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GLOSARIO 

 

Retinopatía Diabética:  es una complicación de la diabetes que afecta los ojos. Es 

causada por el daño a los vasos sanguíneos del tejido sensible a la luz que se 

encuentran en el fondo del ojo (retina). 

Imagen del fondo de ojo: imagen utilizada principalmente para diagnosticar 

enfermedades oculares. 

Aprendizaje profundo: (Deep Learning) es un tipo de aprendizaje 

automático (machine learning, ML) e inteligencia artificial que imita la forma en que 

los humanos obtienen ciertos tipos de conocimiento. 

Redes Neuronales: son un modelo para encontrar la combinación de parámetros 

que mejor se ajusta a un determinado problema. 

CNN: Es un tipo de Red Neuronal Artificial con aprendizaje supervisado que procesa 

sus capas imitando al cortex visual del ojo humano para identificar distintas 

características en las entradas que en definitiva hacen que pueda identificar objetos 

y “ver”.  

Capa de Convolución: procesa la salida de neuronas que están conectadas en 

“regiones locales” de entrada (es decir pixeles cercanos), calculando el producto 

escalar entre sus pesos (valor de píxel) y una pequeña región a la que están 

conectados en el volumen de entrada. 

Keras: Es una biblioteca que funciona a nivel de modelo, proporciona bloques 

modulares sobre los que se pueden desarrollar modelos complejos de aprendizaje 

profundo. 

 

Matplotlib: es una biblioteca de código abierto para la generación de gráficos a 

partir de vectores y arrays. 

 

Píxel: es la parte homogénea en color más pequeña de una imagen digital 

generalmente compuesta por 8 bits. 

 

 

https://www.techtarget.com/searchdatacenter/es/definicion/Aprendizaje-automatico-machine-learning?_gl=1*1lxsz2o*_ga*NjgyMjI2MzEuMTYyODU0ODc0NQ..*_ga_TQKE4GS5P9*MTYzMDk0NjAwMC4zOS4xLjE2MzA5NTEyMTAuMA..&_ga=2.237826441.821581610.1630946001-68222631.1628548745
https://www.techtarget.com/searchdatacenter/es/definicion/Aprendizaje-automatico-machine-learning?_gl=1*1lxsz2o*_ga*NjgyMjI2MzEuMTYyODU0ODc0NQ..*_ga_TQKE4GS5P9*MTYzMDk0NjAwMC4zOS4xLjE2MzA5NTEyMTAuMA..&_ga=2.237826441.821581610.1630946001-68222631.1628548745
https://www.techtarget.com/searchdatacenter/es/definicion/Inteligencia-artificial-o-AI?_gl=1*l8bgsq*_ga*NjgyMjI2MzEuMTYyODU0ODc0NQ..*_ga_TQKE4GS5P9*MTYzMDk0NjAwMC4zOS4xLjE2MzA5NTEyMzQuMA..&_ga=2.237826441.821581610.1630946001-68222631.1628548745
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RESUMEN 

 

El fin de este proyecto de grado fue desarrollar una aplicación de software en 

lenguaje de programación de código abierto Python, que mediante el uso de redes 

neuronales convolucionales (CNN) posibiliten la detección y clasificación de la 

Retinopatía Diabética mediante imágenes de fondo de ojo. 

La red neuronal convolucional adquiere imágenes de la base de datos Kaggle, cada 

imagen es pre-procesada adecuadamente con la finalidad de resaltar las 

características más relevantes y redimensionar la imagen a un tamaño de 

512𝑥512𝑥3 permitiendo a la CNN un entrenamiento mas eficiente y rápido. La CNN 

realiza el proceso de extracción de características de las imágenes de fondo de ojo 

y clasificación de los cinco diferentes grados de Retinopatía Diabética. Se utilizó la 

métrica de evaluación Kappa Cuadrático Ponderado para medir el desempeño del 

sistema de aprendizaje. Usando el método de ensayo y error se implementó y 

entrenó la CNN. Durante la experimentación se agregaron Custom Data Generators 

para facilitar el entrenamiento de la red e impedir el sobre-entrenamiento de esta. 

Se obtuvo un nivel de acuerdo con respecto a las etiquetas asignadas por un 

experto de 78%. De acuerdo con este resultado la red tiene un buen desempeño, 

indicando que fue capaz de extraer las características fundamentales para la 

clasificación de la enfermedad crónica retinopatía diabética. 

PALABRAS CLAVES: Visión por computador, Inteligencia artificial, aprendizaje 

profundo, redes neuronales convolucionales, retinopatía diabética. 
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ABSTRACT 

 

The purpose of this project is to develop a software application in the open-source 

programming language Python, which, using convolutional neural networks (CNN), 

enables the detection and classification of Diabetic Retinopathy through eye fundus 

images. 

The convolutional neural network acquires images from the Kaggle data base, each 

image is pre-processed to highlight the most relevant features and resize the image 

to a size of 512𝑥512𝑥3, allowing the CNN to train more efficiently and faster. CNN 

performs the process of extracting features from the fundus images and classifying 

the five different grades of Diabetic Retinopathy. The Weighted Quadratic Kappa 

evaluation metric was extracted to measure the performance of the learning system. 

Using the trial and error method, the CNN was implemented and trained. During 

experimentation, custom data generators were added to facilitate network training 

and prevent network overfitting. A level of agreement was obtained according to the 

labels exposed by an expert of 87%. According to this result, the network the network 

has a “good” performance, indicating that it was able to extract the fundamental 

characteristics for the classification of chronic diabetic retinopathy. 

KEY WORDS: computer vision, artificial intelligence, deep learning, convolutional 

neural networks, diabetic retinopathy. 
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INTRODUCCIÓN 
 
 

El Centro para el Control y la Prevención de Enfermedades de Estados Unidos 

estima que 29.1 millones de personas en los Estados Unidos tienen diabetes y la 

Organización Mundial de la Salud estima que 347 millones de personas padecen la 

enfermedad en todo el mundo. La Retinopatía Diabética (DR) del acrónimo en inglés 

Diabetic Retinopathy, es una enfermedad ocular asociada con diabetes de larga 

duración. La progresión hacia el deterioro de la visión puede ralentizarse o evitarse 

si se detecta DR a tiempo, sin embargo, esto puede ser difícil ya que la enfermedad 

a menudo muestra pocos síntomas hasta que es demasiado tarde para proporcionar 

tratamiento efectivo 1 siendo la causa más común de ceguera del ojo dependiendo 

de la diabetes. Por esta razón, la detección temprana de la Retinopatía Diabética 

es de importancia crítica.2 

Actualmente, la detección de DR es un proceso manual que requiere mucho tiempo 

y así mismo, un médico capacitado para examinar y evaluar fotografías digitales en 

color del fondo de la retina. Para cuando los lectores humanos envían sus 

revisiones, a menudo uno o dos días después, los resultados retrasados conducen 

a un seguimiento perdido, falta de comunicación y tratamiento retrasado. 

La causa principal de la Retinopatía Diabética se debe a un trastorno metabólico 

que aumenta los niveles de glucosa en la sangre de una persona, lo que hace que 

la persona presente altos niveles de presión arterial, que a su vez afectan el sistema 

circulatorio de la retina y el revestimiento sensible a la luz en la parte posterior del 

ojo 3. Los médicos pueden identificar DR por la presencia de lesiones asociadas con 

las anomalías vasculares causadas por la enfermedad. Si bien este enfoque es 

efectivo, sus demandas de recursos son altas. La experiencia y el equipo requeridos 

a menudo faltan en áreas donde la tasa de diabetes en las poblaciones locales es 

alta y la detección de DR es más necesaria. A medida que el número de personas 

con diabetes continúa creciendo, la infraestructura necesaria para prevenir la 

ceguera debido a la DR se volverá aún más insuficiente. 

 

 
1 Disponible en: https://www.kaggle.com/c/diabetic-retinopathy-detection 
2 Nursel Yalçin, Seyfullah Alver, Necla Uluhatun. Classification of retinal images 
with Deep Learning for early detection of diabetic retinopathy disease. 
3 Marıa A. Bravo, Pablo A. Arbelaez. Automatic Diabetic Retinopathy Classification. 
Universidad de los Andes, Bogota, Colombia 

about:blank
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La necesidad de un método integral y automatizado de detección de DR ha sido 

reconocida desde hace mucho tiempo, y los esfuerzos anteriores han hecho un 

buen progreso utilizando la clasificación de imágenes, el reconocimiento de 

patrones y el aprendizaje automático. Con la fotografía del fondo de retina como 

entrada, el objetivo de este trabajo de grado cobra gran importancia al desarrollar 

una herramienta basada en redes neuronales convolucionales que son capaces de 

automáticamente identificar y extraer de las imágenes sus características más 

relevantes, para la clasificación automática de las etapas de Retinopatía Diabética 

que agilicen el proceso y hagan más objetivos los diagnósticos del experto. Su 

objetivo será identificar y clasificar la Retinopatía Diabética en sus cinco etapas: 

Retinopatía Diabética no Proliferativa (No DR), Leve, Moderado, Severo y DR 

proliferativa.  
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PLANTEAMIENTO DEL PROBLEMA 

 

La presencia de diferentes complicaciones oculares derivadas de la Diabetes, han 

llevado al ser humano a investigar métodos más sencillos, eficaces y confiables 

para la detección, clasificación y posterior tratamiento de ellas. Existen diferentes 

procedimientos para que el especialista pueda realizar el diagnostico de Retinopatía 

Diabética, como lo son: examen de agudeza visual, examen del iris y el ángulo 

iridocorneano, examen de fondo de ojo con dilatación pupilar, fotografía de fondo 

de ojo, angiografía con fluoresceína, Tomografía de Coherencia Óptica (O.C.T.). 

El diagnóstico digital por imagen para la retina se vale de sistemas de 

procesamiento de imágenes de alta resolución para tomar fotografías del interior del 

ojo, esto ayuda a los especialistas a determinar la salud de la retina a la vez que les 

permite detectar y controlar enfermedades y complicaciones oculares. Es 

fundamental descubrir lo antes posible irregularidades en la retina para prevenir el 

avance de enfermedades potencialmente graves e incluso la pérdida de la visión. 

