

UNIVERSIDAD SURCOLOMBIANA

GESTIÓN DE BIBLIOTECAS

 CARTA DE AUTORIZACIÓN

CÓDIGO AP-BIB-FO-06 VERSIÓN 1 VIGENCIA 2014 PÁGINA 1 de 2

Vigilada Mineducación
La versión vigente y controlada de este documento, solo podrá ser consultada a través del sitio web Institucional www.usco.edu.co, link
Sistema Gestión de Calidad. La copia o impresión diferente a la publicada, será considerada como documento no controlado y su uso

indebido no es de responsabilidad de la Universidad Surcolombiana.

Neiva, 13 de Marzo de 2024

Señores

CENTRO DE INFORMACIÓN Y DOCUMENTACIÓN

UNIVERSIDAD SURCOLOMBIANA

Ciudad

El (Los) suscrito(s):

Byron Hernando Galindo Suarez, con C.C. No. 1.003.810.784,

Juan Esteban Narváez Carvajal, con C.C. No. 1.075.322.604,

__, con C.C. No. ______________________,

__, con C.C. No. ______________________,

Autor(es) de la tesis y/o trabajo de grado o __

Titulado Interfaz Gráfica Para Reconocimiento Y Detección De Características En
Electrocardiogramas Usando Python___________________________________

presentado y aprobado en el año 2024 como requisito para optar al título de

Ingeniero electrónico______________________________________;

Autorizo (amos) al CENTRO DE INFORMACIÓN Y DOCUMENTACIÓN de la Universidad Surcolombiana para
que, con fines académicos, muestre al país y el exterior la producción intelectual de la Universidad
Surcolombiana, a través de la visibilidad de su contenido de la siguiente manera:

• Los usuarios puedan consultar el contenido de este trabajo de grado en los sitios web que administra la
Universidad, en bases de datos, repositorio digital, catálogos y en otros sitios web, redes y sistemas de
información nacionales e internacionales “open access” y en las redes de información con las cuales tenga
convenio la Institución.

• Permita la consulta, la reproducción y préstamo a los usuarios interesados en el contenido de este trabajo,
para todos los usos que tengan finalidad académica, ya sea en formato Cd-Rom o digital desde internet,
intranet, etc., y en general para cualquier formato conocido o por conocer, dentro de los términos
establecidos en la Ley 23 de 1982, Ley 44 de 1993, Decisión Andina 351 de 1993, Decreto 460 de 1995 y
demás normas generales sobre la materia.

• Continúo conservando los correspondientes derechos sin modificación o restricción alguna; puesto que, de
acuerdo con la legislación colombiana aplicable, el presente es un acuerdo jurídico que en ningún caso
conlleva la enajenación del derecho de autor y sus conexos.

http://www.usco.edu.co/

UNIVERSIDAD SURCOLOMBIANA

GESTIÓN DE BIBLIOTECAS

 CARTA DE AUTORIZACIÓN

CÓDIGO AP-BIB-FO-06 VERSIÓN 1 VIGENCIA 2014 PÁGINA 2 de 2

Vigilada Mineducación
La versión vigente y controlada de este documento, solo podrá ser consultada a través del sitio web Institucional www.usco.edu.co, link
Sistema Gestión de Calidad. La copia o impresión diferente a la publicada, será considerada como documento no controlado y su uso

indebido no es de responsabilidad de la Universidad Surcolombiana.

De conformidad con lo establecido en el artículo 30 de la Ley 23 de 1982 y el artículo 11 de la Decisión Andina
351 de 1993, “Los derechos morales sobre el trabajo son propiedad de los autores” , los cuales son irrenunciables,
imprescriptibles, inembargables e inalienables.

EL AUTOR/ESTUDIANTE: EL AUTOR/ESTUDIANTE:

Firma: ___________________________ Firma: ___________________________

EL AUTOR/ESTUDIANTE: EL AUTOR/ESTUDIANTE:

Firma: ___________________________ Firma: ___________________________

http://www.usco.edu.co/

 UNIVERSIDAD SURCOLOMBIANA
GESTIÓN DE BIBLIOTECAS

DESCRIPCIÓN DE LA TESIS Y/O TRABAJOS DE GRADO

CÓDIGO AP-BIB-FO-07 VERSIÓN 1 VIGENCIA 2014 PÁGINA 1 de 5

Vigilada Mineducación
La versión vigente y controlada de este documento, solo podrá ser consultada a través del sitio web Institucional www.usco.edu.co, link
Sistema Gestión de Calidad. La copia o impresión diferente a la publicada, será considerada como documento no controlado y su uso

indebido no es de responsabilidad de la Universidad Surcolombiana.

TÍTULO COMPLETO DEL TRABAJO: Interfaz Gráfica Para Reconocimiento Y Detección De
Características En Electrocardiogramas Usando Python

AUTOR O AUTORES:

Primero y Segundo Apellido Primero y Segundo Nombre

Galindo Suarez

Narváez Carvajal

Byron Hernando

Juan Esteban

DIRECTOR Y CODIRECTOR TESIS:

Primero y Segundo Apellido Primero y Segundo Nombre

Salgado Patrón José de Jesús

ASESOR (ES):

Primero y Segundo Apellido Primero y Segundo Nombre

Diaz Franco

Ramírez Gutiérrez

Fernand

Julián Adolfo

PARA OPTAR AL TÍTULO DE: Ingeniero Electrónico

FACULTAD: Ingeniería

PROGRAMA O POSGRADO: Ingeniería Electrónica

CIUDAD: Neiva AÑO DE PRESENTACIÓN: 2024 NÚMERO DE PÁGINAS: 108

TIPO DE ILUSTRACIONES (Marcar con una X):

http://www.usco.edu.co/

 UNIVERSIDAD SURCOLOMBIANA
GESTIÓN DE BIBLIOTECAS

DESCRIPCIÓN DE LA TESIS Y/O TRABAJOS DE GRADO

CÓDIGO AP-BIB-FO-07 VERSIÓN 1 VIGENCIA 2014 PÁGINA 2 de 5

Vigilada Mineducación
La versión vigente y controlada de este documento, solo podrá ser consultada a través del sitio web Institucional www.usco.edu.co, link
Sistema Gestión de Calidad. La copia o impresión diferente a la publicada, será considerada como documento no controlado y su uso

indebido no es de responsabilidad de la Universidad Surcolombiana.

Diagramas_X__ Fotografías___ Grabaciones en discos___ Ilustraciones en general_X__ Grabados___
Láminas___ Litografías___ Mapas___ Música impresa___ Planos___ Retratos___ Sin ilustraciones___ Tablas
o Cuadros_X_

SOFTWARE requerido y/o especializado para la lectura del documento: Microsoft Word / Adobe Reader

MATERIAL ANEXO: Código Fuente en formato .pdf

 Electrocardiogramas Fuente de datos

PREMIO O DISTINCIÓN (En caso de ser LAUREADAS o Meritoria):

PALABRAS CLAVES EN ESPAÑOL E INGLÉS:

Español Ingles Español Ingles

1. Python Python 6. Kardia Kardia

2. Electrocardiograma Electrocardiography
 7. Procesamiento

de imagen
Image
Processing

3. Píxel Pixel
 8. Recorte de

vectores
Array Slicing

4. TkInter TkInter 9. Numpy Numpy

5. Interfáz gráfica GUI
 10. Transformada

de Hough
Hough’s
Transform

RESUMEN DEL CONTENIDO: (Máximo 250 palabras)

La finalidad de este trabajo es la elaboración de una interfaz gráfica capaz de realizar la
detección de enfermedades cardiacas en electrocardiogramas producidos por el dispositivo
Kardia 6L a través del lenguaje de programación Python orientado a la visión artificial o por
computador. El presente proyecto busca una mejora importante en la entrega de
diagnósticos precisos y efectivos relacionados a cardiopatías.

http://www.usco.edu.co/

 UNIVERSIDAD SURCOLOMBIANA
GESTIÓN DE BIBLIOTECAS

DESCRIPCIÓN DE LA TESIS Y/O TRABAJOS DE GRADO

CÓDIGO AP-BIB-FO-07 VERSIÓN 1 VIGENCIA 2014 PÁGINA 3 de 5

Vigilada Mineducación
La versión vigente y controlada de este documento, solo podrá ser consultada a través del sitio web Institucional www.usco.edu.co, link
Sistema Gestión de Calidad. La copia o impresión diferente a la publicada, será considerada como documento no controlado y su uso

indebido no es de responsabilidad de la Universidad Surcolombiana.

Para realizar de manera correcta lo anteriormente planteado es necesario llevar a cabo un
proceso de digitalización de las señales eléctricas suministradas por el electrocardiógrafo.
Mediante la aplicación de filtros, operaciones morfológicas y demás técnicas de visión por
computador a la imagen que contiene las mediciones cardiacas se obtienen finalmente
señales equivalentes registradas de manera digital para un posterior análisis matemático el
cual permitirá la detección de los posibles padecimientos en el corazón que pueda presentar
un paciente.

La interfaz gráfica consta de una ventana con cuatro vistas conectadas entre sí mediante
botones; la primera ventana contiene la información general de la interfaz, en la segunda se
encuentra la ventana donde se carga el archivo en formato pdf del electrocardiograma, en
la tercera la visualización del electrocardiograma ya digitalizado y los valores de onda
calculados y en la cuarta los resultados con las posibles enfermedades diagnosticadas.

http://www.usco.edu.co/

 UNIVERSIDAD SURCOLOMBIANA
GESTIÓN DE BIBLIOTECAS

DESCRIPCIÓN DE LA TESIS Y/O TRABAJOS DE GRADO

CÓDIGO AP-BIB-FO-07 VERSIÓN 1 VIGENCIA 2014 PÁGINA 4 de 5

Vigilada Mineducación
La versión vigente y controlada de este documento, solo podrá ser consultada a través del sitio web Institucional www.usco.edu.co, link
Sistema Gestión de Calidad. La copia o impresión diferente a la publicada, será considerada como documento no controlado y su uso

indebido no es de responsabilidad de la Universidad Surcolombiana.

ABSTRACT: (Máximo 250 palabras)

The purpose of this work is to develop a graphical interface capable of detecting cardiac

diseases in electrocardiograms produced by the Kardia 6L device using the Python

programming language oriented to artificial or computer vision. The present project seeks a

significant improvement in the delivery of accurate and effective diagnoses related to heart

disease.

In order to correctly perform the above mentioned, it is necessary to carry out a digitization

process of the electrical signals supplied by the electrocardiograph. By applying filters,

morphological operations and other computer vision techniques to the image containing the

cardiac measurements, equivalent digitally recorded signals are finally obtained for

subsequent mathematical analysis, which will allow the detection of possible heart

conditions that a patient may present.

The graphical interface consists of a window with four views connected to each other by

means of buttons; the first window contains the general information of the interface, in the

second is the window where the file in pdf format of the electrocardiogram is loaded, in the

third the visualization of the already digitized electrocardiogram and the calculated wave

values and in the fourth the results with possible diagnosed diseases.

http://www.usco.edu.co/

https://v3.camscanner.com/user/download

INTERFAZ GRÁFICA PARA RECONOCIMIENTO Y DETECCIÓN DE
CARACTERÍSTICAS EN ELECTROCARDIOGRAMAS USANDO PYTHON

BYRON HERNANDO GALINDO SUÁREZ
JUAN ESTEBAN NARVÁEZ CARVAJAL

UNIVERSIDAD SURCOLOMBIANA
FACULTAD DE INGENIERÍA

 PROGRAMA DE INGENIERÍA ELECTRÓNICA
NEIVA, COLOMBIA

2024

INTERFAZ GRÁFICA PARA RECONOCIMIENTO Y DETECCIÓN DE
CARACTERÍSTICAS EN ELECTROCARDIOGRAMAS USANDO PYTHON

BYRON HERNANDO GALINDO SUÁREZ Cod. 20171155352
JUAN ESTEBAN NARVÁEZ CARVAJAL Cod. 20171159625

Trabajo de grado para aplicar
al título de ingeniero electrónico

Director:
Mag. José de Jesús Salgado Patrón

UNIVERSIDAD SURCOLOMBIANA
FACULTAD DE INGENIERÍA

PROGRAMA DE INGENIERÍA ELECTRÓNICA
NEIVA, COLOMBIA

2024

Notas de aceptación

__
__
__
__
__
__
__

Firma del director de Tesis

Firma del Jurado

Firma del Jurado

Neiva, 05 de febrero de 2024.

Quiero extender mi más sincero agradecimiento a las personas

que desempeñaron roles fundamentales en la realización de esta

tesis. A Esteban, mi compañero de tesis, por su constante

dedicación, colaboración y apoyo a lo largo de este desafiante

pero gratificante camino.

A Daniela Rendón, cuya guía como médica asesora ha sido esencial para

dar dirección y rigor a nuestro trabajo. Tus conocimientos han sido un pilar

invaluable.

