

UNIVERSIDAD SURCOLOMBIANA

GESTIÓN DE BIBLIOTECAS

 CARTA DE AUTORIZACIÓN

CÓDIGO AP-BIB-FO-06 VERSIÓN 1 VIGENCIA 2014 PÁGINA 1 de 2

Vigilada Mineducación
La versión vigente y controlada de este documento, solo podrá ser consultada a través del sitio web Institucional www.usco.edu.co, link
Sistema Gestión de Calidad. La copia o impresión diferente a la publicada, será considerada como documento no controlado y su uso

indebido no es de responsabilidad de la Universidad Surcolombiana.

Neiva, _______________________

Señores

CENTRO DE INFORMACIÓN Y DOCUMENTACIÓN

UNIVERSIDAD SURCOLOMBIANA

Ciudad

El (Los) suscrito(s):

__, con C.C. No. ______________________

Autor(es) de la tesis y/o trabajo de grado o __

titulado___

__

__
presentado y aprobado en el año _________ como requisito para optar al título de

__;

Autorizo (amos) al CENTRO DE INFORMACIÓN Y DOCUMENTACIÓN de la Universidad Surcolombiana para
que, con fines académicos, muestre al país y el exterior la producción intelectual de la Universidad
Surcolombiana, a través de la visibilidad de su contenido de la siguiente manera:

• Los usuarios puedan consultar el contenido de este trabajo de grado en los sitios web que administra la
Universidad, en bases de datos, repositorio digital, catálogos y en otros sitios web, redes y sistemas de
información nacionales e internacionales “open access” y en las redes de información con las cuales tenga
convenio la Institución.

• Permita la consulta, la reproducción y préstamo a los usuarios interesados en el contenido de este trabajo,
para todos los usos que tengan finalidad académica, ya sea en formato Cd-Rom o digital desde internet,
intranet, etc., y en general para cualquier formato conocido o por conocer, dentro de los términos
establecidos en la Ley 23 de 1982, Ley 44 de 1993, Decisión Andina 351 de 1993, Decreto 460 de 1995 y
demás normas generales sobre la materia.

• Continúo conservando los correspondientes derechos sin modificación o restricción alguna; puesto que, de
acuerdo con la legislación colombiana aplicable, el presente es un acuerdo jurídico que en ningún caso
conlleva la enajenación del derecho de autor y sus conexos.

De conformidad con lo establecido en el artículo 30 de la Ley 23 de 1982 y el artículo 11 de la Decisión Andina
351 de 1993, “Los derechos morales sobre el trabajo son propiedad de los autores” , los cuales son
irrenunciables, imprescriptibles, inembargables e inalienables.

Mayo 2, 2024

John Alexander Gutierrez Gaviria 1075293047

SISTEMAS DE CLASIFICACIÓN AUTOMÁTICA DE GRADOS DE

RETINOPATÍA DIABÉTICA MEDIANTE DEEP LEARNING

Ingeniero Electrónico
2024

http://www.usco.edu.co/

UNIVERSIDAD SURCOLOMBIANA

GESTIÓN DE BIBLIOTECAS

 CARTA DE AUTORIZACIÓN

CÓDIGO AP-BIB-FO-06 VERSIÓN 1 VIGENCIA 2014 PÁGINA 2 de 2

Vigilada Mineducación
La versión vigente y controlada de este documento, solo podrá ser consultada a través del sitio web Institucional www.usco.edu.co, link
Sistema Gestión de Calidad. La copia o impresión diferente a la publicada, será considerada como documento no controlado y su uso

indebido no es de responsabilidad de la Universidad Surcolombiana.

EL AUTOR/ESTUDIANTE:

Firma: ___________________________

John Alexander Gutierrez Gaviria

http://www.usco.edu.co/

SISTEMAS DE CLASIFICACIÓN AUTOMÁTICA DE GRADOS DE

RETINOPATÍA DIABÉTICA MEDIANTE DEEP LEARNING

JOHN ALEXANDER GUTIÉRREZ GAVIRIA

UNIVERSIDAD SURCOLOMBIANA

FACULTAD DE INGENIERÍA

PROGRAMA DE INGENIERÍA ELECTRÓNICA

NEIVA

2024

SISTEMAS DE CLASIFICACIÓN AUTOMÁTICA DE GRADOS DE

RETINOPATÍA DIABÉTICA MEDIANTE DEEP LEARNING

JOHN ALEXANDER GUTIÉRREZ GAVIRIA

Trabajo de tesis

Director

VLADIMIR MOSQUERA CERQUERA

M.Sc. Unicauca, Univalle.

UNIVERSIDAD SURCOLOMBIANA

FACULTAD DE INGENIERÍA

PROGRAMA DE INGENIERÍA ELECTRÓNICA

NEIVA

2024

3

 Nota de aceptación:

__

__

__

__

__

__

__

__

Firma del presidente del jurado

__

Firma del Jurado

__

Firma del Jurado

Neiva, Marzo 15 de 2024

4

Agradezco primero a Dios por darme la salud, las fuerzas y acompañarme en cada

paso durante el tiempo de mi carrera universitaria y este proyecto de grado. A mi

madre Sandra Rocío Gaviria por todas sus oraciones, enseñanzas sobre el

sacrificio, por su respaldo, insistencia y amor. A mi padre John Alexander Gutierrez

por todas sus enseñanzas sobre la vida y la familia. A mi hermana María Gutierrez

por ser mi ejemplo a seguir y ayudarme en mi vida profesional. A mi hermana

Catalina Gutierrez Gaviria por su orgullo y admiración, porque cada uno de mis

logros los celebra sinceramente. A mi hermana María Gutierrez Gaviria por siempre

cuidar de mí y alentarme a cada día ser una mejor persona. A mi novia Tatiana

Marquez por ser una inspiración para alcanzar nuestros sueños y metas. A todas

las personas que de una u otra manera ayudaron en este proceso de formación

profesional. ¡Gracias!

John Alexander Gutierrez Gaviria

5

AGRADECIMIENTOS

Expreso mis más sinceros agradecimientos a mi director de tesis Vladimir Mosquera

por todo su conocimiento compartido, por siempre estar disponible y atento ante mis

inquietudes y guiarme de la manera correcta durante la realización de este proyecto

de grado. Agradezco a nuestros jurados de tesis José de Jesús Salgado y Julián

Molina por brindarme de manera excelente todos sus conocimientos académicos a

lo largo de toda la carrera universitaria los cuales han sido indispensables para la

realización de este proyecto de grado.

6

TABLA DE CONTENIDOS

Pág.

INTRODUCCIÓN. .. 13

PLANTEAMIENTO DEL PROBELMA.. 15

JUSTIFICACIÓN. ... 17

1. OBJETIVOS ... 18

1.1 OBJETIVOS GENERAL……………………………………………………………………………..18

1.2 OBJETIVOS ESPECÍFICOS……………………………………………………………………..…18

2. REDES NEURONALES CONVOLUCIONALES………………………………………………….19

3. RETINOPATÍA DIABÉTICA……………………………………………………………………..….25

4. METODOLOGÍA………………………………………………………………………………..……27

4.1 SOFTWARE Y EQUIPO…………………………………………………………………….………27

4.2 BASE DE DATOS……………………………………………………………………………………27

4.3 MÉTRICA DE EVALUACIÓN: KAPPA CUADRÁTICO PONDERADO………………………...30

4.4 PRE-PROCESAMIENTO Y AUMENTO DE DATOS…………………………………………….32

4.4.1 Reducción de fondo………………………………………………………………….……….……32

4.4.2 Escalamiento de radio……………………………………………………………………..……....32

4.4.3 Mapeo al 50% de gris……………………………………………………………………..……….33

4.4.3.1 Eliminación del Efecto Aurora…………………………………………………………..………33

4.4.4 Redimensionamiento de la imagen a 512x512x3……………………………………………….34

4.5 RED NEURONAL CONVOLUCIONAL…………………………………………………………….36

5. RESULTADOS……………………………………………………………………………………….39

5.1 PRE-PROCESAMIENTO DE IMÁGENES………………………………………………………...39

5.2 BULK PRE-PROCESSING………………………………………………………………………….45

5.3 RED NEURONAL CONVOLUCIONAL…………………………………………………………….49

5.4 ARQUITECTURA FINAL…………………………………………………………………………….53

5.4.1 Filtros y salidas de la red neuronal convolucional……………………………………………....58

6. CONCLUSIONES…………………………………………………………………………………….61

BIBLIOGRAFÍA………………………………………………………………………………………………63

7

LISTA DE FIGURAS

Pág.

Figura 1. Ejemplo de primer bloque de una CNN. ... 20

Figura 2. Ejemplo de segundo bloque de una CNN. ... 21

Figura 3. Ejemplo de arquitectura de una red neuronal convolucional. ... 22

Figura 4. Signos de Retinopatía Diabética en una imagen de fondo de ojo. 26

Figura 5. Muestras de imágenes de retina del ojo izquierdo y derecho para dos pacientes de la

base de datos Kaggle. ... 29

Figura 6. Imagen original a pre-procesar. 39

Figura 7. Imagen original a escala de grises e imagen con fondo reducido. 40

Figura 8. Imagen con radio escalado. ... 40

Figura 9. Imagen mapeada al 50% de gris. .. 41

Figura 10. Imagen sin efecto aurora. .. 42

Figura 11. Imagen final pre-procesada. .. 43

Figura 12. Histograma de una imagen pre-procesada. .. 44

Figura 13. Resultados del pre-procesamiento para una imagen de la base de Kaggle. 44

Figura 14. Muestra de arreglos creados con los nombres de las imágenes y el nivel de retinopatía

diabética correspondiente. ... 45

Figura 15. Imágenes descartadas en el pre-procesamiento. .. 46

Figura 16. Muestra de los resultados del bulk pre-processing. .. 46

Figura 17. Imágenes antes y después de pasar por la etapa de pre-procesamiento. 47

Figura 18. Diagrama de flujo del pre-procesamiento. ... 48

Figura 19. Graficas de la exactitud y la pérdida del modelo inicial entrenado durante 50 épocas... 50

Figura 20. Distribución de clases por batch. ... 52

Figura 21. Batch de Imágenes antes y después de aplicar data augmantation. 52

Figura 22. Arquitectura final de la CNN. ... 56

Figura 23. Grafica de la exactitud del modelo Final entrenado durante 150 épocas. 57

Figura 24. Filtros usados por la CNN en la primera capa convolucional, Conv2D(16, (3,3),

padding='same', activation='relu'). ... 58

Figura 25. Imágenes de salida de la primera capa convolucional implementada en la arquitectura

final de la CNN. .. 59

8

Figura 26. Matriz de confusión. .. 60

9

LISTA DE TABLAS

Pág.

Tabla 1. Relación entre las categorías de las etiquetas y el nivel de DR que representan. 28

Tabla 2. Interpretación del Kappa. .. 30

Tabla 3. Arquitectura de la CNN propuesta por Mathias Anthony y Stephan Brüggerma 38

Tabla 4. Distribución de clases del set de entrenamiento de la base de datos de Kaggle. 51

Tabla 5. Distribución de clases del set de validación de la base de datos de Kaggle. 51

Tabla 6. Métricas de la matriz de confusión por clases. ... 60

10

GLOSARIO

Retinopatía Diabética: es una complicación de la diabetes que afecta los ojos. Es

causada por el daño a los vasos sanguíneos del tejido sensible a la luz que se

encuentran en el fondo del ojo (retina).

Imagen del fondo de ojo: imagen utilizada principalmente para diagnosticar

enfermedades oculares.

Aprendizaje profundo: (Deep Learning) es un tipo de aprendizaje

automático (machine learning, ML) e inteligencia artificial que imita la forma en que

los humanos obtienen ciertos tipos de conocimiento.

Redes Neuronales: son un modelo para encontrar la combinación de parámetros

que mejor se ajusta a un determinado problema.

CNN: Es un tipo de Red Neuronal Artificial con aprendizaje supervisado que procesa

sus capas imitando al cortex visual del ojo humano para identificar distintas

características en las entradas que en definitiva hacen que pueda identificar objetos

y “ver”.

Capa de Convolución: procesa la salida de neuronas que están conectadas en

“regiones locales” de entrada (es decir pixeles cercanos), calculando el producto

escalar entre sus pesos (valor de píxel) y una pequeña región a la que están

conectados en el volumen de entrada.