Además de ayudar a detectar enfermedades en forma precoz, las imágenes de la 

retina brindan un historial permanente de los cambios producidos en los ojos. Con 

las imágenes se pueden hacer comparaciones paralelas y anuales a fin de descubrir 

incluso los cambios más sutiles y ayudar al control de la salud.  

Este problema se agrava principalmente cuando el crecimiento en el número de 

oftalmólogos es mucho menor que el crecimiento de diabéticos, al ser la Retinopatía 

Diabética una complicación en donde su detección a tiempo es fundamental para el 

correcto control, tratamiento y evitar la pérdida de visión.  

En este orden de ideas, el análisis de imágenes de la retina requiere de un 

aprendizaje a partir del conocimiento previo de datos de diferentes pacientes, con 

el fin de facilitar y afirmar la detección de anomalías en estas. 

El proyecto en cuestión aparece, entonces, como una alternativa confiable, 

eficiente, ágil y económica,  pues tiene como objetivo otorgar una herramienta 

destinada a la detección y clasificación de las cinco etapas de la Retinopatía 

Diabética (No DR, Leve, Moderado, Severo, DR proliferativa) empleando el 

deterioro en los vasos sanguíneos a partir de imágenes de fondo de ojo, mediante 

procesamiento digital de imágenes el uso de las Redes neuronales convolucionales, 

siendo herramientas fundamentales de apoyo para el diagnóstico de Retinopatía 

Diabética. ¿Es posible desarrollar una aplicación de software que haciendo uso de 

procesamiento digital de imágenes y técnicas de inteligencia computacional tenga 
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la capacidad de detectar y clasificar la Retinopatía Diabética mediante imágenes de 

fondo de retina? 
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JUSTIFICACIÓN 

 

La Retinopatía Diabética (DR) es una enfermedad en la cual la retina se daña debido 

al aumento de la presión arterial de los vasos sanguíneos pequeños del ojo humano. 

DR es la principal causa de ceguera para los diabéticos. Se ha demostrado que el 

diagnóstico temprano puede jugar un papel importante en la prevención de la 

pérdida visual y la ceguera. La gran población de pacientes diabéticos y sus 

requisitos de detección masiva han generado interés en un diagnóstico asistido por 

computadora y completamente automático de DR. Este trabajo propone un enfoque 

basado en computadora para la detección de DR en imágenes de fondo de ojo 

basadas en el uso de redes neuronales convolucionales (CNN) del acrónimo en 

inglés Convolutional Neural Network. La CNN a implementar utiliza aprendizaje 

profundo para clasificar las fotografías de la retina en el fondo del ojo en 5 etapas 

de DR. 

 

De acuerdo con lo mencionado anteriormente, la importancia de este trabajo radica 

precisamente en la combinación de procesamiento digital de imágenes y técnicas 

de inteligencia computacional, para determinar características y patrones y usarlas 

en la clasificación de las diferentes etapas de Retinopatía Diabética. 
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1. OBJETIVOS 
 
 

1.1 OBJETIVO GENERAL 

 

Desarrollar una aplicación de software en lenguaje de programación Python, que 

mediante el uso de redes neuronales convolucionales posibiliten la detección y 

clasificación de la Retinopatía Diabética mediante imágenes de fondo de retina.  

 

1.2  OBJETIVOS ESPECÍFICOS 

 

• Realizar preprocesamiento a las imágenes de fondo de retina para la detección y 

clasificación de Retinopatía Diabética. 

 

• Seleccionar las características de las imágenes de fondo de retina más 

adecuadas para el proceso de detección y clasificación de Retinopatía Diabética. 

 

• Implementar la arquitectura de red neuronal convolucional basada en Deep 

Learning que realice la detección y clasificación propuesta. 

 

• Validar la robustez de la Red neuronal para la detección de la Retinopatía 

Diabética. 
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2. REDES NEURONALES CONVOLUCIONALES 
 

 

La Red Neuronal Convolucional (CNN) es un tipo de Red Neuronal Artificial con 

aprendizaje supervisado que procesa sus capas imitando al córtex visual del ojo 

humano para identificar distintas características en las entradas que en definitiva 

hacen que pueda identificar objetos y “ver”. Para ello, la CNN contiene varias capas 

ocultas especializadas y con una jerarquía: esto quiere decir que las primeras capas 

pueden detectar líneas, curvas y se van especializando hasta llegar a capas más 

profundas que reconocen formas complejas como un rostro o la silueta de un 

animal. 

El descubrimiento de que se podría usar una CNN para extraer progresivamente 

representaciones de alto y más alto nivel del contenido de la imagen trajo un gran 

avance en la construcción de modelos para la clasificación de imágenes; La CNN 

toma como entrada los datos de píxeles sin procesar de la imagen y aprende cómo 

extraer estas características y, en última instancia deduce qué objeto constituyen. La 

CNN está diseñada específicamente para procesar imágenes de entrada. Su 

arquitectura entonces más específicamente se compone de dos bloques principales. 

El primer bloque de esta arquitectura tiene como cualidad para este tipo de redes 

neuronales su funcionamiento como un extractor de características, este 

procedimiento lo realiza mediante la comparación de plantillas a las cuales se les 

aplica un filtrado de convolución. Tenemos la primera capa cuya función es tomar 

una imagen y filtrarla con varios filtros de convolución, devolviendo mapas de 

características los cuales son normalizados con una función de activación y/o se 

redimensionan. Al tener la facilidad de repetir varias veces este proceso se filtran los 

mapas de características obtenidos con los nuevos filtros, lo que nos proporciona 

nuevos mapas de características para su respectiva normalización y 

redimensionamiento. Finalmente, los valores de los últimos mapas de características 

se concatenan en un vector. Este vector define la salida del primer bloque y la 

entrada del segundo. 

 

 

Fuente:https://www.aprendemachinelearning.com/como-funcionan-las-

convolutional-neural-networks-vision-por-ordenador/  

 

https://www.aprendemachinelearning.com/como-funcionan-las-convolutional-neural-networks-vision-por-ordenador/
https://www.aprendemachinelearning.com/como-funcionan-las-convolutional-neural-networks-vision-por-ordenador/
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Figura 1. Ejemplo de primer bloque de una CNN. 

 

 
 

Fuente:https://www.aprendemachinelearning.com/como-funcionan-las-

convolutional-neural-networks-vision-por-ordenador/ 

El segundo bloque no es característico de una CNN. De hecho, está al final de todas 

las redes neuronales empleadas para la clasificación. Se necesita que los valores 

del vector de entrada se modifiquen mediante varias combinaciones lineales y 

funciones de activación, devolviendo un nuevo vector que será de salida. Dicho 

vector de salida tendrá tantos elementos como clases hay. El elemento 𝑖 representa 

la probabilidad de que la imagen pertenezca a la clase 𝑖. Por tanto, cada elemento 

está entre 0 y 1, y la suma de todos vale 1. La última capa de este bloque se encarga 

de realizar un cálculo de estas probabilidades, mediante una función logística que 

realiza una clasificación binaria o a través de una función softmax que desarrolla una 

clasificación multiclase como una función de activación. De la misma forma que con 

las redes neuronales ordinarias, los parámetros de las capas están determinados 

por la retro propagación de gradiente. La entropía cruzada se minimiza durante la 

fase de entrenamiento. Sin embargo, en el caso de las CNN, estos parámetros se 

refieren en particular a las características de la imagen. 

https://www.aprendemachinelearning.com/como-funcionan-las-convolutional-neural-networks-vision-por-ordenador/
https://www.aprendemachinelearning.com/como-funcionan-las-convolutional-neural-networks-vision-por-ordenador/
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Figura 2. Ejemplo de segundo bloque de una CNN. 

 

 
 

Fuente:https://www.aprendemachinelearning.com/como-funcionan-las-

convolutional-neural-networks-vision-por-ordenador/ 

Para comenzar, la CNN recibe un mapa de características de entrada la cuál es una 

matriz tridimensional donde el tamaño de las dos primeras dimensiones 

corresponde a la altura y el ancho de las imágenes en píxeles. El tamaño de la 

tercera dimensión es 3 (correspondiente a los 3 canales de una imagen en color 

RGB: rojo, verde y azul).4 La CNN comprende una pila de módulos, cada uno de los 

cuales realiza tres operaciones. 

Una ConvNet del inglés Convolutional Network, simple es una secuencia de capas, 

y cada capa de una ConvNet transforma un volumen de activaciones a otra a través 

de una función diferenciable. Comunmente se utiliza tres tipos principales de capas 

para construir arquitecturas ConvNet: Capa convolucional, Capa de POOL y Capa 

totalmente conectada (FC).5 

 
4 Disponible en: https://developers.google.com/machine-learning/practica/image-
classification/convolutional-neural-networks 
5 Disponible en: http://cs231n.github.io/convolutional-networks/ 

https://www.aprendemachinelearning.com/como-funcionan-las-convolutional-neural-networks-vision-por-ordenador/
https://www.aprendemachinelearning.com/como-funcionan-las-convolutional-neural-networks-vision-por-ordenador/
about:blank
about:blank
about:blank


22 
 

Con el fin de explicar la arquitectura básica de una CNN, se usará como ejemplo 

una red clasificadora, aplicada a la base de datos CIFAR-10 (imágenes a color de 

32x32 de 10 clases). Esta arquitectura se presenta en la Figura 3. La ConvNet para 

la clasificación CIFAR-10 podría tener la arquitectura [INPUT – CONV – RELU – 

POOL – FC]. 

 

Figura 3. Ejemplo de arquitectura de una red neuronal convolucional. 

 

Fuente: KARPATHY, ANDREJ. CS231n Convolutional Neural Networks for Visual 

Recognition, Convolutional Neural Networs (CNNs / ConvNets) [en línea]. Stanford 

University [Consultado 1 de abril de 2020]. Disponible en internet: 

http://cs231n.github.io/convolutional-networks/ 

 

En la Figura 3 en la parte izquierda se observa la imagen de un automóvil como 

entrada de la CNN [32x32x3] la cuál mantendrá los valores de píxeles sin procesar 

de la imagen, en este caso una imagen de ancho 32, altura 32 y con tres canales 

de color R, G, B. Se observa también que la capa CONV extrae mapas de 

características de la entrada y les aplica filtros para calcular nuevas características, 

produciendo un mapa de características de salida (que puede tener un tamaño y 

profundidad diferentes a los del mapa de entrada). Las convoluciones se definen 

por dos parámetros: Tamaño de los mosaicos que se extraen (normalmente 3x3 o 

http://cs231n.github.io/convolutional-networks/
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5x5 píxeles). La profundidad del mapa de características de salida, que corresponde 

al número de filtros que se aplican. Esto puede resultar en un volumen como 

[32x32x12] si se decide usar 12 filtros. Posteriormente la capa RELU – Después de 

cada operación de convolución, la CNN aplica una transformación de unidad lineal 

rectificada (ReLU del inglés Rectified Linear Unit) a la característica convolucionada, 

con el fin de introducir la no linealidad en el modelo. La función ReLU, 𝑓(x)  =

 max (0, x), devuelve 𝑥 para todos los valores de 𝑥 > 0, y devuelve 0 para todos los 

valores de 𝑥 ≤ 0. Esto deja el tamaño del volumen sin cambios ([32x32x12]). 