A Daniel Alaguna, mi mentor, quien generosamente compartió su experiencia y

sabiduría, y cuyo aliento me impulsó a superar obstáculos y crecer tanto

académica como personalmente.

También quiero agradecer a todos aquellos que brindaron palabras de aliento y

comprensión en momentos clave, amigos y conocidos que, mediante sus

contribuciones, grandes y pequeñas, han dejado una huella perdurable en esta

tesis y a lo largo de toda mi fase académica.

“Mar…”

Byron

Primeramente, quisiera darles las gracias a mi familia, quienes son el motor y el

factor indispensable para lograr este objetivo, a mis padres por guiar, apoyar e

incentivar mi proceso formativo, por sus esfuerzos y sacrificios sin los cuales no

sería posible la culminación de esta etapa. A mi hermano por ser mi mentor y

consejero en esta fase académica siendo mi ejemplo a seguir, brindándome su

ayuda incondicional y los motivos para superarme a nivel personal y académico.

A Byron, mi compañero de tesis, por ser parte de este trabajo, por su gran

dedicación y apoyo para la construcción de este proyecto de grado. A Daniela

Rendon por aconsejarnos y darnos a mi compañero y a mi sus conceptos médicos

para llevar adelante este trabajo.

A las amistades que he logrado formar en esta etapa de mi vida, en especial a

Joseph, Cesar, Roberth, Paola y Tannia que me acompañaron y estuvieron

presentes en el transcurso de estos años formativos.

Esteban

AGRADECIMIENTOS

Agradecemos a Dios y a nuestras familias por acompañarnos, apoyarnos y
aconsejarnos en el transcurso de esta etapa de nuestras vidas y la elaboración de
este proyecto de grado que busca contribuir y ser de ayuda para la sociedad.

Agradecemos a nuestros compañeros y amigos que fueron un aporte importante
para culminar nuestro objetivo, por dejar unas agradables memorias en este
trayecto.

Agradecemos a los ingenieros docentes del programa de ingeniería electrónica por
impartir y proporcionar sus conocimientos y experiencias para desarrollarnos como
profesionales al servicio de la sociedad, principalmente al ingeniero José de Jesús
Salgado por ser nuestro guía y por su deber como profesor y director de nuestro
proyecto de grado.

CONTENIDO

pág.

1. OBJETIVOS ... 17

1.1 OBJETIVO GENERAL ... 17

1.2 OBJETIVOS ESPECÍFICOS .. 17

2. FUNDAMENTOS BÁSICOS .. 18

2.1 ELECTROCARDIOGRAMA ... 18

2.2 VISIÓN POR COMPUTADOR ... 19

2.3 KARDIA 6L ... 20

2.4 PYTHON .. 21

2.5 OPENCV .. 21

2.6 TKINTER.. 22

3. TRATAMIENTO DEL ARCHIVO .. 23

4. DIGITALIZACIÓN DE LAS DERIVACIONES CARDIACAS 28

5. DETECCION DEL PICO CARACTERÍSTICO .. 38

6. CARACTERIZACIÓN DE LA SEÑAL EXTRAIDA .. 40

6.1 MÉTODO 1: EXTRACCIÓN DE MÁXIMOS Y MÍNIMOS MEDIANTE EL

MÉTODO NP.MAX Y NP.MIN .. 41

6.2 MÉTODO 2: ANÁLISIS DE LOS PUNTOS CARACTERÍSTICOS MEDIANTE

LA 1° Y 2° DERIVADA ... 43

7. CONSTRUCCÍON DEL DIAGNÓSTICO .. 46

7.1 HIPERPOTASEMIA ... 46

7.2 HIPERTROFIA AURICULAR DERECHA ... 46

7.3 DILATACION AURICULAR .. 47

7.4 BLOQUEO AUROVENTRICULAR ... 47

7.5 BLOQUEO DE RAMA .. 48

7.6 MIOCARDITIS ... 48

7.7 HIPERCALCEMIA .. 48

7.8 SINDROME DEL QT PROLONGADO ... 49

7.9 PERICARDITIS .. 49

7.10 HIPERTROFIA AURICULAR IZQUIERDA ... 50

7.11 ISQUEMIA ... 50

7.12 TAQUICARDIA SINUSUAL .. 50

7.13 BRADICARDIA SINUSUAL .. 51

8. INTERFAZ (GUÍA DE USO)... 52

8.1 VISTA 1: PRESENTACION ... 53

8.2 VISTA 2: ENTRADA DE DATOS Y PROCESAMIENTO 54

8.3 VISTA 3: RESULTADOS ... 55

8.4 VISTA 4: DIAGNOSTICO... 56

9. RESULTADOS ... 59

10. ANÁLISIS DE RESULTADOS .. 64

11. DISCUSIONES Y TRABAJOS FUTUROS ... 71

12. CONCLUSIONES .. 72

BIBLIOGRAFÍA .. 74

ANEXO .. 80

LISTA DE FIGURAS
pág.

Figura 1. Hoja de electrocardiograma .. 19

Figura 2. Kardia Mobile 6L ... 20

Figura 3. Vista rápida del documento .. 23

Figura 4. Sección descriptiva de la página uno ... 24

Figura 5. Calibración estándar del ECG .. 25

Figura 6. Diagrama funcional de la función PDF_to_JPEG 25

Figura 7. Diagrama funcional de la función crop_image .. 26

Figura 8. Diagrama funcional de la función Concat_image 27

Figura 9. Vista de la imagen concatenada ... 28

Figura 10. Metadatos de la imagen final .. 29

Figura 11. Metadatos de la imagen máscara ... 29

Figura 12. Máscara definida para la eliminación de leyendas 30

Figura 13. Escala de grises ... 30

Figura 14. Diagrama de flujo de la eliminación de textos 31

Figura 15: Diagrama de flujo de la extracción de los ejes 32

Figura 16: Diagrama de flujo de la eliminación de los ejes 34

Figura 17. Resolución / Escala del ECG .. 35

Figura 18. Parámetros del papel del trazado ... 35

Figura 19. Diagrama de flujo del proceso de selección del pico 39

Figura 20. Anatomía de la señal del ECG .. 40

Figura 21. Detección del pico de la onda R ... 41

Figura 22. Ondas P y Q detectadas ... 41

Figura 23. Ondas S y T detectadas ... 42

Figura 24. Señal caracterizada por el método 1 .. 42

Figura 25. Gráfico de los puntos de inflexión en 1° y 2° derivada 43

Figura 26. Señal caracterizada mediante el método 2 ... 44

Figura 27. Complejos cardiacos y sus puntos.. 45

Figura 28. Ideología de un GUI .. 52

Figura 29. Vista 1 / Presentación ... 53

Figura 30. Vista 2 / Entrada de datos y procesamiento ... 54

Figura 31. Vista 3 / Resultados .. 55

Figura 32. Vista 4 / Diagnostico ... 56

Figura 33. Diagrama de vistas ... 57

Figura 34. Diagrama de flujo de la interfaz, parte 1 ... 57

Figura 35. Diagrama de flujo de la interfaz, parte 2 ... 58

Figura 36: Representación de la matriz de confusión .. 64

Figura 37. Pico seleccionado del documento #1.. 67

Figura 38. Pico seleccionado del documento #2.. 68

Figura 39. Segmento intermedio del ecg-20230322-145221.pdf 69

Figura 40. Segmento intermedio del ecg-20230322-145221.pdf 69

LISTA DE TABLAS

pág.

Tabla 1. Resolución medida en Pixeles ... 36

Tabla 2. Cálculos de los Segmentos y Complejos ... 45

Tabla 3. Validación de los ECG's por parte del software 59

Tabla 4. Validación de ECG's medicamente .. 60

Tabla 5. Resultados de las caracterizaciones .. 63

Tabla 6. Matriz de confusión del proyecto ... 65

Tabla 7. Medidas de la matriz de confusión ... 66

LISTA DE ANEXOS

pág.

Anexo A. Carta de parte del médico evaluador... 80

Anexo B. Código para el desarrollo de la interfaz ... 81

https://uscoeduco-my.sharepoint.com/personal/u20171155352_usco_edu_co/Documents/Escritorio/INTERFAZ%20GRÁFICA%20PARA%20RECONOCIMIENTO%20Y%20DETECCIÓN%20DE%20CARACTERÍSTICAS%20EN%20ELECTROCARDIOGRAMAS%20USANDO%20PYT.docx#_Toc146923060
https://uscoeduco-my.sharepoint.com/personal/u20171155352_usco_edu_co/Documents/Escritorio/INTERFAZ%20GRÁFICA%20PARA%20RECONOCIMIENTO%20Y%20DETECCIÓN%20DE%20CARACTERÍSTICAS%20EN%20ELECTROCARDIOGRAMAS%20USANDO%20PYT.docx#_Toc146923061

GLOSARIO

ECG: (Electrocardiograma) Es un examen médico que mide la actividad eléctrica
del corazón, cuando este órgano late la señal eléctrica que circula a través de él es
registrada, este procedimiento muestra si el corazón late a un ritmo y una fuerza
adecuados1.

OPENCV: (Open Source Computer Vision Library) es una librería de código abierto
que incluye varios cientos de algoritmos de visión por computador y machine
Learning; permite entre otras cosas, detectar y reconocer caras, identificar objetos,
clasificar acciones humanas en video, capturar movimientos de cámara y objetos
en movimiento, entre otras tantas aplicaciones2.

GUI: (Graphic User Interface) Es un tipo de interfaz de usuario que permite a los
usuarios interactuar con un sistema computacional usando elementos gráficos
como lo pueden ser ventanas, iconos, menús y botones, en lugar de interfaces
basadas en texto. Facilita a los usuarios la interacción con aplicaciones de software,
la navegación a través del sistema, y llevando a cabo tareas de una manera más
intuitiva3.

PX o px: El píxel es la menor unidad básica de una imagen digitalizada en pantalla,
con base de puntos de color o en escala de grises. Las imágenes se forman como
una sucesión de píxeles; esta marca la coherencia de la información visualizada. Es
la unidad más pequeña de una imagen digital; son pequeños cuadrados o
rectángulos de un color homogéneo, cuando se juntan forman una imagen compleja.
Los píxeles se pueden distinguir de forma fácil, solo tienes que hacer zoom a una
imagen4.

1 MedlinePlus. (s.f.). Electrocardiograma (ECG). MedlinePlus.
https://medlineplus.gov/spanish/pruebas-de-
laboratorio/electrocardiograma/#:~:text=Un%20electrocardiograma%20(ECG)%20es%20un,y%20c
on%20una%20fuerza%20normal
2 OpenCV. (s.f.). Acerca de OpenCV. OpenCV.
https://opencv.org/about/#:~:text=OpenCV%20(Open%20Source%20Computer%20Vision,percepti
on%20in%20the%20commercial%20products
3 ONOS. (s.f.). ¿Qué es una GUI? IONOS Digital Guide. https://www.ionos.es/digitalguide/paginas-
web/desarrollo-web/que-es-una-
gui/#:~:text=Una%20graphical%20user%20interface%20o,el%20manejo%20del%20usuario%20hu
mano
4 Rosvel. (s.f.). ¿Qué es un píxel? Rosvel Blog. https://www.rosvel.com/blog/que-es-un-pixel/

RESUMEN

La finalidad de este trabajo es la elaboración de una interfaz gráfica capaz de
realizar la detección de enfermedades cardiacas en electrocardiogramas
producidos por el dispositivo Kardia 6L a través del lenguaje de programación
Python orientado a la visión artificial o por computador. El presente proyecto busca
una mejora importante en la entrega de diagnósticos precisos y efectivos
relacionados a cardiopatías.

Para realizar de manera correcta lo anteriormente planteado es necesario llevar a
cabo un proceso de digitalización de las señales eléctricas suministradas por el
electrocardiógrafo. Mediante la aplicación de filtros, operaciones morfológicas y
demás técnicas de visión por computador a la imagen que contiene las mediciones
cardiacas se obtienen finalmente señales equivalentes registradas de manera digital
para un posterior análisis matemático el cual permitirá la detección de los posibles
padecimientos en el corazón que pueda presentar un paciente.

La interfaz gráfica consta de una ventana con cuatro vistas conectadas entre sí
mediante botones; la primera ventana contiene la información general de la interfaz,
en la segunda se encuentra la ventana donde se carga el archivo en formato pdf del
electrocardiograma, en la tercera la visualización del electrocardiograma ya
digitalizado y los valores de onda calculados y en la cuarta los resultados con las
posibles enfermedades diagnosticadas.

Este trabajo representa un avance significativo en el área de la digitalización de
señales a través de la visión por computador y en la detección de enfermedades en
el ámbito medico; impulsando de esta manera el uso de nuevas e innovadoras
tecnologías en la región huilense y el país.