Keras: Es una biblioteca que funciona a nivel de modelo, proporciona bloques

modulares sobre los que se pueden desarrollar modelos complejos de aprendizaje

profundo.

Matplotlib: es una biblioteca de código abierto para la generación de gráficos a

partir de vectores y arrays.

Píxel: es la parte homogénea en color más pequeña de una imagen digital

generalmente compuesta por 8 bits.

https://www.techtarget.com/searchdatacenter/es/definicion/Aprendizaje-automatico-machine-learning?_gl=1*1lxsz2o*_ga*NjgyMjI2MzEuMTYyODU0ODc0NQ..*_ga_TQKE4GS5P9*MTYzMDk0NjAwMC4zOS4xLjE2MzA5NTEyMTAuMA..&_ga=2.237826441.821581610.1630946001-68222631.1628548745
https://www.techtarget.com/searchdatacenter/es/definicion/Aprendizaje-automatico-machine-learning?_gl=1*1lxsz2o*_ga*NjgyMjI2MzEuMTYyODU0ODc0NQ..*_ga_TQKE4GS5P9*MTYzMDk0NjAwMC4zOS4xLjE2MzA5NTEyMTAuMA..&_ga=2.237826441.821581610.1630946001-68222631.1628548745
https://www.techtarget.com/searchdatacenter/es/definicion/Inteligencia-artificial-o-AI?_gl=1*l8bgsq*_ga*NjgyMjI2MzEuMTYyODU0ODc0NQ..*_ga_TQKE4GS5P9*MTYzMDk0NjAwMC4zOS4xLjE2MzA5NTEyMzQuMA..&_ga=2.237826441.821581610.1630946001-68222631.1628548745

11

RESUMEN

El fin de este proyecto de grado fue desarrollar una aplicación de software en

lenguaje de programación de código abierto Python, que mediante el uso de redes

neuronales convolucionales (CNN) posibiliten la detección y clasificación de la

Retinopatía Diabética mediante imágenes de fondo de ojo.

La red neuronal convolucional adquiere imágenes de la base de datos Kaggle, cada

imagen es pre-procesada adecuadamente con la finalidad de resaltar las

características más relevantes y redimensionar la imagen a un tamaño de

512𝑥512𝑥3 permitiendo a la CNN un entrenamiento mas eficiente y rápido. La CNN

realiza el proceso de extracción de características de las imágenes de fondo de ojo

y clasificación de los cinco diferentes grados de Retinopatía Diabética. Se utilizó la

métrica de evaluación Kappa Cuadrático Ponderado para medir el desempeño del

sistema de aprendizaje. Usando el método de ensayo y error se implementó y

entrenó la CNN. Durante la experimentación se agregaron Custom Data Generators

para facilitar el entrenamiento de la red e impedir el sobre-entrenamiento de esta.

Se obtuvo un nivel de acuerdo con respecto a las etiquetas asignadas por un

experto de 78%. De acuerdo con este resultado la red tiene un buen desempeño,

indicando que fue capaz de extraer las características fundamentales para la

clasificación de la enfermedad crónica retinopatía diabética.

PALABRAS CLAVES: Visión por computador, Inteligencia artificial, aprendizaje

profundo, redes neuronales convolucionales, retinopatía diabética.

12

ABSTRACT

The purpose of this project is to develop a software application in the open-source

programming language Python, which, using convolutional neural networks (CNN),

enables the detection and classification of Diabetic Retinopathy through eye fundus

images.

The convolutional neural network acquires images from the Kaggle data base, each

image is pre-processed to highlight the most relevant features and resize the image

to a size of 512𝑥512𝑥3, allowing the CNN to train more efficiently and faster. CNN

performs the process of extracting features from the fundus images and classifying

the five different grades of Diabetic Retinopathy. The Weighted Quadratic Kappa

evaluation metric was extracted to measure the performance of the learning system.

Using the trial and error method, the CNN was implemented and trained. During

experimentation, custom data generators were added to facilitate network training

and prevent network overfitting. A level of agreement was obtained according to the

labels exposed by an expert of 87%. According to this result, the network the network

has a “good” performance, indicating that it was able to extract the fundamental

characteristics for the classification of chronic diabetic retinopathy.

KEY WORDS: computer vision, artificial intelligence, deep learning, convolutional

neural networks, diabetic retinopathy.

13

INTRODUCCIÓN

El Centro para el Control y la Prevención de Enfermedades de Estados Unidos

estima que 29.1 millones de personas en los Estados Unidos tienen diabetes y la

Organización Mundial de la Salud estima que 347 millones de personas padecen la

enfermedad en todo el mundo. La Retinopatía Diabética (DR) del acrónimo en inglés

Diabetic Retinopathy, es una enfermedad ocular asociada con diabetes de larga

duración. La progresión hacia el deterioro de la visión puede ralentizarse o evitarse

si se detecta DR a tiempo, sin embargo, esto puede ser difícil ya que la enfermedad

a menudo muestra pocos síntomas hasta que es demasiado tarde para proporcionar

tratamiento efectivo 1 siendo la causa más común de ceguera del ojo dependiendo

de la diabetes. Por esta razón, la detección temprana de la Retinopatía Diabética

es de importancia crítica.2

Actualmente, la detección de DR es un proceso manual que requiere mucho tiempo

y así mismo, un médico capacitado para examinar y evaluar fotografías digitales en

color del fondo de la retina. Para cuando los lectores humanos envían sus

revisiones, a menudo uno o dos días después, los resultados retrasados conducen

a un seguimiento perdido, falta de comunicación y tratamiento retrasado.

La causa principal de la Retinopatía Diabética se debe a un trastorno metabólico

que aumenta los niveles de glucosa en la sangre de una persona, lo que hace que

la persona presente altos niveles de presión arterial, que a su vez afectan el sistema

circulatorio de la retina y el revestimiento sensible a la luz en la parte posterior del

ojo 3. Los médicos pueden identificar DR por la presencia de lesiones asociadas con

las anomalías vasculares causadas por la enfermedad. Si bien este enfoque es

efectivo, sus demandas de recursos son altas. La experiencia y el equipo requeridos

a menudo faltan en áreas donde la tasa de diabetes en las poblaciones locales es

alta y la detección de DR es más necesaria. A medida que el número de personas

con diabetes continúa creciendo, la infraestructura necesaria para prevenir la

ceguera debido a la DR se volverá aún más insuficiente.

1 Disponible en: https://www.kaggle.com/c/diabetic-retinopathy-detection
2 Nursel Yalçin, Seyfullah Alver, Necla Uluhatun. Classification of retinal images
with Deep Learning for early detection of diabetic retinopathy disease.
3 Marıa A. Bravo, Pablo A. Arbelaez. Automatic Diabetic Retinopathy Classification.
Universidad de los Andes, Bogota, Colombia

about:blank

14

La necesidad de un método integral y automatizado de detección de DR ha sido

reconocida desde hace mucho tiempo, y los esfuerzos anteriores han hecho un

buen progreso utilizando la clasificación de imágenes, el reconocimiento de

patrones y el aprendizaje automático. Con la fotografía del fondo de retina como

entrada, el objetivo de este trabajo de grado cobra gran importancia al desarrollar

una herramienta basada en redes neuronales convolucionales que son capaces de

automáticamente identificar y extraer de las imágenes sus características más

relevantes, para la clasificación automática de las etapas de Retinopatía Diabética

que agilicen el proceso y hagan más objetivos los diagnósticos del experto. Su

objetivo será identificar y clasificar la Retinopatía Diabética en sus cinco etapas:

Retinopatía Diabética no Proliferativa (No DR), Leve, Moderado, Severo y DR

proliferativa.

15

PLANTEAMIENTO DEL PROBLEMA

La presencia de diferentes complicaciones oculares derivadas de la Diabetes, han

llevado al ser humano a investigar métodos más sencillos, eficaces y confiables

para la detección, clasificación y posterior tratamiento de ellas. Existen diferentes

procedimientos para que el especialista pueda realizar el diagnostico de Retinopatía

Diabética, como lo son: examen de agudeza visual, examen del iris y el ángulo

iridocorneano, examen de fondo de ojo con dilatación pupilar, fotografía de fondo

de ojo, angiografía con fluoresceína, Tomografía de Coherencia Óptica (O.C.T.).

El diagnóstico digital por imagen para la retina se vale de sistemas de

procesamiento de imágenes de alta resolución para tomar fotografías del interior del

ojo, esto ayuda a los especialistas a determinar la salud de la retina a la vez que les

permite detectar y controlar enfermedades y complicaciones oculares. Es

fundamental descubrir lo antes posible irregularidades en la retina para prevenir el

avance de enfermedades potencialmente graves e incluso la pérdida de la visión.

Además de ayudar a detectar enfermedades en forma precoz, las imágenes de la

retina brindan un historial permanente de los cambios producidos en los ojos. Con

las imágenes se pueden hacer comparaciones paralelas y anuales a fin de descubrir

incluso los cambios más sutiles y ayudar al control de la salud.

Este problema se agrava principalmente cuando el crecimiento en el número de

oftalmólogos es mucho menor que el crecimiento de diabéticos, al ser la Retinopatía

Diabética una complicación en donde su detección a tiempo es fundamental para el

correcto control, tratamiento y evitar la pérdida de visión.

En este orden de ideas, el análisis de imágenes de la retina requiere de un

aprendizaje a partir del conocimiento previo de datos de diferentes pacientes, con

el fin de facilitar y afirmar la detección de anomalías en estas.

El proyecto en cuestión aparece, entonces, como una alternativa confiable,

eficiente, ágil y económica, pues tiene como objetivo otorgar una herramienta

destinada a la detección y clasificación de las cinco etapas de la Retinopatía

Diabética (No DR, Leve, Moderado, Severo, DR proliferativa) empleando el

deterioro en los vasos sanguíneos a partir de imágenes de fondo de ojo, mediante

procesamiento digital de imágenes el uso de las Redes neuronales convolucionales,

siendo herramientas fundamentales de apoyo para el diagnóstico de Retinopatía

Diabética. ¿Es posible desarrollar una aplicación de software que haciendo uso de

procesamiento digital de imágenes y técnicas de inteligencia computacional tenga

16

la capacidad de detectar y clasificar la Retinopatía Diabética mediante imágenes de

fondo de retina?

17

JUSTIFICACIÓN

La Retinopatía Diabética (DR) es una enfermedad en la cual la retina se daña debido

al aumento de la presión arterial de los vasos sanguíneos pequeños del ojo humano.

DR es la principal causa de ceguera para los diabéticos. Se ha demostrado que el

diagnóstico temprano puede jugar un papel importante en la prevención de la

pérdida visual y la ceguera. La gran población de pacientes diabéticos y sus

requisitos de detección masiva han generado interés en un diagnóstico asistido por

computadora y completamente automático de DR. Este trabajo propone un enfoque

basado en computadora para la detección de DR en imágenes de fondo de ojo

basadas en el uso de redes neuronales convolucionales (CNN) del acrónimo en

inglés Convolutional Neural Network. La CNN a implementar utiliza aprendizaje

profundo para clasificar las fotografías de la retina en el fondo del ojo en 5 etapas

de DR.

De acuerdo con lo mencionado anteriormente, la importancia de este trabajo radica

precisamente en la combinación de procesamiento digital de imágenes y técnicas

de inteligencia computacional, para determinar características y patrones y usarlas

en la clasificación de las diferentes etapas de Retinopatía Diabética.

18

1. OBJETIVOS

1.1 OBJETIVO GENERAL

Desarrollar una aplicación de software en lenguaje de programación Python, que

mediante el uso de redes neuronales convolucionales posibiliten la detección y

clasificación de la Retinopatía Diabética mediante imágenes de fondo de retina.

1.2 OBJETIVOS ESPECÍFICOS

• Realizar preprocesamiento a las imágenes de fondo de retina para la detección y

clasificación de Retinopatía Diabética.

• Seleccionar las características de las imágenes de fondo de retina más

adecuadas para el proceso de detección y clasificación de Retinopatía Diabética.

• Implementar la arquitectura de red neuronal convolucional basada en Deep

Learning que realice la detección y clasificación propuesta.

• Validar la robustez de la Red neuronal para la detección de la Retinopatía

Diabética.