Consecutivamente la capa POOL - Después de ReLU viene un paso de agrupación, 

en el que la CNN cambia la configuración de la función convolucionada (para ahorrar 

en el tiempo de procesamiento), reduciendo el número de dimensiones del mapa de 

características, al tiempo que conserva la información de la característica más 

crítica. Un algoritmo común utilizado para este proceso se denomina max-pooling. 

Max-pooling funciona de manera similar a la convolución. Se desliza sobre el mapa 

de características y se extraen mosaicos de un tamaño específico. Para cada 

mosaico, el valor máximo se envía a un nuevo mapa de características y todos los 

demás valores se descartan. Las operaciones de agrupación máxima toman los 

siguientes parámetros. El primer parámetro es el tamaño del filtro de agrupación 

máxima (normalmente 2x2 píxeles) y el segundo parámetro es el Paso, que 

representa la distancia en píxeles que separa cada mosaico extraído. Finalmente, 

la capa FC (es decir, totalmente conectada) calculará los puntajes de la clase, lo 

que resultará en un volumen de tamaño [1x1x10], donde cada uno de los 10 

números corresponde a un puntaje de clase, como por ejemplo entre las 10 

categorías de CIFAR-10. Al igual que con las redes neuronales ordinarias y como 

su nombre lo indica, cada neurona en esta capa se conectará a todos los números 

en el volumen anterior. 

 

Al entrenar redes neuronales profundas, se requiere de una gran cantidad de 

imágenes que contengan ejemplos de las diferentes categorías a clasificar para 

alcanzar desempeños significativos. En caso de que la base de datos contenga una 

cantidad limitada de imágenes, se recomienda realizar data augmentation para 

mejorar el desempeño de la red. Esta técnica busca principalmente construir datos 

sintéticos mediante la realización de transformaciones a datos etiquetados 

existentes, de esta manera ayudar al modelo de Deep Learning a aprender en un 

rango más amplio de variaciones dentro de las categorías. Algunas formas de 

aplicar data augmentation es, por ejemplo, operaciones como: girar la imagen 

vertical/horizontalmente, rotarla, realizar cortes aleatorios, variaciones de color y el 
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nivel de zoom. Normalmente en la práctica, estas muestras sintéticas son 

agregadas a la base de datos de entrenamiento para enriquecerlo.  
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3. RETINOPATÍA DIABÉTICA 

 

La Retinopatía Diabética (DR) es la principal causa de pérdida visual no recuperable 

en los países industrializados en pacientes entre los 20 y 64 años, siendo 

responsable de un 10% de nuevos casos de ceguera cada año. El riesgo de ceguera 

en pacientes diabéticos seria aproximadamente 25 veces mayor al resto de la 

población. La Retinopatía Diabética (DR), ocurre cuando niveles altos de azúcar en 

la sangre generan daño en los vasos sanguíneos de la retina. Este daño, puede 

generar que los vasos sanguíneos se obstruyan, evitando el flujo de sangre a través 

de ellos. También es posible que se hinchen y goteen fluidos. Normalmente la DR 

se diagnostica con controles oculares anuales. Actualmente la retinopatía diabética 

comprende 5 etapas de clasificación de la enfermedad.  

Fuente: D. ALISEDA, L. BERÁSTEGUI. Diabetic retinopathy Servicio de 

Oftalmología. Hospital de Navarra. Disponible en : 

https://scielo.isciii.es/scielo.php?script=sci_arttext&pid=S1137-

66272008000600003  

 

• No DR: En esta etapa, el paciente con la enfermedad de diabetes se 

considera sin Retinopatía Diabética. 

 

• Retinopatía no proliferativa ligera: Está etapa es considerada la más 

temprana de la enfermedad en la que se originan los micro aneurismas, que 

aparecen como dilataciones de la pared de los capilares, estas pequeñas 

áreas de inflamación tienen una similitud con ampollas en los pequeños 

vasos sanguíneos de la retina. 

 

• Retinopatía no proliferativa moderada: Ya superada la etapa temprana de 

la enfermedad, aparecen hemorragias en una moderada cantidad y cómo 

consecuencia algunos vasos sanguíneos que alimentan la retina se 

obstruyen. 

 

• NPDR (Retinopatía diabética no proliferativa): Es la etapa media de la 

enfermedad ocular diabética. En el mundo muchas personas padecen esta 

etapa de la enfermedad, la cual produce que la retina se inflame debido a la 

pérdida de muchos vasos sanguíneos pequeños. Lo que sucede es que se 

genera un edema macular cuándo se inflama la mácula del ojo. Esta es 

https://scielo.isciii.es/scielo.php?script=sci_arttext&pid=S1137-66272008000600003%20
https://scielo.isciii.es/scielo.php?script=sci_arttext&pid=S1137-66272008000600003%20
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comúnmente la razón por la que las personas con diabetes pierden la visión. 

Durante esta etapa de la enfermedad aparece una isquemia macular que es 

cuándo los vasos sanguíneos en la retina pueden cerrarse, debido a esto a  

la sangre le es imposible llegar a la mácula. En algunos casos, se forman 

pequeñas partículas en la retina que son llamadas exudados, y como 

consecuencia estas partículas pueden afectar la visión. La retinopatía 

diabética no proliferativa causa que la visión sea borrosa. 

 

• PDR (retinopatía diabética proliferativa) Es considerada la etapa más 

avanzada de la enfermedad ocular diabética. Se genera por la denominada 

neovascularización, este proceso ocurre cuándo la retina empieza a 

desarrollar nuevos vasos sanguíneos.  Estos vasos nuevos frágiles a menudo 

sangran hacia el vítreo y se puede visualizar en la Figura 4 como 

hemorrhage. Si sólo sangran un poco, quizá el paciente experimentará ver 

unas cuantas moscas volantes oscuras. Si sangran mucho, puede que 

bloqueen toda la visión. Estos vasos sanguíneos nuevos pueden desarrollar 

cicatrices. El tejido cicatrizante puede causar problemas con la mácula o 

derivar en un desprendimiento de retina. La retinopatía diabética proliferativa 

es muy grave, causará dolor y eventualmente daño al nervio del ojo y 

ceguera.6 

Figura 4. Signos de Retinopatía Diabética (DR). 
 
 

 

Fuente: ORCHARD, ELIZABETH. Diabetic Retinopathy Treatment [en línea] Eagle 

eye Centre [Consultado 1 de Abril de 2020]. Disponible en internet: 

http://www.eagleeyecentre.com.sg/service/diabetic-retinopathy/ 

 

 
6 Disponible en: http://www.eagleeyecentre.com.sg/service/diabetic-retinopathy/ 

https://www.aao.org/salud-ocular/anatomia/vitreo
https://www.aao.org/salud-ocular/sintomas/moscas-volantes-en-la-vision
https://www.aao.org/salud-ocular/enfermedades/desgarramiento-desprendimiento-retina
http://www.eagleeyecentre.com.sg/service/diabetic-retinopathy/
about:blank
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4. METODOLOGÍA 

 

4.1   SOFTWARE Y EQUIPO 
 

Se empleó un computador personal de la marca MSI modelo GF65 Thin y el sistema 

operativo Windows 11. Como librería para Deep Learning se utilizó Keras, 

configurando como backend Tensorflow7. El lenguaje de programación que se 

empleó fue Python y el código se desarrolló en la aplicación web Jupyter Notebook. 

Las unidades de procesamiento central “CPU” son optimizadas para el 

procesamiento secuencial mientras que las unidades de procesamiento gráfico 

“GPU” son utilizadas para incrementar la velocidad de los cómputos vectoriales y 

matriciales requeridos en aplicaciones de Deep Learning. Por consiguiente, el 

entrenamiento del sistema de Deep Learning fue procesado por una GPU cuyas 

características técnicas son las siguientes8: 

GPU: GeForce GTX 1660 Ti, memoria de video de 6GB GDDR6, velocidad de 

memoria de 12 Gbps 

CPU: Intel(R) Core (TM) i7-10750H CPU @ 2.60GHz, memoria RAM de 24GB y 

disco duro SSD de 512 GB. 

 

4.2   BASE DE DATOS 
 

Para desarrollar el sistema Deep Learning se utilizó la base de datos de Kaggle la 

cual consiste en un conjunto de gran tamaño de imágenes de fondo de ojo 

(Aproximadamente 88.000) de alta resolución entre 4 y 14 Megapíxeles. Las 

imágenes del conjunto de datos provienen de diferentes modelos y tipos de 

cámaras, lo que puede afectar la apariencia visual de la izquierda frente a la 

derecha. Algunas imágenes de la base de datos ilustran la anatomía la retina 

(mácula a la izquierda, nervio óptico a la derecha para el ojo derecho). Otros 

muestran cómo se vería a través de una lente de condensación de microscopio (es 

decir, invertida, como se ve en un examen ocular típico). Como cualquier conjunto 

 
7 CHOLLET, Francois. Keras: Deep Learning library for Theano and TensorFlow [en línea]. KERAS, 

2017. Fuente: https://keras.io/ 

8 NVIDIA Coporation [en línea] Fuente: https://www.nvidia.com/en-us/about-nvidia/ 

https://keras.io/
https://www.nvidia.com/en-us/about-nvidia/
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de datos del mundo real, se encontrará ruido tanto en las imágenes como en las 

etiquetas. Las imágenes pueden contener artefactos, estar desenfocadas, 

subexpuestas o sobreexpuestas. 9 

En esta base de datos se encuentran imágenes del ojo izquierdo y derecho para 

cada paciente, cada imagen ha sido etiquetada de acuerdo con el número de 

identificación del paciente y el ojo correspondiente (por ejemplo, la etiqueta 

1_left.jpeg corresponde al ojo izquierdo del paciente con identificación 1). Un 

Oftalmólogo ha clasificado las imágenes diagnosticándolas con un nivel de 

Retinopatía Diabética en una escala de 0-4 (según la Tabla 1). De esta manera, el 

sistema automático que se desarrollará en este proyecto tiene como salida un valor 

DR basado en esta escala. 