ABSTRACT

The purpose of this work is to develop a graphical interface capable of detecting

cardiac diseases in electrocardiograms produced by the Kardia 6L device using the

Python programming language oriented to artificial or computer vision. The present

project seeks a significant improvement in the delivery of accurate and effective

diagnoses related to heart disease.

In order to correctly perform the above mentioned, it is necessary to carry out a

digitization process of the electrical signals supplied by the electrocardiograph. By

applying filters, morphological operations and other computer vision techniques to

the image containing the cardiac measurements, equivalent digitally recorded

signals are finally obtained for subsequent mathematical analysis, which will allow

the detection of possible heart conditions that a patient may present.

The graphical interface consists of a window with four views connected to each other

by means of buttons; the first window contains the general information of the

interface, in the second is the window where the file in pdf format of the

electrocardiogram is loaded, in the third the visualization of the already digitized

electrocardiogram and the calculated wave values and in the fourth the results with

possible diagnosed diseases.

This work represents a significant advance in the area of digitalization of signals

through computer vision and in the detection of diseases in the medical field, thus

promoting the use of new and innovative technologies in the region of Huelva and

the country.

INTRODUCCIÓN

La medicina es una rama científica de estudio que se encarga de prevenir, detectar
y curar padecimientos que afectan el correcto funcionamiento del cuerpo y la calidad
de vida humana. Debido al desarrollo tecnológico que ha tenido la misma a través
de los años, existen dispositivos como el electrocardiógrafo, capaces de monitorear
el desempeño del corazón.

Las enfermedades relacionadas con el corazón son, desde hace más de dos
décadas, la causa principal de muertes alrededor del mundo5, por lo que es
necesaria la realización de estudios e investigaciones que permitan mitigar, prevenir
y detectar tales padecimientos presentes en la población. Los electrocardiogramas
permiten identificar anomalías en la actividad cardiaca de una persona para
posteriormente ser diagnosticada y tratada de manera correcta y eficaz.

Debido a la sencillez y eficacia de este examen médico, con el paso del tiempo se
ha optimizado de tal manera que existen dispositivos portátiles capacitados para
realizar dichas mediciones, como la serie de instrumentos elaborados por la
empresa Alivecor llamados “Kardia”, los cuales suministran resultados de
electrocardiogramas de hasta 6 derivaciones6.

La necesidad de diagnosticar de manera adecuada estos resultados es
imprescindible para que los pacientes reciban la atención y los cuidados adecuados,
para de esta forma disminuir los índices elevados de tasas de mortalidad que
representan estas causas. Es por esto por lo que, debido a la gran variedad de
herramientas tecnológicas que ha desarrollado el ser humano en todos los ámbitos,
se han creado técnicas y procedimientos para la detección y digitalización de
señales físicas de la naturaleza, como los pulsos eléctricos del corazón, para un
posterior estudio y análisis7.

El trabajo que se presenta en este documento busca ser de apoyo a trabajos previos
relacionados, con la adición de la utilización de tecnología moderna, planteando
como objetivo primordial la creación de una interfaz gráfica para el reconocimiento
y detección de características en electrocardiogramas mediante técnicas de visión
por computador, desarrollando una interacción que beneficia de manera importante
el diagnostico efectivo de padecimientos relacionados a cardiopatías.

5 OPS/OMS. (2020, Diciembre 9). OMS revela las principales causas de muerte y discapacidad en
el mundo para 2000-2019. Organización Panamericana de la Salud.
https://www.paho.org/es/noticias/9-12-2020-oms-revela-principales-causas-muerte-discapacidad-
mundo-2000-2019
6 AliveCor. (s.f.). KardiaMobile 6L. AliveCor España. https://www.alivecor.es/kardiamobile6l
7 A. BENHAMIDA and M. KOZLOVSZKY, "Human ECG data collection, digitalization, streaming and
storing," 2020 IEEE 18th World Symposium on Applied Machine Intelligence and Informatics (SAMI),
Herlany, Slovakia, 2020, pp. 105-110, doi: 10.1109/SAMI48414.2020.9108765.

17

1. OBJETIVOS

1.1 OBJETIVO GENERAL

Desarrollar e implementar una interfaz gráfica para dar soporte a diagnósticos
médicos reales, realizando reconocimiento y detección de características de
señales de electrocardiogramas reales en formato PDF mediante el uso de Python
en sistemas de código cerrado.

1.2 OBJETIVOS ESPECÍFICOS

• Diseñar un algoritmo capaz de digitalizar resultados de electrocardiogramas
presentados en formato PDF mediante el uso de herramientas de código abierto
como OpenCV.

• Crear algoritmos aptos para la detección de enfermedades cardiacas tales como
taquicardias, bradicardias, dilataciones, pericarditis, isquemias entre otras.

• Realizar un esquema de validación de resultados que permita probar la
efectividad de los algoritmos elaborados.

18

2. FUNDAMENTOS BÁSICOS

2.1 ELECTROCARDIOGRAMA

El electrocardiograma es un registro que refleja la actividad eléctrica del corazón,
realizado con la ayuda de un aparato conocido con el nombre de
electrocardiógrafo8. Este examen proporciona información sobre la parte del
corazón que se activa con cada latido cardiaco, las vías de conducción nerviosa del
corazón y también la frecuencia y ritmo cardiacos. Estas pruebas se realizan cuando
se tienen sospechas de alguna dolencia cardiaca. También se suelen practicar
como chequeo o exploración física normal en personas de mediana edad y edad
avanzada, aun cuando no se tenga evidencia de alguna dolencia coronaria. Desde
su invención en 1902 por Willem Einthoven, hace más de un siglo, se ha constituido
en la herramienta diagnostica más utilizada para dar un enfoque inicial de las
enfermedades cardiovasculares9.

Para llevar a cabo el ECG, el examinador coloca electrodos (sensores redondos
que se adhieren a la piel) sobre el tórax, los brazos y las piernas del paciente, a
cada una de las ubicaciones donde son posicionados los electrodos se les conoce
como derivaciones. Estos elementos miden la magnitud y la dirección de las
corrientes eléctricas del corazón durante cada latido. Estos se encuentran
conectados por cables a una máquina que produce un registro especifico (trazo),
que varía según la ubicación del electrodo. Cada trazo muestra el desempeño del
corazón desde distintos ángulos; estos registros constituyen el
electrocardiograma10.

Si bien el examen representa un riesgo nulo y un buen suministro de información
acerca del funcionamiento del corazón, es necesario un profesional de la salud que
interprete y diagnostique los trazos registrados, por lo que existe la posibilidad de
que existan errores o fallos humanos a la hora de dictaminar un resultado. El
presente proyecto busca brindar un apoyo a estas valoraciones medicas para así
dar un tratamiento adecuado a los pacientes.

8 Uríbe Arango, W., Duque Ramírez, M., & Medina Durango, E. (s.f.). Electrocardiografía y Arritmias.
Siocardio. URL: https://www.siacardio.com/wp-content/uploads/2015/01/Libro-EKG-y-Arritmias-
WU.pdf
9 Muñoz V., A. (s.f.). Electrocardiografía Básica. Repositorio Universidad del Rosario. Disponible en:
https://repository.urosario.edu.co/server/api/core/bitstreams/b891abb3-2690-4551-a0c1-
b16f41a17427/content
10 Manual Merck. (s.f.). Electrocardiografía. Manual Merck.
https://www.msdmanuals.com/es/hogar/trastornos-del-coraz%C3%B3n-y-los-vasos-
sangu%C3%ADneos/diagn%C3%B3stico-de-las-enfermedades-
cardiovasculares/electrocardiograf%C3%ADa

19

Figura 1. Hoja de electrocardiograma

Fuente: Arteris Médica11

2.2 VISIÓN POR COMPUTADOR

La visión por computador es un campo de estudio que se enfoca en permitir que los
computadores interpreten y entiendan información visual del mundo que los rodean.
Implica el desarrollo de algoritmos y técnicas que permiten a las maquinas
reconocer y clasificar objetos, personas y otras características visuales en imágenes
y/o videos12.

La visión por computador opera de manera similar a la visión humana. A diferencia
de tener retinas, nervios ópticos, una corteza visual y una vida de contexto para
entrenar la diferenciación de objetos, su proximidad, si se encuentran en movimiento
o si hay alguna falla en los mismos; las computadoras se entrenan con cámaras,
datos y algoritmos en un tiempo mucho menor, por lo que eventualmente estas
técnicas superan rápidamente las habilidades y capacidades humanas13.

En la visión por computador es necesario el suministro de información adecuada y
correcta para que las maquinas, de la misma forma, alcancen un alto grado de
exactitud en sus respectivas tareas.

11 Arteris Médica. (s.f.). Electrocardiograma. [Imagen]. En: ¿Qué es un electrocardiograma? Arteris
Médica. https://www.arterismedica.com/que-es-un-electrocardiograma/
12 DeepAI. (s.f.). Computer Vision. DeepAI Machine Learning Glossary and Terms.
https://deepai.org/machine-learning-glossary-and-terms/computer-vision
13 IBM. (s.f.). Computer Vision. IBM. https://www.ibm.com/topics/computer-vision

20

Esta área de estudio es necesaria para llevar a cabo el proceso de digitalización de
los electrocardiogramas y la posterior extracción de los datos contenidos en los
mismos, por lo que es crucial para llevar a cabo este proyecto.

2.3 KARDIA 6L

Es una versión más avanzada del electrocardiógrafo portable Kardia desarrollado
por AliveCor. El dispositivo Kardia 6L provee lecturas de ECG de 6 derivaciones, lo
que es una mejora con respecto a las lecturas de ECG de una sola derivación
proporcionadas por el dispositivo Kardia original.

Es similar en tamaño y diseño al Kardia original, pero este tiene dos sensores
adicionales que se usan para capturar las derivaciones adicionales. Para tomar una
lectura de ECG, el usuario coloca sus dedos sobre los sensores del dispositivo, y
los dos sensores adicionales son colocados a la izquierda y a la derecha del pecho.
Luego el aparato registra una tira de electrocardiograma de 30 segundos.

El dispositivo y la aplicación que lo acompaña proporcionan lecturas de ECG más
detalladas y precisas, que se pueden usar para detectar una gama más amplia de
anomalías cardiacas que el dispositivo Kardia original. Puede detectar arritmias
como fibrilación auricular, bradicardia, taquicardia y más, y puede usarse para
monitorear la salud del corazón a lo largo del tiempo.

Al igual que el aparato original, el Kardia 6L es un dispositivo portátil y fácil de usar
que pueden utilizar pacientes, médicos y proveedores de atención médica para el
control y la gestión remotos de la salud del corazón. Está aprobado por la
Administración de Drogas y Alimentos de los Estados Unidos (FDA) como un
dispositivo médico para detectar y monitorear arritmias cardiacas14.

Figura 2. Kardia Mobile 6L

Fuente: AliveCor15

14 Kardia. (s.f.). KardiaMobile 6L. Kardia Store. https://store.kardia.com/products/kardiamobile6l
15 CE-TekMed. (s.f.). AliveCor KardiaMobile 6-Lead ECG for iPhone and Android. CE-TekMed.
https://www.ce-tekmed.ie/product-page/alivecor-kardia-mobile-6-lead-ecg-for-iphone-and-android

21

2.4 PYTHON

Python es un lenguaje de programación interpretado de alto nivel que se usa
ampliamente para una gran variedad de propósitos, incluido desarrollo web, análisis
de datos, inteligencia artificial, computación científica y más16. Algunos conceptos
claves de Python son:

• Tiene una sintaxis simple y sencilla de leer que hace énfasis en la legibilidad y
una barrera baja de entrada para nuevos programadores.

• Permite una alta gama de tipos de datos integrados, incluidos números, cadenas
de texto, listas, tuplas y diccionarios.

• Tiene construcciones para declaraciones condicionales, bucles y manejo de
excepciones, que permitan que los desarrolladores controlar el flujo de sus
programas.

• Soporta funciones, las cuales permiten a los desarrolladores encapsular
fracciones de código reutilizables.

• Tiene un vasto ecosistema de bibliotecas y módulos que brindan funcionalidades
adicionales para una amplia gama de casos de uso, como Numpy para
computación científica, OpenCV para visión artificial, Pandas para análisis de
datos, Django para desarrollo web y TensorFlow para aprendizaje automático.

• Soporta la programación orientada a objetos, la cual permite a los
desarrolladores organizar su código en clases y objetos los cuales pueden ser
reutilizados y ampliados.

• El código se interpreta en tiempo de ejecución, en lugar de compilarse de
antemano, lo que permite la creación rápida de prototipos y desarrollo rápido.