19

2. REDES NEURONALES CONVOLUCIONALES

La Red Neuronal Convolucional (CNN) es un tipo de Red Neuronal Artificial con

aprendizaje supervisado que procesa sus capas imitando al córtex visual del ojo

humano para identificar distintas características en las entradas que en definitiva

hacen que pueda identificar objetos y “ver”. Para ello, la CNN contiene varias capas

ocultas especializadas y con una jerarquía: esto quiere decir que las primeras capas

pueden detectar líneas, curvas y se van especializando hasta llegar a capas más

profundas que reconocen formas complejas como un rostro o la silueta de un

animal.

El descubrimiento de que se podría usar una CNN para extraer progresivamente

representaciones de alto y más alto nivel del contenido de la imagen trajo un gran

avance en la construcción de modelos para la clasificación de imágenes; La CNN

toma como entrada los datos de píxeles sin procesar de la imagen y aprende cómo

extraer estas características y, en última instancia deduce qué objeto constituyen. La

CNN está diseñada específicamente para procesar imágenes de entrada. Su

arquitectura entonces más específicamente se compone de dos bloques principales.

El primer bloque de esta arquitectura tiene como cualidad para este tipo de redes

neuronales su funcionamiento como un extractor de características, este

procedimiento lo realiza mediante la comparación de plantillas a las cuales se les

aplica un filtrado de convolución. Tenemos la primera capa cuya función es tomar

una imagen y filtrarla con varios filtros de convolución, devolviendo mapas de

características los cuales son normalizados con una función de activación y/o se

redimensionan. Al tener la facilidad de repetir varias veces este proceso se filtran los

mapas de características obtenidos con los nuevos filtros, lo que nos proporciona

nuevos mapas de características para su respectiva normalización y

redimensionamiento. Finalmente, los valores de los últimos mapas de características

se concatenan en un vector. Este vector define la salida del primer bloque y la

entrada del segundo.

Fuente:https://www.aprendemachinelearning.com/como-funcionan-las-

convolutional-neural-networks-vision-por-ordenador/

https://www.aprendemachinelearning.com/como-funcionan-las-convolutional-neural-networks-vision-por-ordenador/
https://www.aprendemachinelearning.com/como-funcionan-las-convolutional-neural-networks-vision-por-ordenador/

20

Figura 1. Ejemplo de primer bloque de una CNN.

Fuente:https://www.aprendemachinelearning.com/como-funcionan-las-

convolutional-neural-networks-vision-por-ordenador/

El segundo bloque no es característico de una CNN. De hecho, está al final de todas

las redes neuronales empleadas para la clasificación. Se necesita que los valores

del vector de entrada se modifiquen mediante varias combinaciones lineales y

funciones de activación, devolviendo un nuevo vector que será de salida. Dicho

vector de salida tendrá tantos elementos como clases hay. El elemento 𝑖 representa

la probabilidad de que la imagen pertenezca a la clase 𝑖. Por tanto, cada elemento

está entre 0 y 1, y la suma de todos vale 1. La última capa de este bloque se encarga

de realizar un cálculo de estas probabilidades, mediante una función logística que

realiza una clasificación binaria o a través de una función softmax que desarrolla una

clasificación multiclase como una función de activación. De la misma forma que con

las redes neuronales ordinarias, los parámetros de las capas están determinados

por la retro propagación de gradiente. La entropía cruzada se minimiza durante la

fase de entrenamiento. Sin embargo, en el caso de las CNN, estos parámetros se

refieren en particular a las características de la imagen.

https://www.aprendemachinelearning.com/como-funcionan-las-convolutional-neural-networks-vision-por-ordenador/
https://www.aprendemachinelearning.com/como-funcionan-las-convolutional-neural-networks-vision-por-ordenador/

21

Figura 2. Ejemplo de segundo bloque de una CNN.

Fuente:https://www.aprendemachinelearning.com/como-funcionan-las-

convolutional-neural-networks-vision-por-ordenador/

Para comenzar, la CNN recibe un mapa de características de entrada la cuál es una

matriz tridimensional donde el tamaño de las dos primeras dimensiones

corresponde a la altura y el ancho de las imágenes en píxeles. El tamaño de la

tercera dimensión es 3 (correspondiente a los 3 canales de una imagen en color

RGB: rojo, verde y azul).4 La CNN comprende una pila de módulos, cada uno de los

cuales realiza tres operaciones.

Una ConvNet del inglés Convolutional Network, simple es una secuencia de capas,

y cada capa de una ConvNet transforma un volumen de activaciones a otra a través

de una función diferenciable. Comunmente se utiliza tres tipos principales de capas

para construir arquitecturas ConvNet: Capa convolucional, Capa de POOL y Capa

totalmente conectada (FC).5

4 Disponible en: https://developers.google.com/machine-learning/practica/image-
classification/convolutional-neural-networks
5 Disponible en: http://cs231n.github.io/convolutional-networks/

https://www.aprendemachinelearning.com/como-funcionan-las-convolutional-neural-networks-vision-por-ordenador/
https://www.aprendemachinelearning.com/como-funcionan-las-convolutional-neural-networks-vision-por-ordenador/
about:blank
about:blank
about:blank

22

Con el fin de explicar la arquitectura básica de una CNN, se usará como ejemplo

una red clasificadora, aplicada a la base de datos CIFAR-10 (imágenes a color de

32x32 de 10 clases). Esta arquitectura se presenta en la Figura 3. La ConvNet para

la clasificación CIFAR-10 podría tener la arquitectura [INPUT – CONV – RELU –

POOL – FC].

Figura 3. Ejemplo de arquitectura de una red neuronal convolucional.

Fuente: KARPATHY, ANDREJ. CS231n Convolutional Neural Networks for Visual

Recognition, Convolutional Neural Networs (CNNs / ConvNets) [en línea]. Stanford

University [Consultado 1 de abril de 2020]. Disponible en internet:

http://cs231n.github.io/convolutional-networks/

En la Figura 3 en la parte izquierda se observa la imagen de un automóvil como

entrada de la CNN [32x32x3] la cuál mantendrá los valores de píxeles sin procesar

de la imagen, en este caso una imagen de ancho 32, altura 32 y con tres canales

de color R, G, B. Se observa también que la capa CONV extrae mapas de

características de la entrada y les aplica filtros para calcular nuevas características,

produciendo un mapa de características de salida (que puede tener un tamaño y

profundidad diferentes a los del mapa de entrada). Las convoluciones se definen

por dos parámetros: Tamaño de los mosaicos que se extraen (normalmente 3x3 o

http://cs231n.github.io/convolutional-networks/

23

5x5 píxeles). La profundidad del mapa de características de salida, que corresponde

al número de filtros que se aplican. Esto puede resultar en un volumen como

[32x32x12] si se decide usar 12 filtros. Posteriormente la capa RELU – Después de

cada operación de convolución, la CNN aplica una transformación de unidad lineal

rectificada (ReLU del inglés Rectified Linear Unit) a la característica convolucionada,

con el fin de introducir la no linealidad en el modelo. La función ReLU, 𝑓(x) =

 max (0, x), devuelve 𝑥 para todos los valores de 𝑥 > 0, y devuelve 0 para todos los

valores de 𝑥 ≤ 0. Esto deja el tamaño del volumen sin cambios ([32x32x12]).

Consecutivamente la capa POOL - Después de ReLU viene un paso de agrupación,

en el que la CNN cambia la configuración de la función convolucionada (para ahorrar

en el tiempo de procesamiento), reduciendo el número de dimensiones del mapa de

características, al tiempo que conserva la información de la característica más

crítica. Un algoritmo común utilizado para este proceso se denomina max-pooling.

Max-pooling funciona de manera similar a la convolución. Se desliza sobre el mapa

de características y se extraen mosaicos de un tamaño específico. Para cada

mosaico, el valor máximo se envía a un nuevo mapa de características y todos los

demás valores se descartan. Las operaciones de agrupación máxima toman los

siguientes parámetros. El primer parámetro es el tamaño del filtro de agrupación

máxima (normalmente 2x2 píxeles) y el segundo parámetro es el Paso, que

representa la distancia en píxeles que separa cada mosaico extraído. Finalmente,

la capa FC (es decir, totalmente conectada) calculará los puntajes de la clase, lo

que resultará en un volumen de tamaño [1x1x10], donde cada uno de los 10

números corresponde a un puntaje de clase, como por ejemplo entre las 10

categorías de CIFAR-10. Al igual que con las redes neuronales ordinarias y como

su nombre lo indica, cada neurona en esta capa se conectará a todos los números

en el volumen anterior.

Al entrenar redes neuronales profundas, se requiere de una gran cantidad de

imágenes que contengan ejemplos de las diferentes categorías a clasificar para

alcanzar desempeños significativos. En caso de que la base de datos contenga una

cantidad limitada de imágenes, se recomienda realizar data augmentation para

mejorar el desempeño de la red. Esta técnica busca principalmente construir datos

sintéticos mediante la realización de transformaciones a datos etiquetados

existentes, de esta manera ayudar al modelo de Deep Learning a aprender en un

rango más amplio de variaciones dentro de las categorías. Algunas formas de

aplicar data augmentation es, por ejemplo, operaciones como: girar la imagen

vertical/horizontalmente, rotarla, realizar cortes aleatorios, variaciones de color y el

24

nivel de zoom. Normalmente en la práctica, estas muestras sintéticas son

agregadas a la base de datos de entrenamiento para enriquecerlo.

25

3. RETINOPATÍA DIABÉTICA

La Retinopatía Diabética (DR) es la principal causa de pérdida visual no recuperable

en los países industrializados en pacientes entre los 20 y 64 años, siendo

responsable de un 10% de nuevos casos de ceguera cada año. El riesgo de ceguera

en pacientes diabéticos seria aproximadamente 25 veces mayor al resto de la

población. La Retinopatía Diabética (DR), ocurre cuando niveles altos de azúcar en

la sangre generan daño en los vasos sanguíneos de la retina. Este daño, puede

generar que los vasos sanguíneos se obstruyan, evitando el flujo de sangre a través

de ellos. También es posible que se hinchen y goteen fluidos. Normalmente la DR

se diagnostica con controles oculares anuales. Actualmente la retinopatía diabética

comprende 5 etapas de clasificación de la enfermedad.

Fuente: D. ALISEDA, L. BERÁSTEGUI. Diabetic retinopathy Servicio de

Oftalmología. Hospital de Navarra. Disponible en :

https://scielo.isciii.es/scielo.php?script=sci_arttext&pid=S1137-

66272008000600003

• No DR: En esta etapa, el paciente con la enfermedad de diabetes se

considera sin Retinopatía Diabética.

• Retinopatía no proliferativa ligera: Está etapa es considerada la más

temprana de la enfermedad en la que se originan los micro aneurismas, que

aparecen como dilataciones de la pared de los capilares, estas pequeñas

áreas de inflamación tienen una similitud con ampollas en los pequeños

vasos sanguíneos de la retina.

• Retinopatía no proliferativa moderada: Ya superada la etapa temprana de

la enfermedad, aparecen hemorragias en una moderada cantidad y cómo

consecuencia algunos vasos sanguíneos que alimentan la retina se

obstruyen.

• NPDR (Retinopatía diabética no proliferativa): Es la etapa media de la

enfermedad ocular diabética. En el mundo muchas personas padecen esta

etapa de la enfermedad, la cual produce que la retina se inflame debido a la

pérdida de muchos vasos sanguíneos pequeños. Lo que sucede es que se

genera un edema macular cuándo se inflama la mácula del ojo. Esta es

https://scielo.isciii.es/scielo.php?script=sci_arttext&pid=S1137-66272008000600003%20
https://scielo.isciii.es/scielo.php?script=sci_arttext&pid=S1137-66272008000600003%20

26

comúnmente la razón por la que las personas con diabetes pierden la visión.

Durante esta etapa de la enfermedad aparece una isquemia macular que es

cuándo los vasos sanguíneos en la retina pueden cerrarse, debido a esto a

la sangre le es imposible llegar a la mácula. En algunos casos, se forman

pequeñas partículas en la retina que son llamadas exudados, y como

consecuencia estas partículas pueden afectar la visión. La retinopatía

diabética no proliferativa causa que la visión sea borrosa.