Tabla 1. Relación entre las categorías de las etiquetas y el nivel de DR que 

representan. 

Categoría Nivel de Retinopatía Diabética 

0 No DR 

1 Leve 

2 Moderado 

3 Severo 

4 DR proliferativa 

 

Fuente: Kaggle INC. Diabetic Retinopathy Detection – Data [en línea]. Kaggle Inc, 

2017 [Consultado 4 de abril de 2020]. Disponible en Internet: 

https://www.kaggle.com/c/diabetic-retinopathy-detection/data 

 

En la Figura 5, se puede observar muestras de la base de datos utilizada (Kaggle). 

Se muestra la etiqueta de cada imagen en la parte superior la cual representa la 

categoría de DR que ha sido diagnosticada para esta imagen de fondo de retina. Se 

detalla que las imágenes han sido tomadas bajo diferentes condiciones, se puede 

apreciar también diferentes tamaños y diferentes niveles de acercamiento a la 

retina. 

 
9 KAGGLE INC. Diabetic Retinopathy Detection [en línea]. Kaggle Inc, 2017. Fuente: 

https://www.kaggle.com/c/diabetic-retinopathy-detection 

 

https://www.kaggle.com/c/diabetic-retinopathy-detection/data
https://www.kaggle.com/c/diabetic-retinopathy-detection
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Figura 5. Muestras de imágenes de retina del ojo izquierdo y derecho para dos 

pacientes de la base de datos Kaggle. 

Ojo Izquierdo Ojo Derecho 

Nivel: 0 

 

Nivel: 0 

 
Nivel: 2 

 

Nivel: 2 

 
 

Fuente: Kaggle INC. Diabetic Retinopathy Detection – Data [en línea]. Kaggle Inc, 

2017 [Consultado 4 de abril de 2020]. Disponible en Internet: 

https://www.kaggle.com/c/diabetic-retinopathy-detection/data 
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4.3   MÉTRICA DE EVALUACIÓN: KAPPA CUADRÁTICO PONDERADO 
 

Para el desempeño de los sistemas de aprendizaje se usará el Kappa Cuadrático 

Ponderado, llámese 𝐾𝑤 (del inglés: weighted kappa). De acuerdo con Cohen10, el 

𝐾𝑤 es un indicador del nivel de concordancia entre dos grupos de elementos 

cualitativos (variables categóricas), que tiene en cuanta el efecto del azar y permite 

medir los desacuerdos de manera eficiente. Al usar esta métrica, se producirán 

valores negativos cuando haya menos concordancia de la pronosticada por el azar, 

cero cuando la concordancia sea exactamente la pronosticada por el azar y uno al 

ocurrir una completa concordancia. En la Tabla 2, se muestra una interpretación del 

valor Kappa, de acuerdo con la fuerza del nivel de concordancia entre los 

evaluadores. 

Tabla 2. Interpretación del Kappa. 

Valor de K Concordancia 

< 0.20 Poor 

0.21 - 0.40 Fair 

0.41 - 0.60 Moderate 

0.61 - 0.80 Good 

0.81 - 1.00 Very Good 

 

Fuente: ALTAM, Douglas G. Practical statistics for medical research. London: 

Chapman and Hall, 1991, p. 404 

Se utilizará el 𝐾𝑤 para medir el desempeño de la aplicación de software a desarrollar 

en este proyecto. La concordancia es medida de acuerdo con las etiquetas 

obtenidas según un evaluador humano(𝑋), y las obtenidas por el sistema (𝑃). Las 

categorías de clasificación posibles de las imagines son: 0, 1, 2, 3, 4. El 𝐾𝑤 será 

calculado como se describe a continuación. 

Primero, es construida una matriz de histograma O de dimensiones 𝑁𝑥𝑁 (donde N 

es la cantidad de categorías), tal que 𝑂𝑖𝑗 corresponde con el número de imágenes 

que reciben una evaluación 𝑖 por 𝐴 y una evaluación 𝑗 por 𝐵 (donde 𝐴 es la CNN y 

 
10 COHEN, Jacob. Weighted kappa: Nominal Scale agreement with provision for 
scaled disagreement or partial credit. En: Psychological Bulletin. October 1968 vol. 
70 no. 4, p. 213-220. 
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𝐵 es el experto evaluador). Una matriz N-por-N de pesos 𝑊, es calculada, basada 

en la diferencia entre las clasificaciones indicadas por los evaluadores 𝑊𝑖𝑗 =
(𝑖−𝑗)2

(𝑁−1)2  

Una Matriz de histograma (𝑁𝑥𝑁) de clasificaciones esperadas, 𝐸, es calculada, 

asumiendo que no hay correlación entre las clasificaciones de los evaluadores. 

Esta, es calculada como el producto externo entre el vector de histograma de 

clasificaciones de cada evaluador, normalizado tal que 𝐸 y 𝑂 tengan la misma suma. 

A partir de estas tres marices, el Kappa cuadrático ponderado es calculado según: 

 

Fórmula 1. Kappa cuadrático ponderado. 

𝐾𝑤 = 1 −
∑𝑖𝑗𝑊𝑖𝑗𝑂𝑖𝑗

∑𝑖𝑗𝑊𝑖𝑗𝐸𝑖𝑗
 11 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
11 KAGGLE INC, Op. cit. Disponible en Internet: https://www.kaggle.com/c/diabetic-
retinopathy-detection#evaluation 
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4.4   PRE-PROCESAMIENTO Y AUMENTO DE DATOS 
 

Un problema que se enfrenta con la base de datos de Kaggle es la variedad de 

imágenes de fondo de ojo, ya que fueron tomadas bajo diferentes condiciones lo 

que genera imágenes muy diversas. Para asegurarse de que el sistema de Deep 

Learning aprenderá las verdaderas características de DR, se necesita pre-procesar 

las imágenes de fondo de ojo y lograr un formato uniforme entre todas ellas a través 

de los siguientes pasos. 

4.4.1 Reducción de Fondo 

 

En las imágenes se encontrará un fondo de color negro que ocupa gran parte de la 

imagen, por lo cual, se decide como primer paso del pre-procesamiento la reducción 

del fondo de las imágenes de tal manera que se reduzca el número de pixeles que 

son ocupados por el fondo de la imagen y estandarizar la posición de la retina en 

cada imagen en el centro de esta. Se inicia este procedimiento con la conversión de 

la imagen a escala de grises, para posteriormente recorrer la imagen desde el centro 

hacia los cuatro extremos evaluando si la media de cada fila o columna de pixeles 

permanece por debajo de cierto limite, si la media supera este límite se considera 

que desde allí inicia el fondo negro de la imagen. Al detectar este cambio se 

obtienen los cuatro puntos indicando el inicio y final de los pixeles de altura y ancho, 

luego se corta la imagen original (RGB). Como resultado se obtiene una imagen con 

fondo reducido, por lo tanto, el tamaño de la imagen es menor. 

4.4.2 Escalamiento de radio 

Al ser las imágenes de fondo de ojo de forma circular, este proceso tiene como 

finalidad obtener imágenes con radios similares. 

Primero, se halla el valor medio a lo largo del eje 𝑦 haciendo el recorrido a través 

del eje 𝑥, obteniendo un arreglo en donde se tendrán los valores de los pixeles de 

cada canal RGB. luego se obtienen los pixeles que están por encima del 10% de la 

media, con esto se excluyen los pixeles que conforman el fondo de la imagen (color 

negro), así se adquiere el diámetro de la imagen de fondo de ojo y finalmente se 

divide este valor en 2 para obtener como resultado el radio de cada imagen de fondo 

de retina a lo largo de 𝑦. 

De igual manera se halla el valor medio a lo largo del eje 𝑥 y se recorre a través del 

eje  𝑦, obteniendo un arreglo en donde se tendrán los valores de los pixeles de cada 

canal RGB. luego se obtienen los pixeles que están por encima del 10% de la media, 
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con esto se descartan los pixeles que conforman el fondo de la imagen (color negro), 

así se obtiene el diámetro de la imagen de fondo de retina y finalmente se divide 

este valor en 2 para conseguir como resultado el radio de cada imagen de fondo de 

retina a lo largo de 𝑥. 

El siguiente paso en este procedimiento es obtener el radio más grande, ya que 

algunas imágenes no son círculos completos, sino que están cortadas en 𝑥 o en 𝑦. 

Una vez obtenido el valor del radio, se calcula el factor de la escala correspondiente 

para que las imágenes procesadas queden con radios similares, se divide un valor 

constante igual al valor medio de las dimensiones en las que se desea la imagen 

final, este valor es igual a 256 (ya que las dimensiones deseadas de la imagen luego 

de su pre-procesamiento son de 512x512x3), por el valor del radio obtenido. El 

factor de escala se utiliza en el método resize 12 de la librería OpenCV y se 

redimensiona la imagen al tamaño deseado. 

4.4.3 Mapeo al 50% de gris 

El principal motivo del mapeo al 50% de gris es resaltar los detalles dentro de la 

imagen de fondo de retina para lo cual las tonalidades tanto del fondo de la imagen 

como el fondo de la retina deben ser similares. 

Para realizar este procedimiento primero se debe obtener el color medio local de 

cada píxel en la imagen, para ello se pasa la imagen por un filtro Gaussiano 

haciendo uso del método GaussianBlur 13 de la librería OpenCV, ya que este filtro 

arroja como resultado una imagen en donde el valor de cada píxel ha sido obtenido 

como el promedio ponderado de sus pixeles vecinos. 

Luego de obtener el color medio local de cada píxel en la imagen, se resta a cada 

píxel de la imagen original el color medio local para posteriormente sumar un valor 

constante que corresponde al 50% de la escala de gris (0-255) igual a 128. 