2.5 OPENCV

Es una librería de software de aprendizaje automático y visión artificial de código
abierto. Proporciona una gran variedad de funcionalidades y algoritmos para el
procesamiento de imágenes y videos, detección de características, reconocimiento
de objetos y más17. Algunos conceptos claves y características de OpenCV
incluyen:

• Proporciona una variedad de funciones de procesamiento de imágenes, incluido
el filtrado de imágenes, la mejora de imágenes y la transformación de imágenes.

• Puede detectar características en imágenes, como bordes, esquinas y manchas,
utilizando varios algoritmos como el detector de esquinas de Harris.

• Es usado para reconocer objetos es imágenes y videos. Proporciona modelos
reentrenados para el reconocimiento de objetos.

16 Python Software Foundation. (s.f.). About Python. Python Software Foundation.
https://www.python.org/about/
17 OpenCV. (s.f.). Acerca de OpenCV. OpenCV. https://opencv.org/about/

22

• Proporciona una variedad de algoritmos de aprendizaje automático, que incluyen
clasificación, regresión, agrupamiento y reducción de dimensionalidad.

• Se puede utilizar para desarrollar diversas aplicaciones de visión artificial, como
realidad aumentada, reconocimiento facial, seguimiento de objetos y vehículos
autónomos.

2.6 TKINTER

Tkinter es una biblioteca de Python incorporada para crear interfaces graficas de
usuarios (GUI). Proporciona un conjunto de herramientas y widgets que permiten a
los desarrolladores crear ventanas, menús, botones, cuadros de texto y otros
elementos para crear aplicaciones de escritorio18. Algunos conceptos y
características de Tkinter incluyen:

• Proporciona un conjunto de widgets que se pueden usar para crear varios
elementos GUI, como botones, etiquetas, cuadros de texto, casillas de
verificación, botones redondos, menús y muchos más.

• Provee varios métodos para gestionar el diseño de los elementos de la GUI,
como pack, grid y place.

• Suministra un mecanismo para manejar eventos generados por el usuario o el
sistema. Los desarrolladores pueden adjuntar una función, conocida como
función de devolución de llamada, a un evento para realizar ciertas acciones.

• Proporciona cuadros de dialogo y cuadros de mensaje integrados que se pueden
usar para mostrar información u obtener información del usuario.

• Provee muchas opciones para personalizar la apariencia de los widgets y las
ventanas, como fuentes, colores, tamaños e imágenes.

18 Autor. (s.f.). What Is Tk? McGill University.
https://www.cs.mcgill.ca/~hv/classes/MS/TkinterPres/#WhatIsTk

23

3. TRATAMIENTO DEL ARCHIVO

Para el desarrollo de la interfaz se parte de un lote de datos entregados por el Kardia
Mobile 6L, los datos son entregados por el dispositivo en un archivo en formato
.PDF, al cual posteriormente se le realiza un tratamiento para realizar la extracción
de las señales del electrocardiograma.

La base del proceso radica en el documento que se le entrega al programa en la
vista dos, donde se realiza la entrada de datos. Este documento se encuentra en
formato .PDF y su longitud es de 5 páginas, las cuales se encuentran estructuradas
de la siguiente manera.

Figura 3. Vista rápida del documento

Fuente: Autores

La primera página ofrece al lector una descripción de la información del paciente en
caso de que la toma del ECG se realice desde una cuenta (Figura 3), para el caso
de un perfil de invitado se omite esta sección y solo se agrega que el origen de la
información es desconocido (Figura 4), posteriormente se encuentra el resumen del

24

ECG, donde se muestra el diagnóstico aproximado que realiza Kardia, así como
también la derivación utilizada para la emisión de dicho diagnóstico.

Figura 4. Sección descriptiva de la página uno

Fuente: Autores

También, dentro de esta misma sección se dan algunos parámetros adicionales,
tales como la fecha de la toma del ECG, la frecuencia cardiaca del paciente y la
duración del ECG.

Este último parámetro es de gran importancia porque a partir de él se realizan
algunas consideraciones dentro del procesamiento de la señal capturada en la
digitalización.

A partir de la segunda página y hasta el final del documento, se encuentra una
cuadrícula en la cual se contienen 6 gráficas, las cuales son la representación de
las seis derivaciones cardiacas (Figura 3). Al inicio de cada una de las gráficas, se
encuentra un pulso rectangular también conocido como calibración estándar, el cual
consta de 10 mm de altura por 5 mm de ancho, este trazo se obtiene cuando el
sistema simula un pulso de 1 mV por 0,2 segundos19 como se puede observar en la
Figura 5.

19 My-EKG. (s.f.). Papel EKG - My-EKG.com. https://www.my-ekg.com/generalidades-ekg/papel-
ekg.html

25

Figura 5. Calibración estándar del ECG

Fuente: Autores

Una vez identificada la estructura del documento, se procede a realizar un proceso
de conversión en la estructura de los datos, en la cual se tiene por objetivo convertir
un documento de formato PDF en un grupo estructurado de imágenes, desde la
cuales se pueda realizar la extracción de la información.

Para esta finalidad nace la función “PDF_to_jpeg”, la cual va a recibir como
argumento de entrada la ruta del archivo, para posteriormente y con ayuda de la
librería poppler, convertir cada página del PDF en un archivo de formato .JPEG
como se muestra en el flujo de la Figura 6.

Figura 6. Diagrama funcional de la función PDF_to_JPEG

Fuente: Autores

26

Una vez se finaliza la ejecución de la función, se procede a realizar el recorte de las
imágenes, para este proceso se encontraban dos alternativas disponibles; mediante
el primera, se realiza el reconocimiento del recuadro general mediante herramientas
de la librería OpenCV, pero al momento de analizar los resultados de salida, se
genera gran variabilidad en los valores que encierran las esquinas.

La segunda opción llevada a cabo consistió en el proceso de inspección manual y
detección visual de los pixeles que representaban las esquinas del recuadro, a lo
cual, tras analizar cada una de las 4 imágenes se obtiene información concluyente
que apunta a que cada los vértices del recuadro se encuentran en la misma posición
para cada caso, por lo cual, para evitar carga computacional realizando la detección
de vértices para cada página, se opta por esta opción, definir de manera manual los
vértices dentro de una función llamada “crop_image” (Figura 7).

Figura 7. Diagrama funcional de la función crop_image

Fuente: Autores

Una vez realizados todos los recortes de las imágenes, se puede realizar el proceso
de concatenación de estas, con este proceso se concatenan una a una las
imágenes mediante la función “hconcat” de la librería de OpenCV.

La función hconcat realiza la fusión de imágenes de forma horizontal, es decir, una
imagen junto a la otra, bajo la única condición de que las dos imágenes deben de
compartir el mismo alto (height)20.

20 OpenCV. (s.f.). Documentación de OpenCV: group__core__array. OpenCV.
https://docs.opencv.org/3.4/d2/de8/group__core__array.html#ga4676b1376cdc4e528dab6bd9edc5
1c1a

27

Con base en este principio, se realiza la construcción de la función “Concat_image”
(Figura 8), dentro de la cual se realiza el cargue de las cuatro imágenes y se hacen
tres procesos de concatenación, en el primero se realiza la concatenación del
recorte de la página dos con la página tres, en el segundo se realiza la
concatenación del recorte de la página cuatro con la página cinco, y por último se
realiza la concatenación de los resultados de los dos procesos anteriores.

Figura 8. Diagrama funcional de la función Concat_image

Fuente: Autores

28

4. DIGITALIZACIÓN DE LAS DERIVACIONES CARDIACAS

Hasta el punto actual del desarrollo, solo se ha realizado el tratamiento de los datos
a un nivel básico, en el cual no se ha llevado a cabo una modificación que los afecte
significativamente. A partir de este punto se inicia el tratamiento de la imagen final
con el fin de separar la información relevante de la misma como se ve en la Figura
9.

El primer lote de información residual son las leyendas de la imagen, para este
proceso se desarrolla una función de nombre “Limpiar imagen”, con esta función se
realiza la eliminación de cada uno de los 24 bloques de texto existentes en la
imagen.

Figura 9. Vista de la imagen concatenada

Fuente: Autores

Para este caso se desarrolla una máscara de tamaño definido (Figura 11) y general
para cualquier imagen de entrada. Se sabe que la capacidad de la máscara para
ser global radica en el hecho de que el tamaño de la imagen final está determinado
por constantes definidas durante el proceso de corte, lo que genera como resultado
final una imagen de 5905x1887 pixeles como se ve en la Figura 10.

29

Figura 10. Metadatos de la imagen final

 Fuente: Autores

Figura 11. Metadatos de la imagen máscara

Fuente: Autores

30

Ya teniendo definida la máscara (Figura 12), se puede pasar sobre la imagen final,
lo que da como resultado una imagen completamente libre de los bloques de texto.

Figura 12. Máscara definida para la eliminación de leyendas

Fuente: Autores

El proceso de pasar una imagen sobre la otra se hace mediante una evaluación de
la máscara, manejando un espacio de color en escala de grises21 como se muestra
en la Figura 13.

Figura 13. Escala de grises

Fuente: Eduspace21

La máscara se recorre mediante dos índices, uno para la fila (f) y otro para la
columna (c), y se realiza el condicional para determinar si el píxel de la máscara
ubicado en (f, c) corresponde a un píxel negro o con un valor de 0 en la imagen
objetivo, el píxel con estas mismas coordenadas es reemplazado por un píxel blanco
o un valor de 255, como se ilustra en la siguiente imagen.

21 Agencia Espacial Europea (ESA). (s.f.). Eduspace: Unidad de Recursos de Educación Espacial.
ESA. https://www.esa.int/SPECIALS/Eduspace_ES/SEMCDX3FEXF_2.html

31

Figura 14. Diagrama de flujo de la eliminación de textos

Fuente: Autores

Posterior a la eliminación de los textos, se procede a realizar la detección de los
ejes de cada señal, este proceso se hace mediante la aplicación de la transformada
de Hough, la cual se usa para encontrar puntos alineados que puedan existir en la
imagen, es decir, puntos en la misma que satisfagan la ecuación de la recta, para
distintos valores de rho (ρ) y theta (θ)22.

Este proceso, retorna un conjunto de posibles líneas, que para este caso se
consideran como los ejes de las derivaciones, tanto verticales como horizontales,
cabe aclarar que no retorna el valor exacto o el valor del pixel en el que se ubica el
eje, lo que entrega es un conjunto de puntos aproximados al valor donde se
encuentra el eje, para redondear este proceso primero se realiza la separación de
los posibles ejes en dos vectores, donde se acumularan los puntos que presentan
variaciones en y (ejes x) y los que presentan cambios en x se acumularan en el
vector ejes y como se muestra a continuación.

22 Universidad de Jaén. (s.f.). Práctica 4: Visión por Computadora. [Documento PDF]. Universidad
de Jaén. http://www4.ujaen.es/~satorres/practicas/practica4_vc.pdf

32

Figura 15: Diagrama de flujo de la extracción de los ejes

Fuente: Autores

Luego de este proceso ya se tienen separados los valores de los ejes, mas no están
precisados, para subsanar esta falla, se usa el mismo proceso para los dos
vectores, lo primero que se hace es aplicarle el método “.sorted()”23 que se encarga
de ordenarlos de menor a mayor, ya obtenido el vector organizado se crea un vector
auxiliar que se usará más adelante.

Ya teniendo el vector ordenado, se pasa por un doble ciclo while, con el primero se
realiza el recorrido del vector y con el segundo se evalúa que la distancia medida
en pixeles desde el píxel n hasta el píxel n+1 no sea superior a 10 pixeles, de
cumplirse esto, el píxel n es agregado al vector auxiliar y en caso de que no se
cumpla, se calcula el promedio del vector auxiliar y se redondea al entero por
encima del mismo, y es este dato es el que se almacena en el vector final de los
ejes.

Una vez determinados los ejes de las derivaciones, se hace uso de los ejes en x
para realizar el corte de la señal, este corte se realiza aplicando los principios de

23 Python Software Foundation. (s.f.). Cómo hacerlo: Ordenar. Documentación de Python 3.
https://docs.python.org/es/3/howto/sorting.html

33

slicing24 que tiene Python, según los cuales para extraer un segmento de un vector
basta con usar la instrucción vector[a:b], donde vector corresponde al nombre del
vector objetivo, y haciendo uso de las llaves cuadradas se indican dos números
enteros en los cuales, el primero (a), será el punto de inicio del slicing, cabe recalcar
que este índice es de tipo incluyente, el cual se encuentra separado del segundo
índice (b) por medio de dos puntos (“:”), para el caso del índice b, se está señalando
el punto final del slicing, sabiendo que el índice b es de tipo excluyente.

En el recorte se da como objetivo que la imagen final tenga por centro el eje x y 150
pixeles por encima y por abajo, los cuales abarcarían el espacio comprendido por
el trazado de cada derivación cardiaca, dichos recortes se almacenan en imágenes
separadas que llevan por nombre la derivación que contienen. Con esto, al finalizar
el proceso, de una imagen se obtienen 6 imágenes.