• PDR (retinopatía diabética proliferativa) Es considerada la etapa más

avanzada de la enfermedad ocular diabética. Se genera por la denominada

neovascularización, este proceso ocurre cuándo la retina empieza a

desarrollar nuevos vasos sanguíneos. Estos vasos nuevos frágiles a menudo

sangran hacia el vítreo y se puede visualizar en la Figura 4 como

hemorrhage. Si sólo sangran un poco, quizá el paciente experimentará ver

unas cuantas moscas volantes oscuras. Si sangran mucho, puede que

bloqueen toda la visión. Estos vasos sanguíneos nuevos pueden desarrollar

cicatrices. El tejido cicatrizante puede causar problemas con la mácula o

derivar en un desprendimiento de retina. La retinopatía diabética proliferativa

es muy grave, causará dolor y eventualmente daño al nervio del ojo y

ceguera.6

Figura 4. Signos de Retinopatía Diabética (DR).

Fuente: ORCHARD, ELIZABETH. Diabetic Retinopathy Treatment [en línea] Eagle

eye Centre [Consultado 1 de Abril de 2020]. Disponible en internet:

http://www.eagleeyecentre.com.sg/service/diabetic-retinopathy/

6 Disponible en: http://www.eagleeyecentre.com.sg/service/diabetic-retinopathy/

https://www.aao.org/salud-ocular/anatomia/vitreo
https://www.aao.org/salud-ocular/sintomas/moscas-volantes-en-la-vision
https://www.aao.org/salud-ocular/enfermedades/desgarramiento-desprendimiento-retina
http://www.eagleeyecentre.com.sg/service/diabetic-retinopathy/
about:blank

27

4. METODOLOGÍA

4.1 SOFTWARE Y EQUIPO

Se empleó un computador personal de la marca MSI modelo GF65 Thin y el sistema

operativo Windows 11. Como librería para Deep Learning se utilizó Keras,

configurando como backend Tensorflow7. El lenguaje de programación que se

empleó fue Python y el código se desarrolló en la aplicación web Jupyter Notebook.

Las unidades de procesamiento central “CPU” son optimizadas para el

procesamiento secuencial mientras que las unidades de procesamiento gráfico

“GPU” son utilizadas para incrementar la velocidad de los cómputos vectoriales y

matriciales requeridos en aplicaciones de Deep Learning. Por consiguiente, el

entrenamiento del sistema de Deep Learning fue procesado por una GPU cuyas

características técnicas son las siguientes8:

GPU: GeForce GTX 1660 Ti, memoria de video de 6GB GDDR6, velocidad de

memoria de 12 Gbps

CPU: Intel(R) Core (TM) i7-10750H CPU @ 2.60GHz, memoria RAM de 24GB y

disco duro SSD de 512 GB.

4.2 BASE DE DATOS

Para desarrollar el sistema Deep Learning se utilizó la base de datos de Kaggle la

cual consiste en un conjunto de gran tamaño de imágenes de fondo de ojo

(Aproximadamente 88.000) de alta resolución entre 4 y 14 Megapíxeles. Las

imágenes del conjunto de datos provienen de diferentes modelos y tipos de

cámaras, lo que puede afectar la apariencia visual de la izquierda frente a la

derecha. Algunas imágenes de la base de datos ilustran la anatomía la retina

(mácula a la izquierda, nervio óptico a la derecha para el ojo derecho). Otros

muestran cómo se vería a través de una lente de condensación de microscopio (es

decir, invertida, como se ve en un examen ocular típico). Como cualquier conjunto

7 CHOLLET, Francois. Keras: Deep Learning library for Theano and TensorFlow [en línea]. KERAS,

2017. Fuente: https://keras.io/

8 NVIDIA Coporation [en línea] Fuente: https://www.nvidia.com/en-us/about-nvidia/

https://keras.io/
https://www.nvidia.com/en-us/about-nvidia/

28

de datos del mundo real, se encontrará ruido tanto en las imágenes como en las

etiquetas. Las imágenes pueden contener artefactos, estar desenfocadas,

subexpuestas o sobreexpuestas. 9

En esta base de datos se encuentran imágenes del ojo izquierdo y derecho para

cada paciente, cada imagen ha sido etiquetada de acuerdo con el número de

identificación del paciente y el ojo correspondiente (por ejemplo, la etiqueta

1_left.jpeg corresponde al ojo izquierdo del paciente con identificación 1). Un

Oftalmólogo ha clasificado las imágenes diagnosticándolas con un nivel de

Retinopatía Diabética en una escala de 0-4 (según la Tabla 1). De esta manera, el

sistema automático que se desarrollará en este proyecto tiene como salida un valor

DR basado en esta escala.

Tabla 1. Relación entre las categorías de las etiquetas y el nivel de DR que

representan.

Categoría Nivel de Retinopatía Diabética

0 No DR

1 Leve

2 Moderado

3 Severo

4 DR proliferativa

Fuente: Kaggle INC. Diabetic Retinopathy Detection – Data [en línea]. Kaggle Inc,

2017 [Consultado 4 de abril de 2020]. Disponible en Internet:

https://www.kaggle.com/c/diabetic-retinopathy-detection/data

En la Figura 5, se puede observar muestras de la base de datos utilizada (Kaggle).

Se muestra la etiqueta de cada imagen en la parte superior la cual representa la

categoría de DR que ha sido diagnosticada para esta imagen de fondo de retina. Se

detalla que las imágenes han sido tomadas bajo diferentes condiciones, se puede

apreciar también diferentes tamaños y diferentes niveles de acercamiento a la

retina.

9 KAGGLE INC. Diabetic Retinopathy Detection [en línea]. Kaggle Inc, 2017. Fuente:

https://www.kaggle.com/c/diabetic-retinopathy-detection

https://www.kaggle.com/c/diabetic-retinopathy-detection/data
https://www.kaggle.com/c/diabetic-retinopathy-detection

29

Figura 5. Muestras de imágenes de retina del ojo izquierdo y derecho para dos

pacientes de la base de datos Kaggle.

Ojo Izquierdo Ojo Derecho

Nivel: 0

Nivel: 0

Nivel: 2

Nivel: 2

Fuente: Kaggle INC. Diabetic Retinopathy Detection – Data [en línea]. Kaggle Inc,

2017 [Consultado 4 de abril de 2020]. Disponible en Internet:

https://www.kaggle.com/c/diabetic-retinopathy-detection/data

about:blank

30

4.3 MÉTRICA DE EVALUACIÓN: KAPPA CUADRÁTICO PONDERADO

Para el desempeño de los sistemas de aprendizaje se usará el Kappa Cuadrático

Ponderado, llámese 𝐾𝑤 (del inglés: weighted kappa). De acuerdo con Cohen10, el

𝐾𝑤 es un indicador del nivel de concordancia entre dos grupos de elementos

cualitativos (variables categóricas), que tiene en cuanta el efecto del azar y permite

medir los desacuerdos de manera eficiente. Al usar esta métrica, se producirán

valores negativos cuando haya menos concordancia de la pronosticada por el azar,

cero cuando la concordancia sea exactamente la pronosticada por el azar y uno al

ocurrir una completa concordancia. En la Tabla 2, se muestra una interpretación del

valor Kappa, de acuerdo con la fuerza del nivel de concordancia entre los

evaluadores.

Tabla 2. Interpretación del Kappa.

Valor de K Concordancia

< 0.20 Poor

0.21 - 0.40 Fair

0.41 - 0.60 Moderate

0.61 - 0.80 Good

0.81 - 1.00 Very Good

Fuente: ALTAM, Douglas G. Practical statistics for medical research. London:

Chapman and Hall, 1991, p. 404

Se utilizará el 𝐾𝑤 para medir el desempeño de la aplicación de software a desarrollar

en este proyecto. La concordancia es medida de acuerdo con las etiquetas

obtenidas según un evaluador humano(𝑋), y las obtenidas por el sistema (𝑃). Las

categorías de clasificación posibles de las imagines son: 0, 1, 2, 3, 4. El 𝐾𝑤 será

calculado como se describe a continuación.

Primero, es construida una matriz de histograma O de dimensiones 𝑁𝑥𝑁 (donde N

es la cantidad de categorías), tal que 𝑂𝑖𝑗 corresponde con el número de imágenes

que reciben una evaluación 𝑖 por 𝐴 y una evaluación 𝑗 por 𝐵 (donde 𝐴 es la CNN y

10 COHEN, Jacob. Weighted kappa: Nominal Scale agreement with provision for
scaled disagreement or partial credit. En: Psychological Bulletin. October 1968 vol.
70 no. 4, p. 213-220.

31

𝐵 es el experto evaluador). Una matriz N-por-N de pesos 𝑊, es calculada, basada

en la diferencia entre las clasificaciones indicadas por los evaluadores 𝑊𝑖𝑗 =
(𝑖−𝑗)2

(𝑁−1)2

Una Matriz de histograma (𝑁𝑥𝑁) de clasificaciones esperadas, 𝐸, es calculada,

asumiendo que no hay correlación entre las clasificaciones de los evaluadores.

Esta, es calculada como el producto externo entre el vector de histograma de

clasificaciones de cada evaluador, normalizado tal que 𝐸 y 𝑂 tengan la misma suma.

A partir de estas tres marices, el Kappa cuadrático ponderado es calculado según:

Fórmula 1. Kappa cuadrático ponderado.

𝐾𝑤 = 1 −
∑𝑖𝑗𝑊𝑖𝑗𝑂𝑖𝑗

∑𝑖𝑗𝑊𝑖𝑗𝐸𝑖𝑗
 11

11 KAGGLE INC, Op. cit. Disponible en Internet: https://www.kaggle.com/c/diabetic-
retinopathy-detection#evaluation

32

4.4 PRE-PROCESAMIENTO Y AUMENTO DE DATOS

Un problema que se enfrenta con la base de datos de Kaggle es la variedad de

imágenes de fondo de ojo, ya que fueron tomadas bajo diferentes condiciones lo

que genera imágenes muy diversas. Para asegurarse de que el sistema de Deep

Learning aprenderá las verdaderas características de DR, se necesita pre-procesar

las imágenes de fondo de ojo y lograr un formato uniforme entre todas ellas a través

de los siguientes pasos.

4.4.1 Reducción de Fondo

En las imágenes se encontrará un fondo de color negro que ocupa gran parte de la

imagen, por lo cual, se decide como primer paso del pre-procesamiento la reducción

del fondo de las imágenes de tal manera que se reduzca el número de pixeles que

son ocupados por el fondo de la imagen y estandarizar la posición de la retina en

cada imagen en el centro de esta. Se inicia este procedimiento con la conversión de

la imagen a escala de grises, para posteriormente recorrer la imagen desde el centro

hacia los cuatro extremos evaluando si la media de cada fila o columna de pixeles

permanece por debajo de cierto limite, si la media supera este límite se considera

que desde allí inicia el fondo negro de la imagen. Al detectar este cambio se

obtienen los cuatro puntos indicando el inicio y final de los pixeles de altura y ancho,

luego se corta la imagen original (RGB). Como resultado se obtiene una imagen con

fondo reducido, por lo tanto, el tamaño de la imagen es menor.

4.4.2 Escalamiento de radio

Al ser las imágenes de fondo de ojo de forma circular, este proceso tiene como

finalidad obtener imágenes con radios similares.

Primero, se halla el valor medio a lo largo del eje 𝑦 haciendo el recorrido a través

del eje 𝑥, obteniendo un arreglo en donde se tendrán los valores de los pixeles de

cada canal RGB. luego se obtienen los pixeles que están por encima del 10% de la

media, con esto se excluyen los pixeles que conforman el fondo de la imagen (color

negro), así se adquiere el diámetro de la imagen de fondo de ojo y finalmente se

divide este valor en 2 para obtener como resultado el radio de cada imagen de fondo

de retina a lo largo de 𝑦.

De igual manera se halla el valor medio a lo largo del eje 𝑥 y se recorre a través del

eje 𝑦, obteniendo un arreglo en donde se tendrán los valores de los pixeles de cada

canal RGB. luego se obtienen los pixeles que están por encima del 10% de la media,

33

con esto se descartan los pixeles que conforman el fondo de la imagen (color negro),

así se obtiene el diámetro de la imagen de fondo de retina y finalmente se divide

este valor en 2 para conseguir como resultado el radio de cada imagen de fondo de

retina a lo largo de 𝑥.

El siguiente paso en este procedimiento es obtener el radio más grande, ya que

algunas imágenes no son círculos completos, sino que están cortadas en 𝑥 o en 𝑦.