 

4.4.3.1 Eliminación del Efecto Aurora 

Una vez se realiza el procedimiento del mapeo de la imagen al 50% de gris, en la 

imagen resultante llámese (image_mapped_50) se genera un efecto de aurora el 

cual se debe remover de la imagen antes de seguir con el siguiente paso para 

 
12 Open Source Computer Vision.[en línea] OpenCV-Python [Consultado 3 de Noviembre de 2021] 

Fuente: https://docs.opencv.org/4.x/da/d6e/tutorial_py_geometric_transformations.html   
13 Open Source Computer Vision.[en línea] OpenCV-Python [Consultado 4 de Diciembre de 2021] 
Fuente: https://docs.opencv.org/4.x/d4/d13/tutorial_py_filtering.html  

https://docs.opencv.org/4.x/da/d6e/tutorial_py_geometric_transformations.html
https://docs.opencv.org/4.x/d4/d13/tutorial_py_filtering.html
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prevenir la extracción de características no deseadas y que puedan ocasionar que 

la red neuronal aprenda de forma errónea las características de las imágenes. para 

lograr una imagen sin el efecto aurora primero se crea una imagen llámese 

(image_circle) de las mismas dimensiones de la imagen resultante, con fondo negro 

y un círculo blanco cuyo radio es el 90% del radio de la retina de la imagen 

resultante, para ello se utiliza el método circle 14 de la librería OpenCV. Finalmente 

se realiza una multiplicación entre image_mapped_50 y image_circle, al mismo 

tiempo se mapean los pixeles del fondo de la imagen al 50% de la escala de gris 

haciendo uso de la fórmula 2. Se obtiene una imagen igual a image_mapped_50 

pero con el radio de la retina en la imagen reducido al 90%. 

 

Fórmula 2. Mapeo de los pixeles del fondo de la imagen al 50% de la escala de 

gris. 

(image_mapped_50 ∗  image_circle +  128 ∗  (1 − image_circle)) 

 

4.4.4 Redimensionamiento de la Imagen a 512x512x3 

El último paso del pre-procesamiento es el redimensionamiento de las imágenes 

manteniendo la relación de aspecto. Las CNN reciben como entrada imágenes del 

mismo tamaño, por tal motivo este paso es indispensable para el correcto 

funcionamiento de la red neuronal a desarrollar en este proyecto. Normalmente se 

ingresan a las CNN imágenes con tamaños reducidos y no de alta calidad con el fin 

de agilizar tanto el pre-procesamiento de todas las imágenes como el entrenamiento 

de la red neuronal. Al trabajar con imágenes de fondo de retina se desea detectar 

detalles que son muy pequeños por lo cual el tamaño de la imagen debe ser 

considerable, para entrenar la red neuronal se utilizarán imágenes con dimensiones 

512x512. 

Al ser la forma de la imagen deseada un cuadrado y la mayoría de las imágenes en 

la base de datos son rectangulares se procede a realizar un relleno con fondo de 

color que corresponde al 50% de la escala de gris (128). En este procedimiento se 

determina en qué sentido se debe rellenar la imagen con fondo ya sea 

(izquierda/derecha o arriba/abajo) al evaluar la diferencia entre las dimensiones 

 
14 Open Source Computer Vision.[en línea] OpenCV-Python [Consultado 1 de enero de 2022] 

Fuente: https://docs.opencv.org/4.x/dc/da5/tutorial_py_drawing_functions.html  

https://docs.opencv.org/4.x/dc/da5/tutorial_py_drawing_functions.html
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(height, width). Posteriormente se emplea el método copyMakeBorder15 de la 

librería OpenCV para agregar el relleno de tal manera que las dimensiones de la 

imagen resultante son de 512x512 pixeles. 

 

Otro problema que se enfrentará es la cantidad de imágenes disponibles para 

entrenar el sistema Deep Learning. Tener suficientes datos de entrenamiento es la 

clave para entrenar una red neuronal con éxito; desafortunadamente, este requisito 

extraña vez se cumple en la mayoría de las aplicaciones de redes neuronales. Para 

aplicaciones de imágenes médicas, la falta de datos es más significativa debido al 

costo de las anotaciones y al desequilibrio en la aparición de enfermedades. Para 

mitigar la escasez de datos y utilizar plenamente los datos disponibles, se deben 

realizar ciertas técnicas de aumento de datos en el proyecto como: voltear la imagen 

horizontalmente, voltear la imagen verticalmente, girar aleatoriamente la imagen en 

un rango de grados, acercar o alejar al azar en un rango especifico, distorsionar la 

imagen al azar. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
15 Open Source Computer Vision.[en línea] OpenCV-Python [Consultado 4 de enero de 2022] 

Fuente: https://docs.opencv.org/3.4/dc/da3/tutorial_copyMakeBorder.html  

https://docs.opencv.org/3.4/dc/da3/tutorial_copyMakeBorder.html
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4.5   RED NEURONAL CONVOLUCIONAL 

Uno de los aspectos fundamentales para escoger las CNN es la capacidad de 

automáticamente identificar y extraer las características más relevantes en una 

imagen. Sus filtros son modificados mediante aprendizaje supervisado, de esta 

manera logran adaptarse al problema que se desea resolver. Esta particularidad de 

las CNN permite al ser humano saltar el proceso de identificación y extracción de 

características que es necesario para entrenar una red no convolucional. Por lo 

tanto, para desarrollar el proceso de identificación de signos de DR en la retina 

puede ser demasiado complejo, por este motivo se utilizará una CNN como modelo 

de solución. 

Aunque las redes neuronales convolucionales han sido popularmente usadas para 

analizar imágenes, también son usadas para otro tipo de análisis de datos o 

problemas de clasificación. Las CNN son redes neuronales artificiales capaces de 

detectar y extraer patrones de las imágenes y dar sentido a estos, de esta manera 

aprende directamente de los datos, sin necesidad de extraer características 

manualmente16, lo cual, para un humano la identificación y clasificación de signos 

de Retinopatía Diabética en la retina es un proceso complejo e incierto. Esta 

particularidad es lo que hace que las CNN sean tan útiles en el análisis de las 

imágenes. Las CNN tienen capas ocultas llamadas capas convolucionales, de igual 

manera pueden tener otro tipo de capas en su arquitectura, sin embargo, la base de 

las CNN son las capas convolucionales.  

Normalmente, se utiliza una red que ha sido previamente entrenada haciendo uso 

de la metodología transferencia del aprendizaje lo cual es mucho más rápido y fácil 

que entrenar una red desde cero, ya que permite entrenar modelos con mucho 

menos datos con sus correspondientes etiquetas, por lo tanto, requiere menos 

poder computacional para su entrenamiento. La arquitectura de la red neuronal no 

tiene una metodología estandarizada, ya que el número de parámetros que la red 

debe tener, dependen de la complejidad de las imágenes a clasificar, es por esto 

por lo que la cantidad de capas, filtros, tipos de funciones de activaciones etc. se 

realiza de forma empírica.  

Para este proyecto se decide entrenar una CNN desde cero, teniendo como 

referencia una arquitectura exitosa en la clasificación de DR. Para esto, se toma 

como arquitectura inicial la arquitectura propuesta por los participantes que 

ocuparon el segundo lugar en la competencia Diabetic Retinopathy Detection17 de 

Kaggle, los cuales utilizaron una Deep CNN, obteniendo un coeficiente de            

 
16 https://es.mathworks.com/discovery/convolutional-neural-network-matlab.html  
17 https://www.kaggle.com/c/diabetic-retinopathy-detection/overview  

https://es.mathworks.com/discovery/convolutional-neural-network-matlab.html
https://www.kaggle.com/c/diabetic-retinopathy-detection/overview
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𝐾𝑤 = 0.845. Por esta razón, se toma como referencia inicial la arquitectura 

propuesta por Mathias Anthony y Stephan Brüggeman, la cual se muestra en la 

Tabla 3. 

Para el entrenamiento de la CNN se utiliza una GPU Nvidia GeForce GTX 1660Ti y 

el desarrollo se realiza haciendo uso de la librería de Deep learning Keras con 

backend tensorflow. La metodología utilizada para encontrar el mejor modelo de 

arquitectura fue el ensayo y error, observando el comportamiento tanto de las 

gráficas de entrenamiento como de las gráficas de validación, se solucionan 

problemas como el overfitting, de igual manera se varían tanto el tipo como la 

cantidad de capas, además de utilizar diferentes tipos de funciones de activación 

para observar el comportamiento del modelo, así mismo se utiliza Data 

augmentation para incrementar los datos de las clases en que se encontraban 

menor número de muestras. 
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Tabla 3. Arquitectura de la CNN propuesta por Mathias Anthony y Stephan 

Brüggeman. 
 

            units   filter stride size      

 1 Input                           448         

 2 Conv        32     5       2    224        

 3 Conv        32     3            224        

 4 MaxPool            3       2    111        

 5 Conv        64     5       2     56        

 6 Conv        64     3             56        

 7 Conv        64     3             56         

 8 MaxPool            3       2     27        

 9 Conv       128     3             27        

10 Conv       128     3             27        

11 Conv       128     3             27         

12 MaxPool            3       2     13        

13 Conv       256     3             13        

14 Conv       256     3             13        

15 Conv       256     3             13        

16 MaxPool            3       2      6        

17 Conv       512     3              6        

18 Conv       512     3              6      

19 RMSPool            3       3      2        

20 Dropout  

21 Dense     1024  

22 Maxout     512  

23 Dropout  

24 Dense     1024  

25 Maxout     512 

 

Donde, el término units hace referencia al número de filtros en cada capa de 

convolución de la CNN. El término filter hace referencia al tamaño del filtro usado 

en cada capa de convolución. Finalmente, el término stride hace referencia al 

número de pixeles que se desplaza el filtro en cada paso. 

Fuente: Mathis Anthony, Stephan Brüggeman. Kaggle Diabetic Retinopathy 

Detection Team o_O solution [en línea]. [consultado 04 de Febrero de 2022]. 

Disponible en Internet: 

https://github.com/sveitser/kaggle_diabetic/blob/master/doc/report.pdf  

 

https://github.com/sveitser/kaggle_diabetic/blob/master/doc/report.pdf
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5. RESULTADOS 

 

5.1   PRE-PROCESAMIENTO DE IMÁGENES 

 

En las siguientes páginas se presentan los resultados obtenidos durante el pre-

procesamiento de las imágenes que dispone la base de datos Kaggle con las cuales 

se entrenará la red neuronal. 