Una vez individualizadas las derivaciones, se procede a realizar la vectorización,
para este proceso, lo primero que se hace es una etapa de limpieza, dentro de esta
se realiza la eliminación de las líneas que representan los ejes, en esta etapa se
usan dos métodos diferentes, uno para el eje X y otro para el eje Y, para la
eliminación de los ejes X, se aplica un análisis de la concentración de pixeles por
columna en la imagen, este proceso carga la imagen y la convierte en un numpy
array, lo cual hace que sea más fácil realizar la manipulación de esta gracias a los
métodos que ofrecen.

Una vez se tiene la imagen como un numpy array, se realiza el conteo de los ceros
que hay en la primera fila de la imagen, donde cada cero idealmente corresponde
con cada eje Y de la señal, una vez contados mediante el método np.where(), se
realiza un condicional en el cual se evalúa si la cantidad de elementos contados es
igual a 30, si se cumple, se hace la eliminación de la línea reemplazando sus valores
de 0 (negro) a 255 (blanco), para este proceso se parte del vector de ceros
detectados en la primera fila, donde se ingresa a un condicional que considera si la
suma (np.sum()) de la columna donde se detectó el cero es de 76245, si es así se
realiza el cambio.

Y para la eliminación del Eje X, se realiza la consideración de la posición del eje x
mediante la búsqueda de los ceros dentro de la primera columna de la imagen, al
detectar ese valor, se procede a recorrer el vector a lo largo de este punto indagando
si en algún momento se acerca un pixel con valor cero, esto para saber si en algún
momento la señal se pone al nivel del eje y no realizar cortes durante el proceso de
borrado del mismo como se aprecia expone en la Figura 16, con esto se realiza la
individualización de la señal, obteniendo que solo los pixeles de equivalencia 0
serían los representativos de la señal. Para recoger estos valores basta con barrer
la imagen por columnas detectando la posición de los ceros y almacenándola en un

24 Cupi2-IP. (s.f.). Sección 3.4: Slicing. [Documento web]. https://cupi2-
ip.github.io/IPBook/nivel3/seccion3-4.html

34

vector final denominado signal, este proceso se complementa con una serie de
condicionales que ayudan a determinar por cual extremo se realiza la aproximación
a la señal para detectar los picos de la forma más detallada posible, ya luego de
tener recogidas las posiciones de la señal, basta con restarle la posición del eje X,
para poder determinar la concentración de pixeles que hay entre el eje y el punto
determinado en la misma.

Figura 16: Diagrama de flujo de la eliminación de los ejes

Fuente: Autores

Una vez se tiene el vector final con la consideración de la densidad de pixeles, se
puede decir que se ha obtenido la señal exitosamente, pero falta un paso de gran
importancia, el cual es la conversión de los valores de los pixeles a la unidad

35

deseada. Para llegar a esto se realiza un análisis de una de las primeras imágenes
creadas, donde se buscará la resolución que ofrece el electrocardiograma (Figura
17), mediante la cual se despejará el valor de los pixeles.

Figura 17. Resolución / Escala del ECG

Fuente: Autores

Ya con la resolución del ECG determinada, se puede hacer uso de la misma imagen
y se realiza la medición de la distancia en pixeles que hay en uno de los cuadrados
pequeños que conforman el papel del trazado.

Del proceso de medición se realizaron múltiples medidas obteniendo una media de
39x39 pixeles (Figura 18). Una vez obtenidas las dimensiones se pueden realizar
las respectivas reglas de tres para determinar los valores en tiempo y voltaje de
cada píxel.

Figura 18. Parámetros del papel del trazado

Fuente: Autores

36

Para determinar el valor del píxel en tiempo:

Con este despeje, ya se conoce que cada 39 pixeles nos representan una longitud
de 5 mm.

Para determinar el valor del píxel en voltaje se parte de conocer que un cuadro tiene
de lado 5x5 mm, con base a esto se realiza el siguiente despeje.

Una vez obtenida la resolución en pixeles (Tabla 1), se procede a multiplicar la
densidad de pixeles del vector de la señal por su respectivo valor en voltios, con lo
cual ya se tendrá construida la señal. Para el eje del tiempo, se crea un espacio
lineal de la misma dimensión de la señal en cuanto a columnas, y se multiplica por
su respectivo equivalente en segundos.

Tabla 1. Resolución medida en Pixeles

Resolución Medida en Pixeles

1 píxel vertical 12.820 uV

1 píxel horizontal 5.128 mS

Fuente: Autores

25 𝑚𝑚 → 1 𝑆𝑒𝑔 → 5 𝑐𝑢𝑎𝑑𝑟𝑜𝑠 Ecuación (1)

25 𝑚𝑚

1 𝑆𝑒𝑔
→

1 𝑆𝑒𝑔

5 𝑐𝑢𝑎𝑑𝑟𝑜𝑠
=

25𝑚𝑚

5 𝑐𝑢𝑎𝑑𝑟𝑜𝑠
→

5 𝑚𝑚

1 𝑐𝑢𝑎𝑑𝑟𝑜

5 𝑚𝑚

39 𝑝𝑥
→

1 𝑆𝑒𝑔

25 𝑚𝑚
=

5 𝑆𝑒𝑔

975 𝑝𝑥
→

1 𝑆𝑒𝑔

195 𝑝𝑥
→ 5.128 𝑚𝑠/𝑝𝑥 Ecuación (2)

5 𝑚𝑚

39 𝑝𝑥
→

1 𝑚𝑉

10 𝑚𝑚
=

5 𝑚𝑉

390 𝑝𝑥
→

1 𝑚𝑉

78 𝑝𝑥
→ 12.820 𝜇𝑉/𝑝𝑥 Ecuación (3)

37

En la finalización de todos los tratamientos de la información en bruto, se obtiene
una serie de 7 vectores, que por longitud tienen la dimensión en x de la imagen.

Seis de los vectores serán la representación en amplitud de las señales en función
del eje determinado para la señal, considerando la diferencia por arriba o por abajo
del eje tomando como resolución el tamaño de un píxel.

El séptimo vector será la representación del eje temporal, que en un futuro será el
eje x de la señal cardiaca.

El objetivo del proceso de vectorización es obtener la serie de datos tratables para
una serie de procesos que permitan la caracterización de la señal en aras de
identificar patrones y puntos de inflexión que apunten a detectar afecciones
cardiacas.

38

5. DETECCION DEL PICO CARACTERÍSTICO

El proceso de detección del pico característico es de vital importancia, este pico es

seleccionado en base al análisis de las señales, y se busca dentro de la derivación

DI, la cual presenta la mejor afinidad y fidelidad a lo largo del electrocardiograma.

De los resultados de la búsqueda de este pico, depende en gran medida la

efectividad del análisis, este pico que se determinó como característico es el pico

en el cual se fijará el marcador para extraer las señales características tales como

la amplitud y duración de los picos y segmentos de la señal.

Para el proceso de detección del pico, se asume el criterio de que un pico ideal esta

alrededor del valor de 0.5 mV. Con este criterio en mente, se inicia una serie de

condicionales para evaluar la señal y detectar el punto de valor optimo.

Lo primero que se hace es evaluar la señal para determinar si presenta valores

arriba de 1.5 mV, si presenta estos niveles de voltaje, la señal es descartada y el

proceso se finaliza. Si no se detectan esos niveles de amplitud, el código procede

con un segundo condicional el cual evalúa si al menos un pico máximo de la señal

es superior a 0.5 mV, si la condición se cumple se procede a seguir la elección del

pico, de lo contario se descarta la señal y se finaliza el proceso, esto debido a que

ningún pico alcanza el umbral esperado y la razón puede llegar a ser una mala toma

de los electrocardiogramas que generalmente está asociada a un mal

posicionamiento de los electrodos.

Si este condicional es superado, se ingresa a un filtro adicional, en el cual se evalúa

que la cantidad de los picos detectados sean inferior de 150, esto con tal de limitar

la cantidad de picos, si se detectan demasiados puntos, puede que el ECG presente

demasiado ruido.

Si esta última condición se cumple, se procede a capturar todos los puntos máximos

de la señal, dentro de estos máximos, se hace la diferenciación y la determinación

de la distancia entre cada uno de los picos detectados, descartando los que se

encuentran a menos de 20 muestras de distancia.

Una vez filtrado el vector de picos máximos, y calculadas las diferencias entre cada

uno de estos, se calcula la media de la distancia entre estos picos y se logra

determinar el periodo de la señal cardiaca. Basados en el vector se puede

determinar de forma indirecta la frecuencia cardiaca medida en latidos por minuto

teniendo en cuenta que el vector representa la cantidad de latidos en 30 segundos.

39

Para determinar el pico que se desea usar, al vector general se le restan 0.5 mV, y

del vector resultante de este proceso se selecciona el valor más cercano a 0, de

esta manera se asegura que el valor seleccionado sea el valor más próximo a los

0.5 mV que representan el pico óptimo.

Como se ve en la Figura 19, la salida del proceso es un segmento el cual contiene

el pico determinado, para este proceso de corte de la señal se asume que la longitud

del segmento es equivalente con el periodo de la onda cardiaca. Para construirlo,

se suma la mitad del periodo cardiaco previo al momento donde se registra el pico,

y la otra mitad posterior al pico y bajo estos mismos criterios se realiza el recorte del

segmento del tiempo.

Figura 19. Diagrama de flujo del proceso de selección del pico

Fuente: Autores

40

6. CARACTERIZACIÓN DE LA SEÑAL EXTRAIDA

La etapa de mayor importancia y relevancia llega a ser el proceso de

caracterización, dentro de esta etapa se realiza el análisis completo del segmento

extraído, esta tiene por finalidad extraer cada uno de los parámetros característicos

de una señal cardiaca. Los detalles de esta señal son los usados para determinar o

realizar el cruce de los datos para determinar si existe alguna afección cardiaca

detectable por la variabilidad de los parámetros.

La caracterización de la señal puede ser llevada a cabo de diversas maneras. En

este caso se hace uso de dos técnicas distintas, mediante la primera se realiza el

análisis de los máximos y mínimos característicos de la señal, y en base al

conocimiento de la anatomía de la señal del electrocardiograma (Figura 20) asignar

cada uno de los resultados a uno de los puntos característicos del mismo, y en el

segundo se realiza un análisis de la segunda derivada de la señal para determinar

los puntos descritos anteriormente.

Figura 20. Anatomía de la señal del ECG

Fuente: Welchallyn25

25 welchallyn, PC-based resting ECG - Hill-ROM,
https://www.welchallyn.com/content/dam/welchallyn/documents/upload-docs/Catalogs/Full-Line-
Catalog/Cardiopulomonary.pdf

41

6.1 MÉTODO 1: EXTRACCIÓN DE MÁXIMOS Y MÍNIMOS MEDIANTE EL
MÉTODO NP.MAX Y NP.MIN

A través de este método se lleva a cabo la determinación de las características de
la señal, lo primero que se determina es el pico representativo de la onda R. Para
determinar el punto de R se aplica np.max() al segmento de señal extraído,
mediante este método se encuentra el valor máximo (Figura 21), de esta manera,
en el punto donde se ubica este máximo, se aloja el pico de la onda R.

Figura 21. Detección del pico de la onda R

Fuente: Autores

Una vez detectado el pico se divide la señal en dos segmentos, uno previo y uno

posterior al pico R. En el segmento previo al pico de R se detectan los momentos

de las dos ondas antecesoras, P y Q, siendo P detectado, mediante la captura del

pico máximo del segmento previo y Q siendo detectado como el mínimo de este

segmento como se aprecia en la Figura 22.

Figura 22. Ondas P y Q detectadas

Fuente: Autores

42

Para la detección de las dos componentes restantes, se realiza el mismo análisis

en el segmento posterior, mediante la detección del mínimo, se detecta el pico

correspondiente al momento de la onda S y al detectar el valor máximo se halla el

punto de la onda T (Figura 23).

Figura 23. Ondas S y T detectadas

Fuente: Autores

Con este análisis, se pueden obtener los puntos característicos de la señal, y las

amplitudes respectivas a cada punto, con estos datos se obtiene un análisis

superficial pero susceptible a errores en la detección de las ondas Q y T. Dado que

mediante este método se detectan los puntos máximos dentro de los segmentos,

pero no se toma en cuenta la posible existencia de una onda U, la cual en su gran

mayoría de apariciones apunta hacia una anomalía cardiaca.

Figura 24. Señal caracterizada por el método 1

Fuente: Autores

43

Como se puede apreciar en la Figura 24, la señal caracterizada por el método 1, se

tienen fallas en la detección, por ende, se hace necesario un segundo método,

mediante el cual se pueda realizar el análisis de los puntos iniciales y finales de las

ondas P y T.