Una vez obtenido el valor del radio, se calcula el factor de la escala correspondiente

para que las imágenes procesadas queden con radios similares, se divide un valor

constante igual al valor medio de las dimensiones en las que se desea la imagen

final, este valor es igual a 256 (ya que las dimensiones deseadas de la imagen luego

de su pre-procesamiento son de 512x512x3), por el valor del radio obtenido. El

factor de escala se utiliza en el método resize 12 de la librería OpenCV y se

redimensiona la imagen al tamaño deseado.

4.4.3 Mapeo al 50% de gris

El principal motivo del mapeo al 50% de gris es resaltar los detalles dentro de la

imagen de fondo de retina para lo cual las tonalidades tanto del fondo de la imagen

como el fondo de la retina deben ser similares.

Para realizar este procedimiento primero se debe obtener el color medio local de

cada píxel en la imagen, para ello se pasa la imagen por un filtro Gaussiano

haciendo uso del método GaussianBlur 13 de la librería OpenCV, ya que este filtro

arroja como resultado una imagen en donde el valor de cada píxel ha sido obtenido

como el promedio ponderado de sus pixeles vecinos.

Luego de obtener el color medio local de cada píxel en la imagen, se resta a cada

píxel de la imagen original el color medio local para posteriormente sumar un valor

constante que corresponde al 50% de la escala de gris (0-255) igual a 128.

4.4.3.1 Eliminación del Efecto Aurora

Una vez se realiza el procedimiento del mapeo de la imagen al 50% de gris, en la

imagen resultante llámese (image_mapped_50) se genera un efecto de aurora el

cual se debe remover de la imagen antes de seguir con el siguiente paso para

12 Open Source Computer Vision.[en línea] OpenCV-Python [Consultado 3 de Noviembre de 2021]

Fuente: https://docs.opencv.org/4.x/da/d6e/tutorial_py_geometric_transformations.html
13 Open Source Computer Vision.[en línea] OpenCV-Python [Consultado 4 de Diciembre de 2021]
Fuente: https://docs.opencv.org/4.x/d4/d13/tutorial_py_filtering.html

https://docs.opencv.org/4.x/da/d6e/tutorial_py_geometric_transformations.html
https://docs.opencv.org/4.x/d4/d13/tutorial_py_filtering.html

34

prevenir la extracción de características no deseadas y que puedan ocasionar que

la red neuronal aprenda de forma errónea las características de las imágenes. para

lograr una imagen sin el efecto aurora primero se crea una imagen llámese

(image_circle) de las mismas dimensiones de la imagen resultante, con fondo negro

y un círculo blanco cuyo radio es el 90% del radio de la retina de la imagen

resultante, para ello se utiliza el método circle 14 de la librería OpenCV. Finalmente

se realiza una multiplicación entre image_mapped_50 y image_circle, al mismo

tiempo se mapean los pixeles del fondo de la imagen al 50% de la escala de gris

haciendo uso de la fórmula 2. Se obtiene una imagen igual a image_mapped_50

pero con el radio de la retina en la imagen reducido al 90%.

Fórmula 2. Mapeo de los pixeles del fondo de la imagen al 50% de la escala de

gris.

(image_mapped_50 ∗ image_circle + 128 ∗ (1 − image_circle))

4.4.4 Redimensionamiento de la Imagen a 512x512x3

El último paso del pre-procesamiento es el redimensionamiento de las imágenes

manteniendo la relación de aspecto. Las CNN reciben como entrada imágenes del

mismo tamaño, por tal motivo este paso es indispensable para el correcto

funcionamiento de la red neuronal a desarrollar en este proyecto. Normalmente se

ingresan a las CNN imágenes con tamaños reducidos y no de alta calidad con el fin

de agilizar tanto el pre-procesamiento de todas las imágenes como el entrenamiento

de la red neuronal. Al trabajar con imágenes de fondo de retina se desea detectar

detalles que son muy pequeños por lo cual el tamaño de la imagen debe ser

considerable, para entrenar la red neuronal se utilizarán imágenes con dimensiones

512x512.

Al ser la forma de la imagen deseada un cuadrado y la mayoría de las imágenes en

la base de datos son rectangulares se procede a realizar un relleno con fondo de

color que corresponde al 50% de la escala de gris (128). En este procedimiento se

determina en qué sentido se debe rellenar la imagen con fondo ya sea

(izquierda/derecha o arriba/abajo) al evaluar la diferencia entre las dimensiones

14 Open Source Computer Vision.[en línea] OpenCV-Python [Consultado 1 de enero de 2022]

Fuente: https://docs.opencv.org/4.x/dc/da5/tutorial_py_drawing_functions.html

https://docs.opencv.org/4.x/dc/da5/tutorial_py_drawing_functions.html

35

(height, width). Posteriormente se emplea el método copyMakeBorder15 de la

librería OpenCV para agregar el relleno de tal manera que las dimensiones de la

imagen resultante son de 512x512 pixeles.

Otro problema que se enfrentará es la cantidad de imágenes disponibles para

entrenar el sistema Deep Learning. Tener suficientes datos de entrenamiento es la

clave para entrenar una red neuronal con éxito; desafortunadamente, este requisito

extraña vez se cumple en la mayoría de las aplicaciones de redes neuronales. Para

aplicaciones de imágenes médicas, la falta de datos es más significativa debido al

costo de las anotaciones y al desequilibrio en la aparición de enfermedades. Para

mitigar la escasez de datos y utilizar plenamente los datos disponibles, se deben

realizar ciertas técnicas de aumento de datos en el proyecto como: voltear la imagen

horizontalmente, voltear la imagen verticalmente, girar aleatoriamente la imagen en

un rango de grados, acercar o alejar al azar en un rango especifico, distorsionar la

imagen al azar.

15 Open Source Computer Vision.[en línea] OpenCV-Python [Consultado 4 de enero de 2022]

Fuente: https://docs.opencv.org/3.4/dc/da3/tutorial_copyMakeBorder.html

https://docs.opencv.org/3.4/dc/da3/tutorial_copyMakeBorder.html

36

4.5 RED NEURONAL CONVOLUCIONAL

Uno de los aspectos fundamentales para escoger las CNN es la capacidad de

automáticamente identificar y extraer las características más relevantes en una

imagen. Sus filtros son modificados mediante aprendizaje supervisado, de esta

manera logran adaptarse al problema que se desea resolver. Esta particularidad de

las CNN permite al ser humano saltar el proceso de identificación y extracción de

características que es necesario para entrenar una red no convolucional. Por lo

tanto, para desarrollar el proceso de identificación de signos de DR en la retina

puede ser demasiado complejo, por este motivo se utilizará una CNN como modelo

de solución.

Aunque las redes neuronales convolucionales han sido popularmente usadas para

analizar imágenes, también son usadas para otro tipo de análisis de datos o

problemas de clasificación. Las CNN son redes neuronales artificiales capaces de

detectar y extraer patrones de las imágenes y dar sentido a estos, de esta manera

aprende directamente de los datos, sin necesidad de extraer características

manualmente16, lo cual, para un humano la identificación y clasificación de signos

de Retinopatía Diabética en la retina es un proceso complejo e incierto. Esta

particularidad es lo que hace que las CNN sean tan útiles en el análisis de las

imágenes. Las CNN tienen capas ocultas llamadas capas convolucionales, de igual

manera pueden tener otro tipo de capas en su arquitectura, sin embargo, la base de

las CNN son las capas convolucionales.

Normalmente, se utiliza una red que ha sido previamente entrenada haciendo uso

de la metodología transferencia del aprendizaje lo cual es mucho más rápido y fácil

que entrenar una red desde cero, ya que permite entrenar modelos con mucho

menos datos con sus correspondientes etiquetas, por lo tanto, requiere menos

poder computacional para su entrenamiento. La arquitectura de la red neuronal no

tiene una metodología estandarizada, ya que el número de parámetros que la red

debe tener, dependen de la complejidad de las imágenes a clasificar, es por esto

por lo que la cantidad de capas, filtros, tipos de funciones de activaciones etc. se

realiza de forma empírica.

Para este proyecto se decide entrenar una CNN desde cero, teniendo como

referencia una arquitectura exitosa en la clasificación de DR. Para esto, se toma

como arquitectura inicial la arquitectura propuesta por los participantes que

ocuparon el segundo lugar en la competencia Diabetic Retinopathy Detection17 de

Kaggle, los cuales utilizaron una Deep CNN, obteniendo un coeficiente de

16 https://es.mathworks.com/discovery/convolutional-neural-network-matlab.html
17 https://www.kaggle.com/c/diabetic-retinopathy-detection/overview

https://es.mathworks.com/discovery/convolutional-neural-network-matlab.html
https://www.kaggle.com/c/diabetic-retinopathy-detection/overview

37

𝐾𝑤 = 0.845. Por esta razón, se toma como referencia inicial la arquitectura

propuesta por Mathias Anthony y Stephan Brüggeman, la cual se muestra en la

Tabla 3.

Para el entrenamiento de la CNN se utiliza una GPU Nvidia GeForce GTX 1660Ti y

el desarrollo se realiza haciendo uso de la librería de Deep learning Keras con

backend tensorflow. La metodología utilizada para encontrar el mejor modelo de

arquitectura fue el ensayo y error, observando el comportamiento tanto de las

gráficas de entrenamiento como de las gráficas de validación, se solucionan

problemas como el overfitting, de igual manera se varían tanto el tipo como la

cantidad de capas, además de utilizar diferentes tipos de funciones de activación

para observar el comportamiento del modelo, así mismo se utiliza Data

augmentation para incrementar los datos de las clases en que se encontraban

menor número de muestras.

38

Tabla 3. Arquitectura de la CNN propuesta por Mathias Anthony y Stephan

Brüggeman.

 units filter stride size

 1 Input 448

 2 Conv 32 5 2 224

 3 Conv 32 3 224

 4 MaxPool 3 2 111

 5 Conv 64 5 2 56

 6 Conv 64 3 56

 7 Conv 64 3 56

 8 MaxPool 3 2 27

 9 Conv 128 3 27

10 Conv 128 3 27

11 Conv 128 3 27

12 MaxPool 3 2 13

13 Conv 256 3 13

14 Conv 256 3 13

15 Conv 256 3 13

16 MaxPool 3 2 6

17 Conv 512 3 6

18 Conv 512 3 6

19 RMSPool 3 3 2

20 Dropout

21 Dense 1024

22 Maxout 512

23 Dropout

24 Dense 1024

25 Maxout 512

Donde, el término units hace referencia al número de filtros en cada capa de

convolución de la CNN. El término filter hace referencia al tamaño del filtro usado

en cada capa de convolución. Finalmente, el término stride hace referencia al

número de pixeles que se desplaza el filtro en cada paso.

Fuente: Mathis Anthony, Stephan Brüggeman. Kaggle Diabetic Retinopathy

Detection Team o_O solution [en línea]. [consultado 04 de Febrero de 2022].

Disponible en Internet:

https://github.com/sveitser/kaggle_diabetic/blob/master/doc/report.pdf

https://github.com/sveitser/kaggle_diabetic/blob/master/doc/report.pdf

39

5. RESULTADOS

5.1 PRE-PROCESAMIENTO DE IMÁGENES

En las siguientes páginas se presentan los resultados obtenidos durante el pre-

procesamiento de las imágenes que dispone la base de datos Kaggle con las cuales

se entrenará la red neuronal.

Para lograr el pre-procesamiento de miles de imágenes se inicia desarrollando el

algoritmo para procesar una imagen a la vez, en donde se siguieron los pasos

descritos en la sección 4.4. En la Figura 6 se muestra una imagen de fondo de retina

original etiquetada como 1982_right con nivel de retinopatía diabética 0.

Figura 6. Imagen Original a pre-procesar.

𝐷𝑖𝑚𝑒𝑛𝑠𝑖𝑜𝑛𝑒𝑠 = (2595, 3888, 3)

El primer paso en el pre-procesamiento realizado es la reducción del fondo de color

negro de la imagen que está presente en todas las imágenes de la base de datos,

esto con el fin de obtener una imagen en donde la mayoría de los pixeles pertenecen

a la imagen de la retina y sus características, para facilitar este proceso ya que la

imagen original es 𝑅𝐺𝐵 con dimensiones 𝐻𝑥𝑊𝑥3 en donde, 𝐻 y 𝑊 son el alto y

ancho de la imagen en pixeles y el último término hace referencia al número de

canales de la imagen. Se convierte la imagen a escala de grises lo cual da como

resultados una imagen con dimensiones 𝐻𝑥𝑊𝑥1, sin embargo, la reducción del

fondo de color negro se aplica a la imagen original como se describe en la sección

4.4.1.