Para lograr el pre-procesamiento de miles de imágenes se inicia desarrollando el 

algoritmo para procesar una imagen a la vez, en donde se siguieron los pasos 

descritos en la sección 4.4. En la Figura 6 se muestra una imagen de fondo de retina 

original etiquetada como 1982_right con nivel de retinopatía diabética 0. 

Figura 6. Imagen Original a pre-procesar. 

𝐷𝑖𝑚𝑒𝑛𝑠𝑖𝑜𝑛𝑒𝑠 = (2595, 3888, 3) 

 

El primer paso en el pre-procesamiento realizado es la reducción del fondo de color 

negro de la imagen que está presente en todas las imágenes de la base de datos, 

esto con el fin de obtener una imagen en donde la mayoría de los pixeles pertenecen 

a la imagen de la retina y sus características, para facilitar este proceso ya que la 

imagen original es 𝑅𝐺𝐵 con dimensiones 𝐻𝑥𝑊𝑥3 en donde, 𝐻 y 𝑊 son el alto y 

ancho de la imagen en pixeles y el último término hace referencia al número de 

canales de la imagen. Se convierte la imagen a escala de grises lo cual da como 

resultados una imagen con dimensiones 𝐻𝑥𝑊𝑥1, sin embargo, la reducción del 

fondo de color negro se aplica a la imagen original como se describe en la sección 

4.4.1. 
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Figura 7. Imagen original a escala de grises e imagen con fondo reducido. 

       𝐷𝑖𝑚𝑒𝑛𝑠𝑖𝑜𝑛𝑒𝑠 = (2595, 3888)                       𝐷𝑖𝑚𝑒𝑛𝑠𝑖𝑜𝑛𝑒𝑠 = (2592, 3171, 3) 

                                       

 

Se puede observar en las imágenes anteriores que el fondo de color negro presente 

en la imagen a la izquierda de la Figura 7 se ha reducido drásticamente y ahora la 

mayoría de los pixeles conforman la retina en donde se encuentran las 

características que se requieren como entrada de la red neuronal como se muestra 

en la imagen a la derecha de la Figura 7. Es de resaltar que el tamaño de la imagen 

se ha reducido lo cual implica un mejoramiento en el rendimiento del sistema al 

entrenar la CNN con imágenes de tamaños menores. 

Una vez la reducción del fondo de la imagen a finalizado se procede a escalar el 

radio, como se sabe, las imágenes de la base de datos kaggle tienen diferentes 

tamaños por lo tanto el radio de la retina es diferente en todas las imágenes, con el 

objetivo de que todas las imágenes tengan radios similares se continua con el 

procedimiento denominado escalamiento del radio (sección 4.4.2). El resultado de 

este procedimiento se puede detallar en la Figura 8. Nótese que las dimensiones de 

todas las imágenes una vez terminado este procedimiento serán similares, por 

consiguiente, el radio de estas se asemejará. 

Figura 8. Imagen con radio escalado. 

𝐷𝑖𝑚𝑒𝑛𝑠𝑖𝑜𝑛𝑒𝑠 = (419, 512, 3) 
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Con la finalidad de que le sea más fácil a la red neuronal aprender las características 

únicas de cada imagen se ha mapeado la imagen al 50% de gris, este proceso da 

como resultado una imagen con el fondo de la imagen y el fondo de la retina en 

coloraciones similares (sección 4.4.3). Sin embargo, se genera un efecto aurora 

alrededor de la retina como se muestra en la Figura 9. 

Figura 9. Imagen mapeada al 50% de gris. 

𝐷𝑖𝑚𝑒𝑛𝑠𝑖𝑜𝑛𝑒𝑠 = (419, 512, 3) 

 

La red neuronal aprenderá las características más relevantes de las imágenes, por 

tal motivo es indispensable remover el efecto aurora producido después de realizar 

el procedimiento del mapeo al 50% de gris, de lo contrario la red neuronal aprenderá 

una característica errónea de las imágenes pre-procesadas. Se utiliza una imagen 

de fondo negro con un círculo blanco de igual diámetro al de la retina y se multiplica 

por la imagen de la Figura 9 siguiendo los pasos de la sección 4.4.3.1. Obteniendo 

como resultado una imagen sin características no deseadas como se observa en la 

Figura 10. 

 

 

 

 

 

 

 

 

 

 

Efecto aurora 
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Figura 10. Imagen sin efecto aurora. 

 

 

 

 

En este paso se tiene una imagen pre-procesada en la cual las características de la 

retina resaltan notablemente, sin embargo, el tamaño de la imagen es de (419, 512, 

3) por lo que es necesario redimensionar la imagen para obtener el tamaño deseado 

que es (512, 512, 3). Para esto, se adiciona fondo a la imagen del color que 

corresponde al 50% de la escala de gris (128) proceso que se explica 

detalladamente en la sección 4.4.4. La imagen final luego de completar el pre-

procesamiento es una imagen RGB de dimensiones 512x512 la cual se muestra en 

la Figura 11. 
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Figura 11. Imagen final pre-procesada. 

𝐷𝑖𝑚𝑒𝑛𝑠𝑖𝑜𝑛𝑒𝑠 = (512, 512, 3) 

 

 

A continuación, se muestra en la Figura 12 la distribución de los distintos tonos de 

una imagen al completar el pre-procesamiento. Como se puede observar la mayoría 

de los pixeles tienen tonalidades correspondientes al 50% de la escala de gris (128) 

y los demás pixeles están homogéneamente distribuidos hacia la izquierda y 

derecha de este pico. 

El histograma se obtiene convirtiendo la imagen a un arreglo aplanado contiguo, 

haciendo uso de la función ravel 18 la cual toma como entrada la imagen que es un 

arreglo 3D y devuelve un arreglo de 1D con todos los elementos del arreglo de 

entrada con el mismo tipo. Finalmente, en la Figura 13 se detalla cada una de las 

etapas del pre-procesamiento aplicado a una imagen de fondo de retina. 

 

 

 

 

 

 

 

 

 
18 NumPy [en línea], [Consultado 4 de enero de 2022] Fuente: 
https://numpy.org/doc/stable/reference/generated/numpy.ravel.html  

https://numpy.org/doc/stable/reference/generated/numpy.ravel.html
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Figura 12. Histograma de una Imagen Preprocesada. 

 

 

Figura 13. Resultados del pre-procesamiento para una imagen de la base de datos 

Kaggle. 
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5.2   BULK PRE-PROCESSING 

 

Una vez el pre-procesamiento de una imagen ha sido exitoso se realiza el algoritmo 

para realizar el bullk pre-processing de todas las imágenes presentes en la base de 

datos de kaggle. Para ello, se crea un arreglo el cual contiene todos los nombres de 

las imágenes con su extensión .jpeg. Estos datos se obtienen de la carpeta en 

donde se encuentran almacenadas las imágenes originales, además se crea un 

arreglo que contiene todos los niveles de retinopatía diabética, estos datos se 

obtienen de la tabla en donde se encontraban el nombre de la imagen con su 

respectiva clasificación como se muestra en la Figura 14. 

Figura 14. Muestra de arreglos creados con los nombres de las imágenes y el nivel 

de retinopatía correspondiente. 

Niveles de Retinopatía Diabética: [0 0 2 0 0 0 1 1 0 0 0 0 0 0 0 0] 

 

Nombre de las imágenes: ['9979_left.jpeg', '9979_right.jpeg', '9980_le

ft.jpeg', '9980_right.jpeg', '9984_left.jpeg', '9984_right.jpeg', '999

2_left.jpeg', '9992_right.jpeg', '9993_left.jpeg', '9993_right.jpeg', 

'9996_left.jpeg', '9996_right.jpeg', '9998_left.jpeg', '9998_right.jpe

g', '9999_left.jpeg', '9999_right.jpeg'] 

 

 

 
 

Luego de obtener estos arreglos, se recorre el arreglo denominado “Nombre de las 

imágenes” para así lograr realizar el pre-procesamiento explicado en la sección 4.4 

a cada imagen. Las imágenes no fueron procesadas todas a la vez con el fin de 

evitar sobrepasar la capacidad máxima de la memoria RAM (24GB), se procesaron 

500 imágenes a la vez hasta completar las 35126 imágenes de entrenamiento 
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presentes en la base de datos Kaggle. Durante este procedimiento no fue posible 

completar el pre-procesamiento de todas las imágenes ya que algunas de ellas eran 

completa o parcialmente negras como se muestra en la Figura 15. 

Figura 15. Imágenes descartadas en el pre-procesamiento.  

492_right.jpeg                                       766_left.jpeg 

               

Fue posible identificar estás imágenes gracias a que dentro del desarrollado del 

algoritmo para el bullk pre-processing se implementó un bloque para el tratamiento 

de errores haciendo uso de Try Except. Una vez finalizado el bullk pre-processing 

se identificó todas las imágenes a las que no fue posible realizarles el pre-

procesamiento y se retiraron de la base datos con sus respectivas parejas, por 

ejemplo, 492_left.jpeg y 492_right.jpeg. De la misma manera se removieron del 

archivo que contiene el nombre de las imágenes con su correspondiente nivel de 

Retimopatía Diabética. 

Figura 16. Muestra de los resultados del bullk pre-processing. 
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El proceso denominado bullk pre-processing se realizó nuevamente una vez las 

imágenes que no se pre-procesasaron anteriormente fueron retiradas de la base de 

datos. 

Figura 17. Imágenes antes y después de pasar por la etapa de pre-procesamiento. 

Imagen Original Imagen Pre-procesada 

 
910_right.jpeg Nivel de Retinopatía Diabética: 0 

 

  
 

1084_left.jpeg Nivel de Retinopatía Diabética: 4 
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Figura 18. Diagrama de flujo del pre-procesamiento. 
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5.3   RED NEURONAL CONVOLUCIONAL 

 

La primera prueba se realizó con un modelo inicial el cual se entrenó por 50 épocas, 

se implementó sin data augmentation y sin tener en cuenta la métrica de evaluación 

Kappa cuadrático ponderado, al revisar los resultados se observó un sobre 

entrenamiento (overfitting) considerable de la red neuronal. Se hizo uso de 

TensorBoard19 que es el kit de herramientas de visualización de TensorFlow para 

poder visualizar y entender el comportamiento de la red neuronal durante el 

entrenamiento como se muestra en la Figura 19. En la gráfica de la exactitud vs 

épocas (a), se logra observar que la curva tanto de entrenamiento como de 

validación crecen rápidamente alcanzando un valor de exactitud aproximadamente 

de 99% y 67% respectivamente, lo cual indica que la red está memorizando en lugar 

de aprender las verdaderas características de las imágenes de fondo de retina 

suministradas a la red neuronal para su entrenamiento. 