6.2 MÉTODO 2: ANÁLISIS DE LOS PUNTOS CARACTERÍSTICOS
MEDIANTE LA 1° Y 2° DERIVADA

Mediante la implementación del segundo método se busca aumentar la precisión,

así como también encontrar algunos parámetros restantes.

Lo primero que se hace es extraer la primera y la segunda derivada del vector, y en

este se buscan los cambios de signo de la señal, estos a su vez son separados en

un vector que contiene los puntos en los que la señal crece y empieza a decrecer o

resumiendo, donde la pendiente es negativa; y en un segundo vector se almacenan

los puntos donde la señal deja de decrecer y empieza a crecer o los puntos con una

pendiente positiva (Figura 25).

Figura 25. Gráfico de los puntos de inflexión en 1° y 2° derivada

Fuente: Autores

Inicialmente se determina el valor de R, sabiendo que R es un punto donde la

derivada deja de crecer y empieza su decrecimiento. Por ende, para encontrar este

punto se busca en el vector CaD (crece y empieza a decrecer), y dentro de este se

determina el punto en el cual el vector tiene su punto máximo.

44

Para la determinación del punto Q se usan dos alternativas, mediante la primera se

determina Q analizando los valores donde se presenta un mínimo en la señal antes

del momento R, y en la segunda, se hace el análisis de los puntos en el vector DaC

(decrece y empieza a crecer), mediante este análisis se busca el punto

inmediatamente anterior al momento R donde la señal tenga el comportamiento

mencionado.

Una vez se obtienen los valores de cada una de las dos opciones se comparan para

determinar la efectividad en el proceso de detección, para complementar este

análisis, se busca el valor que presente menos diferencia significativa con el

momento de la onda R. En caso de no ser iguales los resultados, se deja el

precedente de la divergencia en la determinación de los datos.

Este proceso se aplica de igual forma para determinar el momento de la onda P, S

y T. Una vez terminado el proceso para cada uno de los parámetros se obtiene la

señal completamente mapeada y caracterizada.

Figura 26. Señal caracterizada mediante el método 2

Fuente: Autores

45

Con la señal caracterizada (Figura 26) solo resta calcular la duración de los

complejos y segmentos, de esta manera se completaría la gama de parámetros

necesarios para la detección de las enfermedades cardiacas propuestas

Figura 27. Complejos cardiacos y sus puntos

Fuente: welchallyn25

El calculo de los complejo es llevado a cabo mediante las ecuaciones presentadas
en la siguiente tabla.

Tabla 2. Cálculos de los Segmentos y Complejos

Cálculo de Intervalos y Complejos

Complejo QRS PF - S

Segmento PR PF - Q

Segmento ST S - TI

Intervalo PR PI – Q

Intervalo QT Q - TF

Fuente Autores

46

7. CONSTRUCCÍON DEL DIAGNÓSTICO

En este punto del desarrollo del código del programa se tienen ya los valores de
onda necesarios para la elaboración del diagnóstico con los posibles padecimientos
cardiacos abarcados en este trabajo, por lo que se procede a determinar la
existencia o no de los mismos a través del cumplimiento de condiciones
relacionadas a estas enfermedades.

7.1 HIPERPOTASEMIA

Esta afección se genera por el alto nivel de potasio en la sangre, lo que causa una
disminución de la contractilidad cardiaca y favorece la aparición de arritmias
ventriculares; este padecimiento suele ser causado por insuficiencia renal, el uso de
determinados fármacos, entre otros factores26.

Entre los valores anormales de onda que identifican a la hiperpotasemia se tiene
una onda P plana, un ensanchamiento del complejo QRS y un estrechamiento de la
onda T, de esta forma:

7.2 HIPERTROFIA AURICULAR DERECHA

La hipertrofia auricular derecha suele presentarse a causa de enfermedades
pulmonares, enfermedades valvulares derechas o cardiopatías congénitas.

Este padecimiento se encuentra fuertemente relacionado con el comportamiento de
la onda P, por lo que se considera como un valor anómalo27.

26 My-EKG. (s.f.). Hiperpotasemia en el EKG. My-EKG.com. https://www.my-ekg.com/metabolicas-
drogas/hiperpotasemia-ekg.html
27 My-EKG. (s.f.). Dilatación de la Aurícula Derecha. My-EKG.com. https://www.my-
ekg.com/hipertrofia-dilatacion/dilatacion-auricula-derecha.html

𝑇 (𝑠) < 0.1 𝑠 Ecuación (4)

𝑃 (𝑚𝑉) < 0.05 𝑚𝑉 Ecuación (5)

𝑄𝑅𝑆 (𝑠) > 0.12 𝑠 Ecuación (6)

 𝑃 (𝑚𝑉) < 0.25 𝑚𝑉 Ecuación (7)

47

7.3 DILATACION AURICULAR

Es un padecimiento en el cual se presenta un agrandamiento anormal de las
aurículas del corazón, suelen ser un signo de una enfermedad subyacente o una
condición médica que afecta el funcionamiento del corazón; entre las causas más
comunes de esta afección se encuentran la insuficiencia cardiaca, enfermedad
valvular cardiaca, hipertensión arterial, fibrilación auricular, cardiopatías congénitas,
enfermedades pulmonares, entre otras.

Entre los valores en los cuales ya se considera que el paciente potencialmente
puede presentar esta condición se encuentra28:

7.4 BLOQUEO AUROVENTRICULAR

También llamado Bloqueo AV, es un trastorno en el sistema de conducción cardiaco
que provoca que el estímulo eléctrico que se genera en las aurículas sea conducido,
ya sea con retraso o no sea conducido, hacia los ventrículos29. Suele ser causado
por problemas en otras estructuras cardiacas o por alteraciones metabólicas30.

Esta enfermedad suele presentar ondas P, seguidas del complejo QRS, pero con
un intervalo PR prolongado, por lo que se tiene como valor anormal:

28 Cleveland Clinic. (s.f.). Left Atrial Enlargement. Cleveland Clinic.
https://my.clevelandclinic.org/health/diseases/23967-left-atrial-
enlargement#:~:text=Left%20atrial%20enlargement%20is%20when,pumps%20blood%20to%20you
r%20aorta
29 My-EKG. (s.f.). Bloqueos AV (Bloqueos de la Conducción Aurículo-Ventricular). My-EKG.com.
https://www.my-ekg.com/arritmias-cardiacas/bloqueos-av.html
30 My-EKG. (s.f.). Bloqueos AV de Primer Grado. My-EKG.com. https://www.my-ekg.com/arritmias-
cardiacas/bloqueos-av-primer-grado.html

𝑃𝑅 (𝑠) > 0.2 𝑠 Ecuación (9)

𝑃 (𝑠) > 0.1 𝑠 Ecuación (8)

48

7.5 BLOQUEO DE RAMA

Los bloqueos de rama son afectaciones en la conducción eléctrica que provocan
cambios en la forma en que los ventrículos se despolarizan, esto se puede causar
por un valor de tensión arterial alto o a otra enfermedad cardiaca31.

Esta condición provoca alteraciones importantes en el complejo QRS del
electrocardiograma, causando aumentos es su duración y cambios en su
morfología; por lo que se tiene como un valor irregular de QRS:

7.6 MIOCARDITIS

La miocarditis es una inflamación en el miocardio, el musculo del corazón; puede
afectar la capacidad del corazón de bombear sangre de manera eficiente y, en
casos graves, puede conllevar a complicaciones cardiacas importantes. Suele
producirse por infecciones virales, bacterianas, fúngicas o parasitarias, reacciones
alérgicas, toxinas o sustancias químicas, quimioterapia, entre otras32.

Este padecimiento puede ser detectado en un electrocardiograma a través de los
siguientes valores de onda anormales:

7.7 HIPERCALCEMIA

Se define como un incremento en los niveles de calcio en el plasma, entre las
causas principales de este trastorno se tiene el hiperparatiroidismo (primario,
secundario y terciario), cáncer, enfermedades granulomatosas, síndrome de leche
y alcalinos, entre otras33.

31 My-EKG. (s.f.). Bloqueos de Rama. My-EKG.com. URL: https://www.my-ekg.com/bloqueos-
rama/bloqueos-rama.html
32 MSD Manuals. (s.f.). Miocarditis. MSD Manuals Profesional. https://www.msdmanuals.com/es-
co/professional/trastornos-cardiovasculares/miocarditis-y-pericarditis/miocarditis
33 My-EKG. (s.f.). Hipercalcemia en el EKG. My-EKG.com. https://www.my-ekg.com/metabolicas-
drogas/hipercalcemia-ekg.html

𝑄𝑅𝑆 (𝑠) > 0.12 𝑠 Ecuación (10)

𝑄𝑇 (𝑠) > 0.42 𝑠 Ecuación (11)

𝑅 (𝑚𝑉) > 2 𝑚𝑉 Ecuación (12)

49

Suele provocar cambios significativos en el electrocardiograma, sobre todo en la
duración del segmento ST y del intervalo QT, por lo que se tiene como valor de
parámetro anormal:

7.8 SINDROME DEL QT PROLONGADO

El intervalo QT prolongado se suele asociar a un mayor riesgo de arritmias
cardiacas dado que puede causar una fibrilación ventricular y una muerte súbita.
Puede ser causada por diferentes factores hereditarios o por el síndrome QT largo
adquirido por el uso de fármacos, alteraciones electrolíticas, hipertrofia ventricular
izquierda, isquemia miocárdica, entre otras34.

Esta enfermedad, asociada directamente a la duración del intervalo QT, presenta
como un valor ya anormal:

7.9 PERICARDITIS

La pericarditis es la inflamación de la membrana que envuelve al corazón (el
pericardio), este problema suele causar cambios en el electrocardiograma y puede
ser causado por afecciones autoinmunes, infecciosas, metabólicas, traumáticas,
inducidas por fármacos, entre otras35.

Este padecimiento suele estar asociado al segmento ST de la señal cardiaca a
través de una duración prolongada discorde y a la amplitud de la onda T. Dentro de
los valores anormales que sirven para identificar esta enfermedad se encuentran:

34 My-EKG. (s.f.). Cómo leer un EKG: Intervalo QT. My-EKG.com. https://www.my-ekg.com/como-

leer-ekg/intervalo-qt.html

35 My-EKG. (s.f.). Pericarditis Aguda en el EKG. My-EKG.com. https://www.my-
ekg.com/enfermedades/pericarditis-aguda-ekg.html

𝑄𝑇 (𝑠) < 0.32 𝑠 Ecuación (13)

𝑄𝑇 (𝑠) > 0.42 𝑠 Ecuación (14)

𝑆𝑇 (𝑠) > 0.15 𝑠 Ecuación (15)

𝑇 (𝑚𝑉) >
𝑅

3
 𝑚𝑉 Ecuación (16)

50

7.10 HIPERTROFIA AURICULAR IZQUIERDA

La hipertrofia auricular izquierda es el agrandamiento o aumento anormal de la
aurícula izquierda del corazón. Las causas más comunes de la hipertrofia auricular
izquierda incluyen: hipertensión arterial, cardiopatías crónicas, trastornos del ritmo
cardiaco, enfermedades pulmonares, factores genéticos, entre otras36.

Esta afección suele estar asociada a la onda T, en la cual se presenta un
ensanchamiento irregular, teniendo como valor anómalo:

7.11 ISQUEMIA

Es una enfermedad ocasionada por la falta de flujo sanguíneo adecuado hacia el
musculo cardiaco (miocardio). Esta condición ocurre cuando las arterias coronarias
que suministran sangre al corazón se estrechan o se bloquean parcial o
completamente debido a la acumulación de placa en sus paredes. Entre las causas
más comunes se encuentran: edad, genero (los hombres poseen un mayor riesgo
que las mujeres antes de que estas desarrollen la menopausia), herencia,
antecedentes personales, dislipemia, tabaquismo, diabetes mellitus, hipertensión
arterial, sedentarismo, entre otras37.

Este padecimiento suele estar ligado al comportamiento de la onda T en el
electrocardiograma, teniendo como valores anormales en este:

7.12 TAQUICARDIA SINUSUAL

Es un tipo de taquicardia que se genera en el nodo sinusual que aparece en reposo
o en situaciones de esfuerzo leve, es una arritmia poco frecuente que produce
frecuencias cardiacas elevadas y suele observarse más en el sexo femenino y en

36 My-EKG. (s.f.). Dilatación de la Aurícula Izquierda. My-EKG.com. https://www.my-
ekg.com/hipertrofia-dilatacion/dilatacion-auricula-izquierda.html
37 My-EKG. (s.f.). Cardiopatía Isquémica. My-EKG.com. https://www.my-ekg.com/infarto-
ekg/cardiopatia-isquemica.php

𝑇 (𝑠) > 0.12 𝑠 Ecuación (17)

𝑇 (𝑠) > 0.12 𝑠 Ecuación (18)

𝑇 (𝑚𝑉) >
𝑅

3
 𝑚𝑉 Ecuación (19)

51

rango de edad entre los 15 y los 45 años, entre las causas se encuentra la
realización de ejercicio leve, ansiedad o estrés psicológico, fiebre, consumo de
cafeína, alcohol u otros estimulantes, entre otros38.