40

Figura 7. Imagen original a escala de grises e imagen con fondo reducido.

 𝐷𝑖𝑚𝑒𝑛𝑠𝑖𝑜𝑛𝑒𝑠 = (2595, 3888) 𝐷𝑖𝑚𝑒𝑛𝑠𝑖𝑜𝑛𝑒𝑠 = (2592, 3171, 3)

Se puede observar en las imágenes anteriores que el fondo de color negro presente

en la imagen a la izquierda de la Figura 7 se ha reducido drásticamente y ahora la

mayoría de los pixeles conforman la retina en donde se encuentran las

características que se requieren como entrada de la red neuronal como se muestra

en la imagen a la derecha de la Figura 7. Es de resaltar que el tamaño de la imagen

se ha reducido lo cual implica un mejoramiento en el rendimiento del sistema al

entrenar la CNN con imágenes de tamaños menores.

Una vez la reducción del fondo de la imagen a finalizado se procede a escalar el

radio, como se sabe, las imágenes de la base de datos kaggle tienen diferentes

tamaños por lo tanto el radio de la retina es diferente en todas las imágenes, con el

objetivo de que todas las imágenes tengan radios similares se continua con el

procedimiento denominado escalamiento del radio (sección 4.4.2). El resultado de

este procedimiento se puede detallar en la Figura 8. Nótese que las dimensiones de

todas las imágenes una vez terminado este procedimiento serán similares, por

consiguiente, el radio de estas se asemejará.

Figura 8. Imagen con radio escalado.

𝐷𝑖𝑚𝑒𝑛𝑠𝑖𝑜𝑛𝑒𝑠 = (419, 512, 3)

41

Con la finalidad de que le sea más fácil a la red neuronal aprender las características

únicas de cada imagen se ha mapeado la imagen al 50% de gris, este proceso da

como resultado una imagen con el fondo de la imagen y el fondo de la retina en

coloraciones similares (sección 4.4.3). Sin embargo, se genera un efecto aurora

alrededor de la retina como se muestra en la Figura 9.

Figura 9. Imagen mapeada al 50% de gris.

𝐷𝑖𝑚𝑒𝑛𝑠𝑖𝑜𝑛𝑒𝑠 = (419, 512, 3)

La red neuronal aprenderá las características más relevantes de las imágenes, por

tal motivo es indispensable remover el efecto aurora producido después de realizar

el procedimiento del mapeo al 50% de gris, de lo contrario la red neuronal aprenderá

una característica errónea de las imágenes pre-procesadas. Se utiliza una imagen

de fondo negro con un círculo blanco de igual diámetro al de la retina y se multiplica

por la imagen de la Figura 9 siguiendo los pasos de la sección 4.4.3.1. Obteniendo

como resultado una imagen sin características no deseadas como se observa en la

Figura 10.

Efecto aurora

42

Figura 10. Imagen sin efecto aurora.

En este paso se tiene una imagen pre-procesada en la cual las características de la

retina resaltan notablemente, sin embargo, el tamaño de la imagen es de (419, 512,

3) por lo que es necesario redimensionar la imagen para obtener el tamaño deseado

que es (512, 512, 3). Para esto, se adiciona fondo a la imagen del color que

corresponde al 50% de la escala de gris (128) proceso que se explica

detalladamente en la sección 4.4.4. La imagen final luego de completar el pre-

procesamiento es una imagen RGB de dimensiones 512x512 la cual se muestra en

la Figura 11.

43

Figura 11. Imagen final pre-procesada.

𝐷𝑖𝑚𝑒𝑛𝑠𝑖𝑜𝑛𝑒𝑠 = (512, 512, 3)

A continuación, se muestra en la Figura 12 la distribución de los distintos tonos de

una imagen al completar el pre-procesamiento. Como se puede observar la mayoría

de los pixeles tienen tonalidades correspondientes al 50% de la escala de gris (128)

y los demás pixeles están homogéneamente distribuidos hacia la izquierda y

derecha de este pico.

El histograma se obtiene convirtiendo la imagen a un arreglo aplanado contiguo,

haciendo uso de la función ravel 18 la cual toma como entrada la imagen que es un

arreglo 3D y devuelve un arreglo de 1D con todos los elementos del arreglo de

entrada con el mismo tipo. Finalmente, en la Figura 13 se detalla cada una de las

etapas del pre-procesamiento aplicado a una imagen de fondo de retina.

18 NumPy [en línea], [Consultado 4 de enero de 2022] Fuente:
https://numpy.org/doc/stable/reference/generated/numpy.ravel.html

https://numpy.org/doc/stable/reference/generated/numpy.ravel.html

44

Figura 12. Histograma de una Imagen Preprocesada.

Figura 13. Resultados del pre-procesamiento para una imagen de la base de datos

Kaggle.

45

5.2 BULK PRE-PROCESSING

Una vez el pre-procesamiento de una imagen ha sido exitoso se realiza el algoritmo

para realizar el bullk pre-processing de todas las imágenes presentes en la base de

datos de kaggle. Para ello, se crea un arreglo el cual contiene todos los nombres de

las imágenes con su extensión .jpeg. Estos datos se obtienen de la carpeta en

donde se encuentran almacenadas las imágenes originales, además se crea un

arreglo que contiene todos los niveles de retinopatía diabética, estos datos se

obtienen de la tabla en donde se encontraban el nombre de la imagen con su

respectiva clasificación como se muestra en la Figura 14.

Figura 14. Muestra de arreglos creados con los nombres de las imágenes y el nivel

de retinopatía correspondiente.

Niveles de Retinopatía Diabética: [0 0 2 0 0 0 1 1 0 0 0 0 0 0 0 0]

Nombre de las imágenes: ['9979_left.jpeg', '9979_right.jpeg', '9980_le

ft.jpeg', '9980_right.jpeg', '9984_left.jpeg', '9984_right.jpeg', '999

2_left.jpeg', '9992_right.jpeg', '9993_left.jpeg', '9993_right.jpeg',

'9996_left.jpeg', '9996_right.jpeg', '9998_left.jpeg', '9998_right.jpe

g', '9999_left.jpeg', '9999_right.jpeg']

Luego de obtener estos arreglos, se recorre el arreglo denominado “Nombre de las

imágenes” para así lograr realizar el pre-procesamiento explicado en la sección 4.4

a cada imagen. Las imágenes no fueron procesadas todas a la vez con el fin de

evitar sobrepasar la capacidad máxima de la memoria RAM (24GB), se procesaron

500 imágenes a la vez hasta completar las 35126 imágenes de entrenamiento

46

presentes en la base de datos Kaggle. Durante este procedimiento no fue posible

completar el pre-procesamiento de todas las imágenes ya que algunas de ellas eran

completa o parcialmente negras como se muestra en la Figura 15.

Figura 15. Imágenes descartadas en el pre-procesamiento.

492_right.jpeg 766_left.jpeg

Fue posible identificar estás imágenes gracias a que dentro del desarrollado del

algoritmo para el bullk pre-processing se implementó un bloque para el tratamiento

de errores haciendo uso de Try Except. Una vez finalizado el bullk pre-processing

se identificó todas las imágenes a las que no fue posible realizarles el pre-

procesamiento y se retiraron de la base datos con sus respectivas parejas, por

ejemplo, 492_left.jpeg y 492_right.jpeg. De la misma manera se removieron del

archivo que contiene el nombre de las imágenes con su correspondiente nivel de

Retimopatía Diabética.

Figura 16. Muestra de los resultados del bullk pre-processing.

47

El proceso denominado bullk pre-processing se realizó nuevamente una vez las

imágenes que no se pre-procesasaron anteriormente fueron retiradas de la base de

datos.

Figura 17. Imágenes antes y después de pasar por la etapa de pre-procesamiento.

Imagen Original Imagen Pre-procesada

910_right.jpeg Nivel de Retinopatía Diabética: 0

1084_left.jpeg Nivel de Retinopatía Diabética: 4

48

Figura 18. Diagrama de flujo del pre-procesamiento.

49

5.3 RED NEURONAL CONVOLUCIONAL

La primera prueba se realizó con un modelo inicial el cual se entrenó por 50 épocas,

se implementó sin data augmentation y sin tener en cuenta la métrica de evaluación

Kappa cuadrático ponderado, al revisar los resultados se observó un sobre

entrenamiento (overfitting) considerable de la red neuronal. Se hizo uso de

TensorBoard19 que es el kit de herramientas de visualización de TensorFlow para

poder visualizar y entender el comportamiento de la red neuronal durante el

entrenamiento como se muestra en la Figura 19. En la gráfica de la exactitud vs

épocas (a), se logra observar que la curva tanto de entrenamiento como de

validación crecen rápidamente alcanzando un valor de exactitud aproximadamente

de 99% y 67% respectivamente, lo cual indica que la red está memorizando en lugar

de aprender las verdaderas características de las imágenes de fondo de retina

suministradas a la red neuronal para su entrenamiento.

Al observar estás graficas se determinó que las posibles causas del overfitting de la

red neuronal se debía a dos posibles razones, ya que la distribución de las clases

(niveles de Retinopatía Diabética) de la base de datos de kaggle tanto para los datos

de entrenamiento como para los datos de validación no es uniforme como se

presenta en la Tabla 4 y en la Tabla 5 respectivamente. En estás tablas se puede

observar que la clase 0 (No DR) contiene aproximadamente el 74% de las imágenes

mientras que las clases 3 (Severo) y 4 (DR Proliferativa) contienen

aproximadamente el 2% de las imágenes cada una. Se decidió añadir un método

de muestreo de acuerdo con la probabilidad y así alimentar a la red neuronal

convolucional con conjuntos de datos de tal manera que las clases sean uniformes.

Este método de muestreo se implementó cargando los arreglos que contenían las

imágenes (un arreglo contenía 500 imágenes), una vez cargado los arreglos en la

memoria RAM se obtenían de manera aleatoria 16 imágenes (tamaño del batch) de

tal manera que la imagen se seleccionaba con una probabilidad inversa al

porcentaje del total de imágenes pertenecientes a dicha clase para los datos de

entrenamiento. Este método generaba un arreglo en donde las imágenes

pertenecientes a una clase con menor cantidad de imágenes en el set de

entrenamiento eran escogidas con mayor probabilidad y viceversa. Este método

también se utilizó para los datos de validación. En la Figura 20 se presenta la

distribución de clases por batch antes y después de usar el método de muestreo.

19 Tensorflow [en línea] [Consultado 20 de Enero de 2022] https://www.tensorflow.org/tensorboard?hl=es-
419

https://www.tensorflow.org/tensorboard?hl=es-419
https://www.tensorflow.org/tensorboard?hl=es-419

50

Una segunda solución ante el problema de overfitting es la implementación de data

augmentation. El aumento de datos permite crear nuevos datos a partir de datos

existentes mediante la aplicación de algunas transformaciones. Es importante ya

que incrementa el tamaño del conjunto de datos de entrenamiento y validación.

Entrenar la red neuronal con más datos conduce a lograr una mayor precisión. Por

esta razón se realizó la rotación de todas las imágenes de entrenamiento y de

validación utilizando el método random_rotation20 de la librería de keras con un

ángulo aleatorio entre 0º y 360º, además se implementaron operaciones de flip

(voltear las imágenes) izquierda/derecha, arriba/abajo o en ambas direcciones

como se muestra en la Figura 21. Para lograr alimentar la red neuronal se

implementó un Custom Data Generator el cual contenía el método de muestreo y el

data augmentation.

Figura 19. Graficas de la exactitud y la pérdida del modelo inicial entrenado durante

50 épocas.

(a) Exactitud vs. Épocas

20 Tensorflow [en línea] [Consultado 21 de Enero de 2022]
https://www.tensorflow.org/api_docs/python/tf/keras/preprocessing/image/random_rotation

https://www.tensorflow.org/api_docs/python/tf/keras/preprocessing/image/random_rotation

51

(b) Perdida vs. Épocas

Tabla 4. Distribución de clases del set de entrenamiento de la base de datos de

Kaggle.

Clases Distribución de los datos Cantidad de datos

0 73.5% 25803

1 6.9% 2432

2 15.1% 5290

3 2.5% 872

4 2% 708

Tabla 5. Distribución de clases del set de validación de la base de datos de Kaggle.

