 end

Anexo D: Función parar en ventana principal.

1
2
3
4
5
6
7
8
9

 function paraButtonPushed(app, event)

 % Desconectar el Arduino
 app.parar = true;
 clear app.a;
 delete app.a;
 delete(app)% cierra ventana de identificación

 end

Anexo E: Función T1 y T2 en ventana principal.

 1
 2
 3
 4
 5
 6
 7
 8
 9
10

 function EnviarT2ButtonPushed(app, event)
 value = app.Slider.Value;
 app.valorpwm2 = value / 100;
 app.pmw2EditField.Value = app.valorpwm2;
 writePWMDutyCycle(app.a, 'D10', app.valorpwm2);
 end

 function EnviarT1ButtonPushed(app, event)
 value = app.Slider.Value;
 app.valorpwm1 = value / 100;

61

11
12
13

 app.pmw1EditField.Value = app.valorpwm1;
 writePWMDutyCycle(app.a, 'D11', app.valorpwm1);
 end

Anexo F: Función insertar PID en ventana principal.

1
2
3
4
5
6
7

 function InsertarPIDButtonPushed(app, event)
 %delete(app.a) % cortar comunicacion con Arduino

 PID_app % abre ventana para ingresar el PID

 delete(app)% cierra ventana de identificación
 end

Anexo G: Creación de variables globales en ventana secundaria.

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21

 properties (Access = private)

 e1 = [0.0, 0.0, 0.0];
 e2 = [0.0, 0.0, 0.0];
 u1 = [0.0, 0.0];
 u2 = [0.0, 0.0];

 matriz1 = [];
 file_path = '';

 end

 properties (Access = public)

 parar = true;
 guardar = true;
 a

 end

Anexo H: Función iniciar en ventana secundaria.

 1
 2
 3
 4
 5
 6
 7
 8

 function INICIARButtonValueChanged(app, event)
 usada = app.PlacaDropDown.Value;
 pcom = app.PuertoCOMEditField.Value;
 elcom = strcat('COM', pcom);
 app.a = arduino(elcom, usada);
 app.parar = false;
 app.file_path = uiputfile('*.csv', 'Guardar como');
 i = 1;
 H1 = [];

62

 9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58

 selectedTab = app.TabGroup.SelectedTab;
 titulo = selectedTab.Title;
 switch titulo
 case 'P'
 K = app.K_P.Value;
 t = app.T_P.Value;
 q0 = K;
 q1 = 0.0;
 q2 = 0.0;
 case 'PI'
 K = app.K_PI.Value;
 Ti = app.Ti_PI.Value;
 t = app.T_PI.Value;
 q0 = K * (1 + t/(2*Ti));
 q1 = -K * (1 - t/(2*Ti));
 q2 = 0.0;
 case 'PID'
 K = app.K_PID.Value;
 Ti = app.Ti_PID.Value;
 Td = app.Td_PID.Value;
 t = app.T_PID.Value;
 q0 = K * (1 + t/(2*Ti) + Td/t);
 q1 = -K * (1 - t/(2*Ti) + 2*Td/t);
 q2 = K*Td/t;
 end

 while ~app.parar

 muestra(i) = i;

 lectura1(i) = readVoltage(app.a,'A1')* 25;
 lectura2(i) = readVoltage(app.a,'A2')* 25;

 H1(i) = 0;
 H2(i) = 0;

 if lectura1 >= 40
 writeDigitalPin(app.a, 'D7', 1);
 else
 writeDigitalPin(app.a, 'D7', 0);
 end

 if lectura2 >= 40
 writeDigitalPin(app.a,'D8',1);
 else
 writeDigitalPin(app.a, 'D8', 0);
 end

 if app.Q1CheckBox.Value

63

 59
 60
 61
 62
 63
 64
 65
 66

 67
 68
 69

 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85

 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99

100
101

102
103

 %Actualizacion del vector de error (etapa 1).
 app.e1(1) = app.e1(2);
 app.e1(2) = app.e1(3);
 app.e1(3) = app.tempRef.Value - lectura1(i);

 %Actualizacion del vector de control (etapa 1).
 app.u1(1) = app.u1(2);
 app.u1(2) = ControlPID(app.u1, app.e1, q0, q1,
q2);

 H1(i) = app.u1(2) / 100; %Se mapea el PWM obtenico
para enviarlo al arduino.
 writePWMDutyCycle(app.a, 'D11', H1(i));

 end

 if app.Q2CheckBox.Value

 %Actualizacion del vector de error (etapa 2).
 app.e2(1) = app.e2(2);
 app.e2(2) = app.e2(3);
 app.e2(3) = app.tempRef.Value - lectura2(i);

 %Actualizacion del vector de control (etapa 2).
 app.u2(1) = app.u2(2);
 app.u2(2) = ControlPID(app.u2, app.e2, q0, q1,
q2);

 H2(i) = app.u2(2) / 100; %Se mapea el PWM obtenico
para enviarlo al arduino.
 writePWMDutyCycle(app.a, 'D10', H2(i));

 end

 format bank;

 app.matriz1(1, 1) = muestra(i);
 app.matriz1(1, 2) = round(lectura1(i), 2);
 app.matriz1(1, 3) = round(lectura2(i), 2);
 app.matriz1(1, 4) = round(H1(i) * 100, 2);

 app.matriz1(1, 5) = round(H2(i) * 100, 2);

 writematrix(app.matriz1, app.file_path, 'WriteMode',
'append');

 plot(app.grafica_pwm, muestra, H2 * 100, muestra, H1 *
100);
 legend(app.grafica_pwm, 'H2', 'H1');

64

104

105
106
107
108
109
110
111

112
113
114

 plot(app.grafica_temp, muestra, lectura2, muestra,
lectura1);
 legend(app.grafica_temp, 'Lectura2', 'Lectura1');

 drawnow;

 i = i + 1;

 %set(app.inicioButton,'BackgroundColor',[0 0
0],'FontColor',[0.96 0.96 0.96],'Text','Sensando...');

 pause(t);
 end

Anexo I: Función controlador en ventana secundaria.

 1
 2
 3
 4
 5
 6
 7
 8
 9
10

 function [act] = ControlPID(u, e, q0, q1, q2)

 act = u(1) + q0*e(3) + q1*e(2) + q2*e(1);

 if act >= 100
 act = 100;
 elseif act <= 0
 act = 0;
 end
 end

Anexo J: Función checkbox Q1 y Q2 en ventana secundaria.

1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16

 function Q1CheckBoxValueChanged(app, event)
 Q1 = app.Q1CheckBox.Value;

 if Q1
 app.Q2CheckBox.Value = false;
 end
 end

 % Value changed function: Q2CheckBox
 function Q2CheckBoxValueChanged(app, event)
 Q2 = app.Q2CheckBox.Value;
 if Q2
 app.Q1CheckBox.Value = false;
 end
 end
 end

Anexo K: Función parar en ventana secundaria.

1 function PARARButtonPushed(app, event)

65

2
3
4
5
6
7
8
9

 % Desconectar el Arduino
 app.parar = true;
 clear app.a;
 delete app.a;
 delete app;

 end

Anexo L: Fotografías del acople de la planta de temperatura con el Arduino
Uno.

Figura 45. Vista superior de la planta de temperatura.

66

Figura 46. Vista transversal de la planta de temperatura acoplada al Arduino.