Este padecimiento se encuentra relacionado de manera directa con la frecuencia
cardiaca que presente el paciente, teniendo como un valor ya anómalo:

7.13 BRADICARDIA SINUSUAL

Es una condición médica en la que el corazón late más lentamente de lo normal
debido a la disminución en la frecuencia de los impulsos eléctricos que provienen
del nodo sinusual. La bradicardia sinusual no significa patología cardiaca, es
frecuente observarla en los deportistas de alto rendimiento, en los pacientes con
tratamientos con fármacos que enlentecen la frecuencia cardiaca, hipotiroidismo,
efectos del envejecimiento, entre otras39.

Esta afección se encuentra relacionada directamente con el ritmo cardiaco que
tenga el paciente, teniendo como un valor irregular:

38 My-EKG. (s.f.). Taquicardia Sinusal Inapropiada. My-EKG.com. https://www.my-ekg.com/arritmias-
cardiacas/taquicardia-sinusal-inapropiada.html
39 My-EKG. (s.f.). Cómo leer un EKG: Ritmo Cardiaco. My-EKG.com. https://www.my-ekg.com/como-
leer-ekg/ritmo-cardiaco.html#tab

𝐹𝑟𝑒𝑐𝑢𝑒𝑛𝑐𝑖𝑎 𝐶𝑎𝑟𝑑𝑖𝑎𝑐𝑎 (𝐿𝑃𝑀) > 100 𝐿𝑃𝑀 Ecuación (20)

𝐹𝑟𝑒𝑐𝑢𝑒𝑛𝑐𝑖𝑎 𝐶𝑎𝑟𝑑𝑖𝑎𝑐𝑎 (𝐿𝑃𝑀) < 60 𝐿𝑃𝑀 Ecuación (21)

52

8. INTERFAZ (GUÍA DE USO)

Una interfaz gráfica de usuario, también conocido como GUI es un grupo de
componentes visuales e interactivos que sirven para facilitar la comunicación entre
una persona y un sistema computacional. Cumple con la tarea de simplificar la
interacción de los usuarios haciendo que un programa sea ejecutado de manera
sencilla e intuitiva40.

Figura 28. Ideología de un GUI

Fuente: Periódico X41

Un GUI se constituye de diversos objetos tales como ventanas, botones, iconos,
menús, cuadros de texto, entre otros componentes que realizan y reciben
información de manera eficiente. Son utilizadas en un sinfín de herramientas de
software, tales como aplicaciones móviles y web y sistemas operativos.

Un GUI se constituye de diversos objetos tales como ventanas, botones, iconos,
menús, cuadros de texto, entre otros componentes que realizan y reciben
información de manera eficiente. Son utilizadas en un sinfín de herramientas de
software, tales como aplicaciones móviles y web y sistemas operativos, en la Figura
28 se puede apreciar la interacción entre el aplicativo manejado por un sistema
computacional y el usuario.

40 INTERFAZ GRÁFICA de usuario gui [Anónimo]. Arimetrics [página web]. Disponible en Internet:
<https://www.arimetrics.com/glosario-digital/interfaz-grafica-usuario-gui>.
41 CHACÓN, Paola Villegas. Interfaz gráfica de usuario. Tecnología.cr [página web]. (12, mayo, 2016)
Disponible en Internet: <https://periodicox.bigpress.net/texto-diario/mostrar/436057/interfaz-grafica-
usuario>.

53

El desarrollo de la interfaz gráfica se realizó por medio de la librería Tkinter de
Python, utilizando programación secuencial y definiendo cada vista de esta a través
de funciones.

Para esto es necesario el uso de los componentes, también llamados widgets, que
proporciona la biblioteca, como lo son Frame, PhotoImage, Button, Filedialog,
FigureCanvasTkAgg, Treeview, Combobox y Checkbutton.

La interfaz se compone en principio de una ventana que contiene cuatro Frames
principales los cuales contienen a su vez el resto de los componentes del programa.

8.1 VISTA 1: PRESENTACIÓN

El primer Frame abarca la información general del proyecto, como lo son el titulo y
el nombre de los autores (para esto se hace uso del widget Label42, también la
imagen del logotipo de la universidad (utilizando el componente PhotoImage43), y
por último un botón de continuar (por medio del elemento Button44) que sirve para
navegar hacia la siguiente vista. En la Figura 29, se puede apreciar la vista de
presentación anteriormente descrita.

Figura 29. Vista 1 / Presentación

Fuente: Autores

42 GeeksforGeeks. (s.f.). Python Tkinter Label. GeeksforGeeks.
https://www.geeksforgeeks.org/python-tkinter-label/
43 CodersLegacy. (s.f.). Tkinter PhotoImage in Python. CodersLegacy.
https://coderslegacy.com/python/tkinter-photoimage/
44 Anzeljg. (s.f.). Button - Tkinter 8.6. [Documento web].
https://anzeljg.github.io/rin2/book2/2405/docs/tkinter/button.html

54

8.2 VISTA 2: ENTRADA DE DATOS Y PROCESAMIENTO

En el segundo Frame se plasma el proceso pertinente para llevar a cabo el
procesamiento del electrocardiograma, a través del botón “Cargar archivo” (con la
función askopenfile45) se pide al usuario la búsqueda del archivo en formato pdf del
ECG a través del explorador de archivos del equipo, una vez se seleccione el
archivo correctamente, se presenta la vista previa del documento cargado en el
recuadro que se encuentra debajo del botón previamente mencionado, posterior a
la vista previa se encuentran dos botones, el botón “Volver” realiza la tarea de
regresar a la primera vista del programa y el botón “Procesar” que conecta el Frame
actual al siguiente, y a su vez, realiza la ejecución del proceso de digitalización y
procesamiento del electrocardiograma cargado. Es importante mencionar que si la
cantidad de páginas del pdf no supera o excede a las de un resultado estándar
entregado por el dispositivo Kardia 6L se mostrará en pantalla una ventana
emergente advirtiendo esta inconsistencia y se pedirá nuevamente el cargue de un
archivo acorde a lo solicitado. La Figura 30, muestra la ventana de entrada de datos
y procesamiento.

Figura 30. Vista 2 / Entrada de datos y procesamiento

Fuente: Autores

45 GeeksforGeeks. (s.f.). Python askopenfile() function in tkinter. GeeksforGeeks.

https://www.geeksforgeeks.org/python-askopenfile-function-in-tkinter/

55

8.3 VISTA 3: RESULTADOS

Para la vista 3 se tiene el ECG ya digitalizado y adicionalmente los valores de ondas
cardiacas que determinan la posibilidad de un padecimiento coronario. En la parte
superior se encuentra la gráfica del electrocardiograma digitalizado muestreado
cada tres segundos (A través del widget FigureCanvasTkAgg46) y dos botones, uno
a la izquierda y otro a la derecha, estos se utilizan para desplazar en el tiempo la
señal y apreciarla de una mejor manera. Inmediatamente debajo se encuentra la
tabla de valores de onda con los que se realiza el análisis de las enfermedades
cardiacas (usando el componente Treeview47), el pico al cual se le extrae esta
información y una lista desplegable que permite navegar entre las derivaciones del
examen cardiaco (utilizando la herramienta Combobox48). Finalmente se tienen dos
botones que cumplen con la labor de darle navegación a la interfaz: a través del
botón “Volver” se cambia de vista hacia el segundo Frame, y con el botón
“Diagnosticar” se da paso hacia la última vista. Esta vista también despliega una
ventana emergente en caso de que se detecte una divergencia en el cálculo de los
parámetros de onda. Esta ventana se aprecia mejor en la Figura 31, que contiene
los resultados del programa.

Figura 31. Vista 3 / Resultados

Fuente: Autores

46 CodersLegacy. (s.f.). FigureCanvasTkAgg - Matplotlib & Tkinter. CodersLegacy.
https://coderslegacy.com/figurecanvastkagg-matplotlib-tkinter/
47 RecursosPython. (s.f.). Vista de Árbol (TreeView) en Tkinter. RecursosPython.
https://recursospython.com/guias-y-manuales/vista-de-arbol-treeview-en-tkinter/
48 RecursosPython. (s.f.). Lista Desplegable (Combobox) en Tkinter. RecursosPython.
https://recursospython.com/guias-y-manuales/lista-desplegable-combobox-en-tkinter/

56

8.4 VISTA 4: DIAGNOSTICO

Por último, en la vista de diagnóstico se tiene la información relacionada con las
enfermedades detectadas y la justificación en base a discordancias entre los valores
de onda obtenidos con valores medicamente aceptados o normales. A la izquierda
de este se encuentran las cardiopatías analizadas en este proyecto (donde se
emplea el widget Checkbutton49), dependiendo de si difieren los resultados a valores
normales de onda se da que dicha enfermedad pueda estar presente en el examen
del usuario, a la derecha se encuentra el motivo por el cual la persona puede tener
el padecimiento en cuestión y en la parte inferior tres botones que cumplen con la
función de darle navegación a la interfaz: a través del botón “Volver” se regresa a la
vista inmediatamente anterior, con “Inicio” se vuelve a la primera ventana del
programa y si se selecciona “Salir” se finaliza la ejecución de la interfaz. La Figura
32 muestra la ventana de diagnóstico explicada anteriormente.

Figura 32. Vista 4 / Diagnostico

Fuente: Autores

A grandes rasgos, el flujo de la interfaz sigue la secuencia de la Figura 33, donde
cada cuadro representa las vistas anteriormente descritas:

49 RecursosPython. (s.f.). Checkbox (Checkbutton) en Tcl/Tk (Tkinter). RecursosPython.
https://recursospython.com/guias-y-manuales/checkbox-checkbutton-en-tcltk-tkinter/

57

Figura 33. Diagrama de vistas

Fuente: Autores

De manera más detallada, la Figura 34 y la Figura 35 muestra el proceso completo
que se lleva a cabo en la interfaz, mostrando las decisiones que se llevan a cabo
para navegar entre las diferentes vistas de esta, la entrada de datos y la
visualización de los resultados y el diagnóstico:

Figura 34. Diagrama de flujo de la interfaz, parte 1

Fuente: Autores

58

Figura 35. Diagrama de flujo de la interfaz, parte 2

Fuente: Autores

59

9. RESULTADOS

Partiendo de un banco de datos proveniente de un grupo de sujetos de prueba
determinados, se realiza la caracterización de los electrocardiogramas mediante el
uso de la aplicación.

El lote de prueba está construido con 8 electrocardiogramas provenientes de 4
sujetos de prueba, de los cuales, uno confirma no poseer falencias cardiacas.

Al usar la aplicación para caracterizar se obtiene que, de los 8 electrocardiogramas

tomados, solo 2 fueron admitidos por el software (Tabla 3), los demás fueron

descartados por diversas causas, siendo la más frecuente la captación de ruido al

momento de tomar la lectura.

Tabla 3. Validación de los ECG's por parte del software

Nombre Validez Causal

ecg-
20230322-

145823

No
Procesable

La señal fue cortada durante el proceso de
individualización de las derivaciones, debido a

valores de voltaje anormales en las derivaciones
unipolares de las extremidades (aVR, aVL, aVF),

incorporadas por posibles fallas en el momento de
la captura del ECG.

ecg-
20230524-

141500

No
Procesable

La señal de la derivación I es demasiado baja (<0.5
mV), por lo cual es imposible realizar la elección de

un pico de estudio.

ecg-
20230524-

142047

No
Procesable

En el ECG leído, se encuentra gran cantidad de
ruido, generando picos demasiado altos, al realizar

el escaneo de la señal se excede la limitante de 150
picos, por lo cual la señal se descarta.

ecg-
20230322-

145416

No
Procesable

El ECG presenta una cantidad de ruido inusual para
un resultado aceptable, lo que genera una gran

cantidad de picos que desbordan el umbral de los
150.

ecg-
20230524-

141742
Procesable Divergencia determinando S y T.

ecg-
20230322-

141514

No
Procesable

El pico determinado como viable, se encuentra en
un punto final del ECG, en el cual no se puede

tomar la captura de tiempos futuros más allá de los
30 segundos.

60

Con base a los resultados obtenidos de la aplicación, se genera cierta incertidumbre

respecto al nivel de fiabilidad de la aplicación, por lo cual se genera la necesidad de

buscar la verificación y caracterización de los electrocardiogramas bajo criterio

médico. Para este proceso se le suministran los mismos lotes de datos que se le

entregan al software, para realizar el mismo proceso de caracterización y

determinación de los datos validables.