Clases Distribución de los datos Cantidad de datos

0 73.8% 39516

1 7% 3761

2 14.7% 7853

3 2.3% 1214

4 2.2% 1206

52

Figura 20. Distribución de clases por batch.

(a) Sin muestreo (b) Con muestreo

Figura 21. Batch de Imágenes antes y después de aplicar data augmentation.

(a) Imágenes sin data augmentation (b) Imágenes con data augmentation

53

5.4 ARQUITECTURA FINAL

La Arquitectura de red neuronal convolucional final utilizada para la clasificación de

Retinopatía Diabética se muestra en la Figura 22. En la Figura 22. (a) Etapa de

aprendizaje y extracción de características, se puede observar que la red neuronal

tiene 13 capas convolucionales y 6 capas de Pooling. Las capas convolucionales

utilizan el método Conv2D21, el tamaño de los filtros también llamados kernels en

estas capas es de 3𝑥3, además se utilizó padding = 'same' lo cual da como resultado

un relleno con zeros uniformemente a la izquierda/derecha o arriba/abajo de la

entrada. Al configurar padding = 'same' y strides = 1, la salida tiene el mismo tamaño

que la entrada. Como función de activación de las capas convolucionales se utilizó

ReLU22 del inglés (Rectified Linear Unit) es la función de activación más utilizada en

los modelos de Deep Learning hoy en día, dicha función devuelve 0 si recibe una

entrada negativa, pero para cualquier valor positivo devuelve ese valor, se puede

representar con la siguiente expresión 𝑦 = max (0, 𝑥). Cada una de las capas

convolucionales es seguida por capas BatchNormalization23, estas capas cumplen

una función importante al hacer que la red neuronal se entrené más rápido, es decir,

menos épocas necesarias para alcanzar una exactitud más alta y que sea más

estable. Adicionalmente, en cada una de las capas de pooling, se hizo uso del

método MaxPooling24, es común añadir periódicamente una capa Pooling entre

capas convolucionales en una arquitectura de red neuronal convolucional. Su

principal objetivo es reducir progresivamente el tamaño espacial de la imagen para

reducir la cantidad de parámetros y el poder computacional requerido en el

entrenamiento, por lo tanto, controlar también el overfitting. Se utilizó un tamaño de

kernel de 2𝑥2 aplicado con un stride de 2𝑥2, lo cual reduce tanto el ancho como el

alto de la imagen a la mitad al pasar por cada capa de Pooling.

En la Figura 22 (b) Etapa de Clasificación, se adicionó una capa Flatten, la cual

convierte los mapas de características de la capa anterior a esta en un vector plano.

En la arquitectura implementada los mapas de características antes de ingresar a

la capa Flatten tienen como dimensiones 7𝑥7𝑥128 dando como resultado un vector

de 6272 elementos. Continuamente se implementaron dos capas completamente

21 Tensorflow [en línea] [Consultado 23 de Enero de 2022]
https://www.tensorflow.org/api_docs/python/tf/keras/layers/Conv2D
22 Keras: the Python deep learning API [en línea] [Consultado 23 de Enero de 2022]
https://keras.io/api/layers/activation_layers/relu/
23 Tensorflow [en línea] [Consultado 24 de Enero de 2022]
https://www.tensorflow.org/api_docs/python/tf/keras/layers/BatchNormalization
24 Tensorflow [en línea] [Consultado 25 de Enero de 2022]
https://www.tensorflow.org/api_docs/python/tf/keras/layers/MaxPool2D

https://www.tensorflow.org/api_docs/python/tf/keras/layers/Conv2D
https://keras.io/api/layers/activation_layers/relu/
https://www.tensorflow.org/api_docs/python/tf/keras/layers/BatchNormalization
https://www.tensorflow.org/api_docs/python/tf/keras/layers/MaxPool2D

54

conectadas (FC) del inglés Fully Connected layers, para la primera FC1 se utilizó la

función de activación ReLU, seguida por una capa de BatchNormalization y para la

última FC2 se utilizó la función de activación softmax, la cual da como resultado un

vector en donde los elementos están en el rango de 0 a 1 y suman 1, este resultado

puede interpretarse como una distribución de probabilidad. También se agregaron

capas de Dropout, con un porcentaje de 25%, las cuales establecen aleatoriamente

las unidades de entrada como 0 en cada paso durante el entrenamiento lo cual

ayuda a evitar el overfitting.

Para la compilación del modelo se empleó el método compile25 en el cual se utilizó

como optimizador durante el entrenamiento de la red neuronal adadelta (Adaptive

Learning Rate Method), como función de perdida se utilizó WeightedKappaLoss26,

al entrenar una CNN en donde existen desequilibrios de clases el uso de esta

función de perdida es ideal para penalizar las clasificaciones erróneas con el fin de

obtener un mejor aprendizaje de la red neuronal. Como métrica de evaluación se

utilizó CohenKappa27, la cual es una estadística que mide la confiabilidad o el

acuerdo entre dos evaluadores o métodos al evaluar elementos categóricos, esta

métrica recibe como argumento weightage, este término hace referencia a la

importancia asignada a diferentes elementos, factores o componentes dentro de un

sistema, al cual se le dio el valor de ‘quadratic’, ponderación a considerar para

calcular las estadísticas Kappa. Una vez la compilación se realizó correctamente,

se procedió a entrenar la red neuronal convolucional utilizando el método fit28. Este

método acepta generadores tanto para el set de entrenamiento como para el set de

validación, en cada uno de los Custom Data Generators desarrollados, se

implementó Data augmentation y el método de muestreo como se explica en la

sección Red Neuronal Convolucional. El tamaño tanto del set de entrenamiento

como de validación era demasiado grande por lo cual no fue posible cargar todos

los datos al mismo tiempo en memoria, por esta razón, los datos se cargaron

mediante batches haciendo uso de los Custom Data Generators descritos

anteriormente. El entrenamiento de la red neuronal fue realizado por la GPU,

mientras que en paralelo la CPU se encargaba de llamar los Custom Data

Generators necesarios para alimentar a la red continuamente. El tamaño del batch

25 Keras: the Python deep learning API [en línea] [Consultado 15 de Febrero de 2022]
https://keras.io/api/models/model_training_apis/#compile-method
26 Tensorflow [en línea] [Consultado 16 de Febrero de 2022]
https://www.tensorflow.org/addons/api_docs/python/tfa/losses/WeightedKappaLoss
27 Tensorflow [en línea] [Consultado 16 de Febrero de 2022]
https://www.tensorflow.org/addons/api_docs/python/tfa/metrics/CohenKappa
28 Keras: the Python deep learning API [en línea] [Consultado 17 de Febrero de 2022]
https://keras.io/api/models/model_training_apis/#fit-method

https://keras.io/api/models/model_training_apis/#compile-method
https://www.tensorflow.org/addons/api_docs/python/tfa/losses/WeightedKappaLoss
https://www.tensorflow.org/addons/api_docs/python/tfa/metrics/CohenKappa
https://keras.io/api/models/model_training_apis/#fit-method

55

escogido fue de 16, ya que se ha observado que para grandes tamaños de batches

hay una degradación significativa en la calidad del modelo. La red neuronal fue

entrenada con 53.550 imágenes para el entrenamiento de la CNN y se utilizaron

aproximadamente 10% del total de imágenes (3.500) como validación. El total de

parámetros que tenía la red neuronal era de 1’155.061 y se entrenó durante 150

épocas, su entrenamiento total tardó 38 horas.

56

Figura 22. Arquitectura final de la CNN.

(a) Etapa de aprendizaje y extracción de características

57

Figura 22. Arquitectura final de la CNN.

(b) Etapa de Clasificación.

Figura 23. Grafica de la exactitud del modelo Final entrenado durante 150 épocas.

58

5.4.1 Filtros y salidas de la red neuronal Convolucional

Se logró visualizar tanto los kernels de las capas convolucionales que fueron

utilizados por la red neuronal convolucional, así como las imágenes de salida de

cada una de ellas. Algunos de los filtros utilizados por la red neuronal en su primera

capa convolucional se muestran en la Figura 24. La elección y la aplicación de los

filtros la hace de forma automática el modelo, además las características aprendidas

en cada capa convolucional varían significativamente. Se puede observar que cada

uno de los 16 filtros es de tamaño [3𝑥3], además cada uno de los filtros es diferente

logrando la extracción de diferentes características propias de las imágenes, para

así aprender y conseguir clasificar en este caso los 5 diferentes niveles de

Retinopatía Diabética en imágenes de fondo de retina.

Figura 24. Filtros usados por la CNN en la primera capa convolucional, Conv2D(16,

(3,3), padding= 'same ', activation= 'relu ').

Se sabe con certeza que las capas iniciales capturan principalmente características

de bajo nivel como lo son la dirección de la imagen (vertical/horizontal o diagonal),

el color, etc. A medida que se añaden nuevas capas convolucionales, las CNN

capturan características de más alto nivel que ayudan a diferenciar entre varias

clases de imágenes. En la Figura 25 se muestran las imágenes de salida al pasar

por la primera capa convolucional del modelo usado para el entrenamiento de la

CNN, el cual se describe en la figura 22. En esta figura se puede observar que la

primera capa convolucional utiliza 16 filtros en una imagen de entrada que ha sido

pre-procesada con dimensiones (512, 512, 3). Las imágenes resultantes muestran

las características extraídas y aprendidas por la CNN en su primera capa

convolucional, Intuitivamente, la red aprenderá las características que se activan

cuando ven algún tipo de característica visual, como un borde de alguna orientación

o una mancha de algún color en la primera capa.

59

Figura 25. Imágenes de salida de la primera capa convolucional implementada en

la arquitectura final.

Se realiza la matriz de confusión con una batch de prueba de 500 imágenes. Se

puede observar como se menciona anteriormente que las clases de las imágenes

no están balanceadas por lo cuál existe una gran diferencia en el número de

imágenes de una clase a otra.

En la Figura 26. Se puede observar que de 385 imágenes clasificadas como No DR

el sistema predijo que 43 pertenecen al nivel de retinopatia diabetica Leve y 29

pertenecen al nivel de retinopatía diabetica Moderado. 28 imágenes se clasificaron

como Leve, 4 se predijeron como No DR y 7 como Moderado. Para el nivel de

retinopatia diabetica Moderado se predijeron 47 imágenes correctamente, 8 se

predijeron como Leve y 11 como Severo. Durante la predicción del nivel Severo 7

60

predicciones fueron correctar, 2 se clasificaron como Moderado y 1 como DR

proliferativa. Finalmente al clasificar las imágenes pertenecientes a DR Proliferativa

4 predicciones fueron correctas y 1 se clasificó como Severo.

En la Tabla 6. Se aprecian las metricas obtenidas de la matriz de confusión. La

exactitud refleja el porcentaje de imágenes que el modelo ha acertado. La precisión

evalua el acierto del modelo en la clasificación de cada clase y finalmente la

exhaustividad informa sobre la cantidad que el modelo es capaz de clasificar.

Figura 26. Matriz de confusión

Tabla 6. Metricas de la matriz de confunsión por clases.

Metricas
Clases

Exactitud Precisión Exhaustividad

No DR 84.8 % 98.73 % 81.29 %

Leve 87.6 % 31.08 % 67.64 %

Moderado 88.6 % 55.29 % 71.21 %

Severo 97 % 36.84 % 70 %

DR Proliferativa 99.6 % 80 % 80 %

61

6. CONCLUSIONES

• Se propuso y se validó una aplicación desarrollada en el lenguaje de

programación Python que fuese capaz de detectar y clasificar los cinco

grados de Retinopatía Diabética en imágenes de fondo de ojo mediante el

entrenamiento de una CNN, cumpliendo así el objetivo principal de esta tesis.

• Las redes neuronales convolucionales realizan la extracción de

características necesarias para aprender diferentes patrones relevantes de

las imágenes automáticamente, sin embargo, a través de este proyecto, se

logró evidenciar que la etapa de pre-procesamiento es fundamental para

suministrar las imágenes a la CNN, ya que, las imágenes de la base de datos

de Kaggle tenían diferentes dimensiones a lo largo y ancho de la imagen, y

la CNN acepta imágenes de entrada de iguales dimensiones, además, la red

logra identificar y aprender patrones más fácilmente al suministrar imágenes

estandarizadas, logrando un desempeño significativamente mejor.