Al observar estás graficas se determinó que las posibles causas del overfitting de la 

red neuronal se debía a dos posibles razones, ya que la distribución de las clases 

(niveles de Retinopatía Diabética) de la base de datos de kaggle tanto para los datos 

de entrenamiento como para los datos de validación no es uniforme como se 

presenta en la Tabla 4 y en la Tabla 5 respectivamente. En estás tablas se puede 

observar que la clase 0 (No DR) contiene aproximadamente el 74% de las imágenes 

mientras que las clases 3 (Severo) y 4 (DR Proliferativa) contienen 

aproximadamente el 2% de las imágenes cada una. Se decidió añadir un método 

de muestreo de acuerdo con la probabilidad y así alimentar a la red neuronal 

convolucional con conjuntos de datos de tal manera que las clases sean uniformes. 

Este método de muestreo se implementó cargando los arreglos que contenían las 

imágenes (un arreglo contenía 500 imágenes), una vez cargado los arreglos en la 

memoria RAM se obtenían de manera aleatoria 16 imágenes (tamaño del batch) de 

tal manera que la imagen se seleccionaba con una probabilidad inversa al 

porcentaje del total de imágenes pertenecientes a dicha clase para los datos de 

entrenamiento. Este método generaba un arreglo en donde las imágenes 

pertenecientes a una clase con menor cantidad de imágenes en el set de 

entrenamiento eran escogidas con mayor probabilidad y viceversa. Este método 

también se utilizó para los datos de validación. En la Figura 20 se presenta la 

distribución de clases por batch antes y después de usar el método de muestreo. 

 
19 Tensorflow [en línea] [Consultado 20 de Enero de 2022] https://www.tensorflow.org/tensorboard?hl=es-
419  

https://www.tensorflow.org/tensorboard?hl=es-419
https://www.tensorflow.org/tensorboard?hl=es-419
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Una segunda solución ante el problema de overfitting es la implementación de data 

augmentation. El aumento de datos permite crear nuevos datos a partir de datos 

existentes mediante la aplicación de algunas transformaciones. Es importante ya 

que incrementa el tamaño del conjunto de datos de entrenamiento y validación. 

Entrenar la red neuronal con más datos conduce a lograr una mayor precisión. Por 

esta razón se realizó la rotación de todas las imágenes de entrenamiento y de 

validación utilizando el método random_rotation20 de la librería de keras con un 

ángulo aleatorio entre 0º y 360º, además se implementaron operaciones de flip 

(voltear las imágenes) izquierda/derecha, arriba/abajo o en ambas direcciones 

como se muestra en la Figura 21. Para lograr alimentar la red neuronal se 

implementó un Custom Data Generator el cual contenía el método de muestreo y el 

data augmentation. 

Figura 19. Graficas de la exactitud y la pérdida del modelo inicial entrenado durante 

50 épocas. 

(a) Exactitud vs. Épocas 

 

 

 

 
20 Tensorflow [en línea] [Consultado 21 de Enero de 2022] 
https://www.tensorflow.org/api_docs/python/tf/keras/preprocessing/image/random_rotation  

https://www.tensorflow.org/api_docs/python/tf/keras/preprocessing/image/random_rotation
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(b) Perdida vs. Épocas 

 

Tabla 4. Distribución de clases del set de entrenamiento de la base de datos de 

Kaggle. 

Clases Distribución de los datos Cantidad de datos 

0 73.5% 25803 

1 6.9% 2432 

2 15.1% 5290 

3 2.5% 872 

4 2% 708 

 

Tabla 5. Distribución de clases del set de validación de la base de datos de Kaggle. 

Clases Distribución de los datos Cantidad de datos 

0 73.8% 39516 

1 7% 3761 

2 14.7% 7853 

3 2.3% 1214 

4 2.2% 1206 
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Figura 20. Distribución de clases por batch. 

(a) Sin muestreo                                                          (b) Con muestreo 

                                           

 

Figura 21. Batch de Imágenes antes y después de aplicar data augmentation. 

(a) Imágenes sin data augmentation        (b) Imágenes con data augmentation  
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5.4   ARQUITECTURA FINAL 

 

La Arquitectura de red neuronal convolucional final utilizada para la clasificación de 

Retinopatía Diabética se muestra en la Figura 22. En la Figura 22. (a) Etapa de 

aprendizaje y extracción de características, se puede observar que la red neuronal 

tiene 13 capas convolucionales y 6 capas de Pooling. Las capas convolucionales 

utilizan el método Conv2D21, el tamaño de los filtros también llamados kernels en 

estas capas es de 3𝑥3, además se utilizó padding = 'same' lo cual da como resultado 

un relleno con zeros uniformemente a la izquierda/derecha o arriba/abajo de la 

entrada. Al configurar padding = 'same' y strides = 1, la salida tiene el mismo tamaño 

que la entrada. Como función de activación de las capas convolucionales se utilizó 

ReLU22 del inglés (Rectified Linear Unit) es la función de activación más utilizada en 

los modelos de Deep Learning hoy en día, dicha función devuelve 0 si recibe una 

entrada negativa, pero para cualquier valor positivo devuelve ese valor, se puede 

representar con la siguiente expresión 𝑦 = max (0, 𝑥). Cada una de las capas 

convolucionales es seguida por capas BatchNormalization23, estas capas cumplen 

una función importante al hacer que la red neuronal se entrené más rápido, es decir, 

menos épocas necesarias para alcanzar una exactitud más alta y que sea más 

estable. Adicionalmente, en cada una de las capas de pooling, se hizo uso del 

método MaxPooling24, es común añadir periódicamente una capa Pooling entre 

capas convolucionales en una arquitectura de red neuronal convolucional. Su 

principal objetivo es reducir progresivamente el tamaño espacial de la imagen para 

reducir la cantidad de parámetros y el poder computacional requerido en el 

entrenamiento, por lo tanto, controlar también el overfitting. Se utilizó un tamaño de 

kernel de 2𝑥2 aplicado con un stride de 2𝑥2, lo cual reduce tanto el ancho como el 

alto de la imagen a la mitad al pasar por cada capa de Pooling.  

En la Figura 22 (b) Etapa de Clasificación, se adicionó una capa Flatten, la cual 

convierte los mapas de características de la capa anterior a esta en un vector plano. 

En la arquitectura implementada los mapas de características antes de ingresar a 

la capa Flatten tienen como dimensiones 7𝑥7𝑥128 dando como resultado un vector 

de 6272 elementos. Continuamente se implementaron dos capas completamente 

 
21 Tensorflow [en línea] [Consultado 23 de Enero de 2022]  
https://www.tensorflow.org/api_docs/python/tf/keras/layers/Conv2D  
22 Keras: the Python deep learning API [en línea] [Consultado 23 de Enero de 2022] 
https://keras.io/api/layers/activation_layers/relu/  
23 Tensorflow [en línea] [Consultado 24 de Enero de 2022] 
https://www.tensorflow.org/api_docs/python/tf/keras/layers/BatchNormalization  
24 Tensorflow [en línea] [Consultado 25 de Enero de 2022] 
https://www.tensorflow.org/api_docs/python/tf/keras/layers/MaxPool2D  

https://www.tensorflow.org/api_docs/python/tf/keras/layers/Conv2D
https://keras.io/api/layers/activation_layers/relu/
https://www.tensorflow.org/api_docs/python/tf/keras/layers/BatchNormalization
https://www.tensorflow.org/api_docs/python/tf/keras/layers/MaxPool2D
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conectadas (FC) del inglés Fully Connected layers, para la primera FC1 se utilizó la 

función de activación ReLU, seguida por una capa de BatchNormalization y para la 

última FC2 se utilizó la función de activación softmax, la cual da como resultado un 

vector en donde los elementos están en el rango de 0 a 1 y suman 1, este resultado 

puede interpretarse como una distribución de probabilidad. También se agregaron 

capas de Dropout, con un porcentaje de 25%, las cuales establecen aleatoriamente 

las unidades de entrada como 0 en cada paso durante el entrenamiento lo cual 

ayuda a evitar el overfitting.  

Para la compilación del modelo se empleó el método compile25 en el cual se utilizó 

como optimizador durante el entrenamiento de la red neuronal adadelta (Adaptive 

Learning Rate Method), como función de perdida se utilizó WeightedKappaLoss26, 

al entrenar una CNN en donde existen desequilibrios de clases el uso de esta 

función de perdida es ideal para penalizar las clasificaciones erróneas con el fin de 

obtener un mejor aprendizaje de la red neuronal. Como métrica de evaluación se 

utilizó CohenKappa27, la cual es una estadística que mide la confiabilidad o el 

acuerdo entre dos evaluadores o métodos al evaluar elementos categóricos, esta 

métrica recibe como argumento weightage, este término hace referencia a la 

importancia asignada a diferentes elementos, factores o componentes dentro de un 

sistema, al cual se le dio el valor de ‘quadratic’, ponderación a considerar para 

calcular las estadísticas Kappa. Una vez la compilación se realizó correctamente, 

se procedió a entrenar la red neuronal convolucional utilizando el método fit28. Este 

método acepta generadores tanto para el set de entrenamiento como para el set de 

validación, en cada uno de los Custom Data Generators desarrollados, se 

implementó Data augmentation y el método de muestreo como se explica en la 

sección Red Neuronal Convolucional. El tamaño tanto del set de entrenamiento 

como de validación era demasiado grande por lo cual no fue posible cargar todos 

los datos al mismo tiempo en memoria, por esta razón, los datos se cargaron 

mediante batches haciendo uso de los Custom Data Generators descritos 

anteriormente. El entrenamiento de la red neuronal fue realizado por la GPU, 

mientras que en paralelo la CPU se encargaba de llamar los Custom Data 

Generators necesarios para alimentar a la red continuamente. El tamaño del batch 

 
25 Keras: the Python deep learning API [en línea] [Consultado 15 de Febrero de 2022] 
https://keras.io/api/models/model_training_apis/#compile-method  
26 Tensorflow [en línea] [Consultado 16 de Febrero de 2022] 
https://www.tensorflow.org/addons/api_docs/python/tfa/losses/WeightedKappaLoss  
27 Tensorflow [en línea] [Consultado 16 de Febrero de 2022] 
https://www.tensorflow.org/addons/api_docs/python/tfa/metrics/CohenKappa  
28 Keras: the Python deep learning API [en línea] [Consultado 17 de Febrero de 2022] 
https://keras.io/api/models/model_training_apis/#fit-method  

https://keras.io/api/models/model_training_apis/#compile-method
https://www.tensorflow.org/addons/api_docs/python/tfa/losses/WeightedKappaLoss
https://www.tensorflow.org/addons/api_docs/python/tfa/metrics/CohenKappa
https://keras.io/api/models/model_training_apis/#fit-method
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escogido fue de 16, ya que se ha observado que para grandes tamaños de batches 

hay una degradación significativa en la calidad del modelo. La red neuronal fue 

entrenada con 53.550 imágenes para el entrenamiento de la CNN y se utilizaron 

aproximadamente 10% del total de imágenes (3.500) como validación. El total de 

parámetros que tenía la red neuronal era de 1’155.061 y se entrenó durante 150 

épocas, su entrenamiento total tardó 38 horas. 
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Figura 22. Arquitectura final de la CNN. 