• Es importante tener en cuenta los factores que pueden ocasionar que una

red sufra de overfitting al momento del entrenamiento. En este proyecto se

utilizaron diferentes técnicas para dar solución a este problema, tales como

el muestreo de clases balanceadas, la adición de capas Dropout y

regularización. A pesar de que se tenía una base de datos relativamente

grande con alrededor de 53550 imágenes para entrenamiento, se utilizó data

augmentation, rotando las imágenes en un rango de 360º, obteniendo una

mejora significativa en el desempeño de la red neuronal convolucional,

demostrando que el número de imágenes es de suma importancia cuando se

requiere entrenar una red con imágenes de gran tamaño y características

complejas.

• El modelo final con la arquitectura presentada en la Figura 23 tuvo un valor

de kappa con los datos de prueba de 7.8 el cual es menor al obtenido por la

CNN propuesta por Mathias Anthony y Stephan Brüggeman. se debe

considerar que existen diferentes factores que influyen en el valor final

obtenido de kappa, como lo es el ruido existente en la base de datos de

Kaggle, en sus imágenes y en la clasificación de estas, a pesar es esto, el

valor obtenido en la exactitud del modelo final evaluado por el Kappa

62

Cuadrático Ponderado de acuerdo con la fuerza del nivel de concordancia

mostrado en la Tabla 2 es muy bueno.

• La red neuronal desarrollada en este proyecto obtuvo un Kappa de 7.8 como

se expresa anteriormente este puntaje es considerado como bueno, por lo

cual, la red neuronal convolucional aprendió a extraer los patrones más

relevantes que presentan algún tipo de anomalía en las imágenes de fondo

de ojo para clasificar retinopatía diabética, por esta razón la red neuronal

convolucional podría llegar a detectar diferentes tipos de retinopatías, como

lo es la retinopatía hipertensiva. Se debe tener en cuenta que cada tipo de

retinopatía tiene una clasificación diferente de acuerdo con sus fases, por lo

tanto, es necesario entrenar de nuevo la etapa de clasificación de la red

neuronal convolucional y así permitir que lograse la clasificación de otras

anomalías.

• Las técnicas de pre-procesamiento, data augmentation, y de entrenamiento

utilizadas en este proyecto de grado y las usadas por Mathias Anthony y

Stephan Brüggeman en la competencia Kaggle Diabetic Retinopathy

Detection son diferentes. Mathias Anthony y Stephan Brüggeman

únicamente removieron el fondo de la imagen y las cortaron con el fin de que

fueran cuadrados de 128, 256 y 512 pixeles como técnicas de pre-

procesamiento. Ellos utilizaron traslación, estiramiento, rotación y flipping

(voltear) como técnicas de data augmentation. Una gran diferencia se

encuentra en el proceso de entrenamiento de la CNN, Mathias Anthony y

Stephan Brüggeman inicializaron y “pre-entrenaron” pequeñas arquitecturas

con imágenes de 128 pixeles, luego utilizaron los pesos entrenados para

(parcialmente) inicializar redes de tamaño intermedio las cuales fueron

entrenadas con imágenes de 256 pixeles. Finalmente, repitieron este

proceso para entrenar la CNN final con imágenes de 512 imágenes. Se logra

evidenciar la relevancia en el proceso de entrenamiento de la CNN ante el

pre-procesamiento de las imágenes. Un gran proyecto a futuro es combinar

las técnicas de pre-procesamiento utilizadas en este trabajo de grado con las

técnicas de entrenamiento utilizadas por Mathias Anthony y Stephan

Brüggeman y complementar las técnicas de data augmentation con la

finalidad de generar un mayor número de imágenes con las cuales se puede

entrenar la CNN y buscar obtener una mayor exactitud en la clasificación de

Retinopatía Diabética.

63

BIBLIOGRAFÍA

Anzola, N. (2016). Máquinas de soporte vectorial y redes neuronales artificiales en
la predicciòn del movimiento USD/COP spot intradiario. ODEON, 113-172.

Aurélien, G. (2017). Hands-on machine learning with Scikit-Learn and TensorFlow:
concepts, tools, and techniques to build intelligent systems. O'Reilly Media, Inc.

Barrera, Jamie Areli-Toral. (s.f.). Redes Neuronales.

Pedro Ponce, Cruz. (2010). Inteligencia artificial con aplicaciones a la ingeniería.
Alfaomega.

Toral Barrera, J. (s.f.). Redes Neuronales.

Giraldo Calderón, V. (2018). Diseño de un sistema de seguimiento del ojo (pupila),
usando técnicas de visión artificial. Neiva.

García, A. (2012). Inteligencia Artificial. Fundamentos, práctica y aplicaciones. Rc
Libros.

Nursel Yalçin, Seyfullah Alver, Necla Uluhatun. Classification of retinal images with
Deep Learning for early detection of diabetic retinopathy disease. Disponible en:
https://www.kaggle.com/c/diabetic-retinopathy-detection

ML Practicum: Image Classification. Disponible en: https://developers.google.com/machine-
learning/practica/image-classification/convolutional-neural-networks

Convolutional Neural Networks (CNNs/ConvNets). Disponible en:
http://cs231n.github.io/convolutional-networks/

KARPATHY, ANDREJ. (Consultado 1 de abril de 2020). Convolutional Neural

Networks for Visual Recognition, Convolutional Neural Networs (CNNs / ConvNets).

Stanford University. Disponible en internet: http://cs231n.github.io/convolutional-

networks/

ORCHARD, ELIZABETH. (1 de Abril de 2020). Diabetic Retinopathy Treatment Eagle
Eye Centre. Disponible en: http://www.eagleeyecentre.com.sg/service/diabetic-
retinopathy/

CHOLLET, Francois. Keras: Deep Learning library for Theano and TensorFlow.

KERAS, 2017. Disponible en: https://keras.io/

about:blank
https://developers.google.com/machine-learning/practica/image-classification/convolutional-neural-networks
https://developers.google.com/machine-learning/practica/image-classification/convolutional-neural-networks
about:blank
http://cs231n.github.io/convolutional-networks/
http://cs231n.github.io/convolutional-networks/
http://www.eagleeyecentre.com.sg/service/diabetic-retinopathy/
http://www.eagleeyecentre.com.sg/service/diabetic-retinopathy/
https://keras.io/

64

NVIDIA Coporation. Disponible en: https://www.nvidia.com/en-us/about-nvidia/

Kaggle INC. (Consultado 4 de abril de 2020). Diabetic Retinopathy Detection – Data.

Kaggle Inc, 2017. Disponible en: https://www.kaggle.com/c/diabetic-retinopathy-

detection/data

KAGGLE INC. Diabetic Retinopathy Detection . Kaggle Inc, 2017. Disponible en:

https://www.kaggle.com/c/diabetic-retinopathy-detection

COHEN, Jacob. Weighted kappa: Nominal Scale agreement with provision for
scaled disagreement or partial credit. En: Psychological Bulletin. October 1968 vol.
70 no. 4, p. 213-220. Disponible en:
https://doi.apa.org/doiLanding?doi=10.1037%2Fh0026256

KAGGLE INC, Op. cit. Disponible en:https://www.kaggle.com/c/diabetic-retinopathy-
detection#evaluation

OpenCV-Python. (Consultado 3 de Noviembre de 2021). Open Source Computer Vision.
Disponible en: https://docs.opencv.org/4.x/da/d6e/tutorial_py_geometric_transformations.html

OpenCV-Python. (Consultado 4 de Diciembre de 2021). Open Source Computer Vision.
Disponible en: https://docs.opencv.org/4.x/d4/d13/tutorial_py_filtering.html

OpenCV-Python. (Consultado 1 de enero de 2022). Open Source Computer Vision. Disponible
en: https://docs.opencv.org/4.x/dc/da5/tutorial_py_drawing_functions.html

OpenCV-Python. (Consultado 4 de enero de 2022). Open Source Computer Vision. Disponible
en: https://docs.opencv.org/3.4/dc/da3/tutorial_copyMakeBorder.html

Convolutional Neural Networks. Disponible en: https://es.mathworks.com/discovery/convolutional-
neural-network-matlab.html

Diabetic Retinopathy Detection. Disponible en: https://www.kaggle.com/c/diabetic-retinopathy-
detection/overview

Mathis Anthony, Stephan Brüggeman. (consultado 04 de Febrero de 2022]). Kaggle

Diabetic Retinopathy Detection Team o_O solution. Disponible en Internet:

https://github.com/sveitser/kaggle_diabetic/blob/master/doc/report.pdf

NumPy. (Consultado 4 de enero de 2022). Disponible en:

https://numpy.org/doc/stable/reference/generated/numpy.ravel.html

Tensorflow. (Consultado 20 de Enero de 2022). Disponible en:
https://www.tensorflow.org/tensorboard?hl=es-419

https://www.nvidia.com/en-us/about-nvidia/
https://www.kaggle.com/c/diabetic-retinopathy-detection/data
https://www.kaggle.com/c/diabetic-retinopathy-detection/data
https://www.kaggle.com/c/diabetic-retinopathy-detection
https://www.kaggle.com/c/diabetic-retinopathy-detection#evaluation
https://www.kaggle.com/c/diabetic-retinopathy-detection#evaluation
https://docs.opencv.org/4.x/da/d6e/tutorial_py_geometric_transformations.html
https://docs.opencv.org/4.x/d4/d13/tutorial_py_filtering.html
https://docs.opencv.org/4.x/dc/da5/tutorial_py_drawing_functions.html
https://docs.opencv.org/3.4/dc/da3/tutorial_copyMakeBorder.html
https://es.mathworks.com/discovery/convolutional-neural-network-matlab.html
https://es.mathworks.com/discovery/convolutional-neural-network-matlab.html
https://www.kaggle.com/c/diabetic-retinopathy-detection/overview
https://www.kaggle.com/c/diabetic-retinopathy-detection/overview
https://github.com/sveitser/kaggle_diabetic/blob/master/doc/report.pdf
https://numpy.org/doc/stable/reference/generated/numpy.ravel.html
https://www.tensorflow.org/tensorboard?hl=es-419

65

Tensorflow. (Consultado 21 de Enero de 2022). Disponible en:

https://www.tensorflow.org/api_docs/python/tf/keras/preprocessing/image/random_

rotation

Tensorflow. (Consultado 23 de Enero de 2022). Disponible en:
https://www.tensorflow.org/api_docs/python/tf/keras/layers/Conv2D

Keras: the Python deep learning. (Consultado 23 de Enero de 2022). Disponible en:
https://keras.io/api/layers/activation_layers/relu/

Tensorflow. (Consultado 24 de Enero de 2022). Disponible en:
https://www.tensorflow.org/api_docs/python/tf/keras/layers/BatchNormalization

Tensorflow. (Consultado 25 de Enero de 2022). Disponible en:

https://www.tensorflow.org/api_docs/python/tf/keras/layers/MaxPool2D

Keras: the Python deep learning. (Consultado 15 de Febrero de 2022). Disponible
en: https://keras.io/api/models/model_training_apis/#compile-method

Tensorflow. (Consultado 16 de Febrero de 2022). Disponible en:
https://www.tensorflow.org/addons/api_docs/python/tfa/losses/WeightedKappaLos
s

Tensorflow. (Consultado 16 de Febrero de 2022). Disponible en:
https://www.tensorflow.org/addons/api_docs/python/tfa/metrics/CohenKappa

Keras: the Python deep learning. (Consultado 17 de Febrero de 2022). Disponible
en: https://keras.io/api/models/model_training_apis/#fit-method

https://www.tensorflow.org/api_docs/python/tf/keras/preprocessing/image/random_rotation
https://www.tensorflow.org/api_docs/python/tf/keras/preprocessing/image/random_rotation
https://www.tensorflow.org/api_docs/python/tf/keras/layers/Conv2D
https://keras.io/api/layers/activation_layers/relu/
https://www.tensorflow.org/api_docs/python/tf/keras/layers/BatchNormalization
https://www.tensorflow.org/api_docs/python/tf/keras/layers/MaxPool2D
https://keras.io/api/models/model_training_apis/#compile-method
https://www.tensorflow.org/addons/api_docs/python/tfa/losses/WeightedKappaLoss
https://www.tensorflow.org/addons/api_docs/python/tfa/losses/WeightedKappaLoss
https://www.tensorflow.org/addons/api_docs/python/tfa/metrics/CohenKappa
https://keras.io/api/models/model_training_apis/#fit-method