(a) Etapa de aprendizaje y extracción de características
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Figura 22. Arquitectura final de la CNN. 

 

(b) Etapa de Clasificación. 

 

 

Figura 23. Grafica de la exactitud del modelo Final entrenado durante 150 épocas. 
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5.4.1 Filtros y salidas de la red neuronal Convolucional 

 

Se logró visualizar tanto los kernels de las capas convolucionales que fueron 

utilizados por la red neuronal convolucional, así como las imágenes de salida de 

cada una de ellas. Algunos de los filtros utilizados por la red neuronal en su primera 

capa convolucional se muestran en la Figura 24. La elección y la aplicación de los 

filtros la hace de forma automática el modelo, además las características aprendidas 

en cada capa convolucional varían significativamente. Se puede observar que cada 

uno de los 16 filtros es de tamaño [3𝑥3], además cada uno de los filtros es diferente 

logrando la extracción de diferentes características propias de las imágenes, para 

así aprender y conseguir clasificar en este caso los 5 diferentes niveles de 

Retinopatía Diabética en imágenes de fondo de retina. 

Figura 24. Filtros usados por la CNN en la primera capa convolucional, Conv2D(16, 

(3,3), padding= 'same ', activation= 'relu '). 

          

 

Se sabe con certeza que las capas iniciales capturan principalmente características 

de bajo nivel como lo son la dirección de la imagen (vertical/horizontal o diagonal), 

el color, etc. A medida que se añaden nuevas capas convolucionales, las CNN 

capturan características de más alto nivel que ayudan a diferenciar entre varias 

clases de imágenes. En la Figura 25 se muestran las imágenes de salida al pasar 

por la primera capa convolucional del modelo usado para el entrenamiento de la 

CNN, el cual se describe en la figura 22. En esta figura se puede observar que la 

primera capa convolucional utiliza 16 filtros en una imagen de entrada que ha sido 

pre-procesada con dimensiones (512, 512, 3). Las imágenes resultantes muestran 

las características extraídas y aprendidas por la CNN en su primera capa 

convolucional, Intuitivamente, la red aprenderá las características que se activan 

cuando ven algún tipo de característica visual, como un borde de alguna orientación 

o una mancha de algún color en la primera capa. 
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Figura 25. Imágenes de salida de la primera capa convolucional implementada en 

la arquitectura final. 

 

 

Se realiza la matriz de confusión con una batch de prueba de 500 imágenes. Se 

puede observar como se menciona anteriormente que las clases de las imágenes 

no están balanceadas por lo cuál existe una gran diferencia en el número de 

imágenes de una clase a otra. 

En la Figura 26. Se puede observar que de 385 imágenes clasificadas como No DR 

el sistema predijo que 43 pertenecen al nivel de retinopatia diabetica Leve y 29 

pertenecen al nivel de retinopatía diabetica Moderado. 28 imágenes se clasificaron 

como  Leve, 4 se predijeron como No DR y 7 como Moderado. Para el nivel de 

retinopatia diabetica Moderado se predijeron 47 imágenes correctamente, 8 se 

predijeron como Leve y 11 como Severo. Durante la predicción del nivel Severo 7 
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predicciones fueron correctar, 2 se clasificaron como Moderado y 1 como DR 

proliferativa. Finalmente al clasificar las imágenes pertenecientes a DR Proliferativa 

4 predicciones fueron correctas y 1 se clasificó como Severo. 

En la Tabla 6. Se aprecian las metricas obtenidas de la matriz de confusión. La 

exactitud refleja el porcentaje de imágenes que el modelo ha acertado. La precisión 

evalua el acierto del modelo en la clasificación de cada clase y finalmente la 

exhaustividad informa sobre la cantidad que el modelo es capaz de clasificar. 

Figura 26. Matriz de confusión  

 

 

Tabla 6. Metricas de la matriz de confunsión por clases. 

Metricas 
Clases 

Exactitud Precisión Exhaustividad 

No DR 84.8 % 98.73 % 81.29 % 

Leve 87.6 % 31.08 % 67.64 % 

Moderado 88.6 % 55.29 % 71.21 % 

Severo 97 % 36.84 % 70 % 

DR Proliferativa 99.6 % 80 % 80 % 
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6. CONCLUSIONES 

 

 

• Se propuso y se validó una aplicación desarrollada en el lenguaje de 

programación Python que fuese capaz de detectar y clasificar los cinco 

grados de Retinopatía Diabética en imágenes de fondo de ojo mediante el 

entrenamiento de una CNN, cumpliendo así el objetivo principal de esta tesis. 

 

• Las redes neuronales convolucionales realizan la extracción de 

características necesarias para aprender diferentes patrones relevantes de 

las imágenes automáticamente, sin embargo, a través de este proyecto, se 

logró evidenciar que la etapa de pre-procesamiento es fundamental para 

suministrar las imágenes a la CNN, ya que, las imágenes de la base de datos 

de Kaggle tenían diferentes dimensiones a lo largo y ancho de la imagen, y 

la CNN acepta imágenes de entrada de iguales dimensiones, además, la red 

logra identificar y aprender patrones más fácilmente al suministrar imágenes 

estandarizadas, logrando un desempeño significativamente mejor. 

 

• Es importante tener en cuenta los factores que pueden ocasionar que una 

red sufra de overfitting al momento del entrenamiento. En este proyecto se 

utilizaron diferentes técnicas para dar solución a este problema, tales como 

el muestreo de clases balanceadas, la adición de capas Dropout y 

regularización. A pesar de que se tenía una base de datos relativamente 

grande con alrededor de 53550 imágenes para entrenamiento, se utilizó data 

augmentation, rotando las imágenes en un rango de 360º, obteniendo una 

mejora significativa en el desempeño de la red neuronal convolucional, 

demostrando que el número de imágenes es de suma importancia cuando se 

requiere entrenar una red con imágenes de gran tamaño y características 

complejas. 

 

• El modelo final con la arquitectura presentada en la Figura 23 tuvo un valor 

de kappa con los datos de prueba de 7.8 el cual es menor al obtenido por la 

CNN propuesta por Mathias Anthony y Stephan Brüggeman. se debe 

considerar que existen diferentes factores que influyen en el valor final 

obtenido de kappa, como lo es el ruido existente en la base de datos de 

Kaggle, en sus imágenes y en la clasificación de estas, a pesar es esto, el 

valor obtenido en la exactitud del modelo final evaluado por el Kappa 
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Cuadrático Ponderado de acuerdo con la fuerza del nivel de concordancia 

mostrado en la Tabla 2 es muy bueno. 

 

• La red neuronal desarrollada en este proyecto obtuvo un Kappa de 7.8 como 

se expresa anteriormente este puntaje es considerado como bueno, por lo 

cual, la red neuronal convolucional aprendió a extraer los patrones más 

relevantes que presentan algún tipo de anomalía en las imágenes de fondo 

de ojo para clasificar retinopatía diabética, por esta razón la red neuronal 

convolucional podría llegar a detectar diferentes tipos de retinopatías, como 

lo es la retinopatía hipertensiva. Se debe tener en cuenta que cada tipo de 

retinopatía tiene una clasificación diferente de acuerdo con sus fases, por lo 

tanto, es necesario entrenar de nuevo la etapa de clasificación de la red 

neuronal convolucional y así permitir que lograse la clasificación de otras 

anomalías. 

 

• Las técnicas de pre-procesamiento, data augmentation, y de entrenamiento 

utilizadas en este proyecto de grado y las usadas por Mathias Anthony y 

Stephan Brüggeman en la competencia Kaggle Diabetic Retinopathy 

Detection son diferentes. Mathias Anthony y Stephan Brüggeman 

únicamente removieron el fondo de la imagen y las cortaron con el fin de que 

fueran cuadrados de 128, 256 y 512 pixeles como técnicas de pre-

procesamiento. Ellos utilizaron traslación, estiramiento, rotación y flipping 

(voltear) como técnicas de data augmentation. Una gran diferencia se 

encuentra en el proceso de entrenamiento de la CNN, Mathias Anthony y 

Stephan Brüggeman inicializaron y “pre-entrenaron” pequeñas arquitecturas 

con imágenes de 128 pixeles, luego utilizaron los pesos entrenados para 

(parcialmente) inicializar redes de tamaño intermedio las cuales fueron 

entrenadas con imágenes de 256 pixeles. Finalmente, repitieron este 

proceso para entrenar la CNN final con imágenes de 512 imágenes. Se logra 

evidenciar la relevancia en el proceso de entrenamiento de la CNN ante el 

pre-procesamiento de las imágenes. Un gran proyecto a futuro es combinar 

las técnicas de pre-procesamiento utilizadas en este trabajo de grado con las 

técnicas de entrenamiento utilizadas por Mathias Anthony y Stephan 

Brüggeman y complementar las técnicas de data augmentation con la 

finalidad de generar un mayor número de imágenes con las cuales se puede 

entrenar la CNN y buscar obtener una mayor exactitud en la clasificación de 

Retinopatía Diabética. 
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