De este modo, luego de validar la información medicamente y bajo el criterio

humano se encontró que los descartes realizados por el software no son

concluyentes desde un punto de vista médico como se muestra en la tabla 4 a

continuación.

Tabla 4. Validación de ECG's medicamente

Nombre Validez Causal

ecg-20230322-
145823

No Procesable

Es buen electro, lo único es que en una
de las hojas hay un bajón enorme,
horrible y eso no es patológico es

como si se hubiera movido el paciente.

ecg-20230524-
141500

No Procesable

La entiendo, pero no la usaría porque
AVL no es legible, el trazado no es
confiable, no hay ondas y pues uno

pensaría entonces una patología, pero
es que el trazo entonces no concuerda
con los demás trazos y pues uno diría
listo, está afectada entonces sólo la

cara lateral alta, pero es que esa
también está definida por DI y DI si

está bien, entonces pues si tengo que
mirar todos los ejes, no me

confiaría por AVL

ecg-
20220827-

191142
Procesable Divergencia estimando T.

ecg-
20230322-

145221

No
Procesable

Error en la detección de R.

Fuente: Autores

61

ecg-20230524-
142047

No Procesable

Yo no lo veo como ritmo normal, los
complejos QRS no son regulares, no

en todas hay una onda que me
indicaría bloqueo de rama, pero no es
posible porque no se ve exactamente

así, yo pediría que lo volvieran a tomar
porque para mí está mal tomado, hubo
movimiento también, de pronto (eso si

no estoy segura) mala
ubicación de electrodos

ecg-20230322-
145416

Procesable Sin quejas ni observaciones

ecg-20230524-
141742

Procesable
Tiene muy buena claridad, se puede

leer cómodamente

ecg-20230322-
141514

Procesable Sin quejas ni observaciones

ecg-20220827-
191142

Procesable
Lo único es que en la página 4 parece
como que se movió, esta página me

generaría confusiones.

ecg-20230322-
145221

No Procesable

Hay unas páginas donde se entiende,
otras donde no tanto, hay como que
diferente trazo en unas, o sea si lo
entiendo, pero no podría definirlo

completamente.
Fuente: Autores

Una vez se obtuvo una muestra médica, se procedió a realizar el análisis de esta
mediante el software, en el cual, al momento de realizar el diagnóstico aparecen
ciertas alarmas en cuanto a la detección de algunos puntos característicos, pero
llevando a cabo el análisis general de la señal.

Con la señal caracterizada mediante el software, se solicita al médico evaluador

que realice la caracterización de la señal cardiaca, sin que este conozca

previamente los resultados suministrados por el software para no alterar el criterio

médico. Partiendo de la primera caracterización médica, la cual se puede realizar

en cualquier punto de las 6 derivaciones cardiacas presentadas en el ECG se

realiza una comparación de los parámetros más relevantes como lo son:

62

• La frecuencia cardiaca

• La duración del intervalo RR

• La duración de la onda P

• Intervalo PR

• Segmento PR

• Intervalo QT

• Segmento ST

• Amplitud de la onda P

• Amplitud del complejo QRS

• Amplitud de T

Con estos parámetros se solicita al médico evaluador que realiza una segunda

caracterización empleando la misma gamma de parámetros en un segmento

específico de la derivación I, el segmento especifico consta de una duración de 3

segundos dentro de la cual se encuentra contenido el pico que uso el software para

realizar la determinación de los parámetros.

Una vez obtenidos los dos análisis médicos, se realiza la muestra del software y la

parametrización que entrega el programa del mismo ECG caracterizado por el

médico, permitiéndole al médico interactuar con el software y probar el desempeño

de este.

Para finalizar el proceso de validación médica, se realiza una comparación de los

parámetros determinados por el software y las dos parametrizaciones entregadas

por el médico (¡Error! No se encuentra el origen de la referencia.).

El primer cruce de datos se realiza entre el primer análisis del médico y los

resultados del aplicativo, con este cruce se busca probar la validez de la

caracterización realizada a través de la derivación I. Con el segundo cruce de datos

se busca obtener el porcentaje de fidelidad y precisión que puede llegar a presentar

el software al momento de parametrizar el ECG.

En la siguiente tabla se presentan los datos recabados en el proceso, en la tabla se

consignan los datos respectivos de la caracterización de los electrocardiogramas

asumidos como validos por el software.

63

T
a
b
la

 5
.
R

e
s
u
lt
a
d

o
s
 d

e
 l
a
s
 c

a
ra

c
te

ri
z
a
c
io

n
e
s

e
c
g

-2
0
2

2
0
8

2
7

-1
9

1
1

4
2

E
rr

o
r

6
.6

6

1
2

.5

N
.C

N
.C

6
.0

6

8
.3

3

7
5

9
.3

7

0

F
u
e
n
te

:
M

e
d
ic

o
 V

a
lid

a
d
o
r,

 A
u
to

re
s
.

N

o
m

e
n

c
la

tu
ra

 d
e
 l
a

 t
a
b

la

C
a
ra

c
te

rí
s
ti
c
a

s
 d

e
l
E

C
G

 c
o

n
s
id

e
ra

n
d

o
 t
o

d
a

s

s
u

s
 d

e
ri
v
a

c
io

n
e

s
 (

C
ri
te

ri
o

 M
é

d
ic

o
)

C
a
ra

c
te

rí
s
ti
c
a

s
 d

e
l
E

C
G

 c
o

n
s
id

e
ra

n
d

o
 s

o
lo

la
 d

e
ri
v
a

c
ió

n
 I

 (
C

ri
te

ri
o
 M

é
d

ic
o
)

C
a
ra

c
te

rí
s
ti
c
a

s
 d

e
l
E

C
G

 c
o

n
s
id

e
ra

n
d

o
 s

o
lo

la
 d

e
ri
v
a

c
ió

n
 I

 (
C

ri
te

ri
o
 S

o
ft

w
a
re

)

D
if
e

re
n

c
ia

 e
n

tr
e

 V
a

l.
1
 y

 V
a

l.
 2

E
rr

o
r

re
la

ti
v
o

 d
e

l
V

a
l.
 2

 c
o

n
 r

e
s
p

e
c
to

 a
 V

a
l.
 1

D
if
f.

6

0
.0

1

N
.C

N
.C

0
.0

4

0
.0

1

0
.0

3

0
.0

3

0
.0

0

V
a

l.
 2

8
4

0
.0

9

0
.1

3

0
.7

7

0
.7

0
.1

3

0
.0

7

0
.3

5

0
.1

V
a

l.
 1

9
0

0
.0

8

N
.C

N
.C

0
.6

6

0
.1

2

0
.0

4

0
.3

2

0
.1

V
a

lo
r

8
7

0
.0

4

N
.C

N
.C

0
.6

8

0
.1

2

N
.C

0
.3

0
.1

6

e
c
g

-2
0
2

3
0
5

2
4

-1
4

1
7

4
2

E
rr

o
r

4
.5

2
5

N
.C

N
.C

4
.4

1
6

.6
7

5
0

2
0

5
8

.3
3

D
if
f.

4

0
.0

2

N
.C

N
.C

0
.0

3

0
.0

2

0
.0

2

0
.0

4

0
.0

7

V
a

lo
r

V
a

l.
 1

V
a

l.
 2

D
if
f.

E
rr

o
r

V
a

l.
 2

9
2

0
.1

0
.0

2

0
.6

0
.6

5

0
.1

4

0
.0

6

0
.1

6

0
.0

5

V
a

l.
 1

8
8

0
.0

8

N
.C

N
.C

0
.6

8

0
.1

2

0
.0

4

0
.2

0
.1

2

V
a

lo
r

9
7

0
.0

4

N
.C

N
.C

0
.6

8

0
.1

2

N
.C

0
.3

2

0
.1

2

P
a

rá
m

e
tr

o

F
re

c
u

e
n

c
ia

 C
a

rd
ia

c
a

 (
lp

m
)

D
u
ra

c
ió

n
 P

 (
S

)

D
u
ra

c
ió

n
 T

 (
S

)

A
m

p
lit

u
d

 R
 (

m
V

)

D
u
ra

c
ió

n
 c

o
m

p
le

jo
 R

R
 (

S
)

D
u
ra

c
ió

n
 c

o
m

p
le

jo
 P

R
 (

S
)

D
u
ra

c
ió

n
 c

o
m

p
le

jo
 Q

R
S

 (
S

)

D
u
ra

c
ió

n
 c

o
m

p
le

jo
 Q

T
 (

S
)

D
u
ra

c
ió

n
 C

o
m

p
le

jo
 S

T
 (

S
)

64

10. ANÁLISIS DE RESULTADOS

La matriz de confusión corresponde a una tabla que resume el número de
predicciones correctas e incorrectas de un conjunto de datos50. La matriz de
confusión se representa de la siguiente manera:

Fuente: DataSource50

Las predicciones se establecen como se especifica a continuación:

● Verdaderos positivos (TP): Es la cantidad de predicciones verdaderas y
correctas.

● Falsos negativos (FN): Es la cantidad de predicciones falsas correctas.
● Falsos positivos (FP): Es la cantidad de predicciones verdaderas incorrectas.
● Verdaderos negativos (TN): Es la cantidad de predicciones falsas incorrectas.

Partiendo de la definición de la matriz, se puede trazar la matriz (Tabla 6) para medir
la efectividad del software para determinar cuándo un ECG presenta validez médica
o es relevante para un diagnóstico.

50 DataSource.ai. (s.f.). Comprensión de la Matriz de Confusión y Cómo Implementarla en Python.
DataSource.ai. https://www.datasource.ai/es/data-science-articles/comprension-de-la-matriz-de-
confusion-y-como-implementarla-en-python

Figura 36: Representación de la matriz de confusión

65

Tabla 6. Matriz de confusión del proyecto

Matriz de Confusión
Software

Inválido Válido

Médico
Inválido 0 4

Válido 2 2

Fuente: Autores

A. EXACTITUD: La exactitud representa el número total de predicciones correctas
respecto al número total de muestras clasificadas. Se calcula de la siguiente
manera:

𝑒𝑥𝑎𝑐𝑡𝑖𝑡𝑢𝑑 =
𝑝𝑟𝑒𝑑𝑖𝑐𝑐𝑖𝑜𝑛𝑒𝑠 𝑐𝑜𝑟𝑟𝑒𝑐𝑡𝑎𝑠

𝑡𝑜𝑡𝑎𝑙 𝑑𝑒 𝑝𝑟𝑒𝑑𝑖𝑐𝑐𝑖𝑜𝑛𝑒𝑠
=

𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁
 Ecuación (22)

Esta métrica se usa solo en escenarios donde se presenta una cantidad de datos
balanceados en el entrenamiento para cada clase.

B. PRECISIÓN: La precisión representa el número total de clasificaciones
correctas en cada clase. Se calcula de la siguiente manera:

𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
 Ecuación (23)

C. SENSIBILIDAD: O también llamado recall representa el número de
clasificaciones que corresponde a una clase respecto a las clases evaluadas. Se
calcula de la siguiente manera:

𝑠𝑒𝑛𝑠𝑖𝑏𝑖𝑙𝑖𝑑𝑎𝑑 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
 Ecuación (24)

Con base en la distribución generada por la matriz de confusión se pueden usar los
datos para evaluar el rendimiento (Tabla 7) del software en cuanto al proceso de
discernir a partir de que documentos se pueden procesas y extraer los datos.

66

Tabla 7. Medidas de la matriz de confusión

Parámetro Valor Porcentual

Sensibilidad 50%

Especifidad 0%

Precisión 66.67%

Exactitud 25%

Fuente: Autores

Basados en los resultados de precisión del software, se puede dar por sentado que
el criterio del software para decidir si un ECG es válido para su lectura es
parcialmente valido, desde un punto de vista genérico, el cual esta presto a realizar
un proceso de validación mediante métodos estadísticos los cuales apunten
realmente al nivel de relevancia de los datos presentados debido a la precisión tan
baja que presenta el software, esto obliga a que la primer parte del desarrollo sea
sometida a procesos estadísticos para determinar a ciencia cierta la efectividad del
clasificador, ya que con un valor tan cercano al 50% de precisión, los resultados
podrían llegar a ser asumidos como resultados de un proceso de adivinación y
suerte. El software logra determinar características relevantes para el descarte de
un ECG basado en los puntos comunes considerados por un médico. Sin embargo,
no llega a ser del todo preciso, como de evidencia en la Tabla 3 y la Tabla 4, donde
medicamente los criterios de descarte son similares, pero en el software son un
tanto más rigurosos debido a la carencia de comprensión del panorama completo
del ECG como si lo puede desarrollar una persona.

Con esto en mente, se sugiere en trabajos futuros realizar un robustecimiento del
banco de datos aplicando teoremas estadísticos que apunten a resultados
verdaderamente fiables y con un sustento estadístico adecuado y como refuerzo de
esta hipótesis son los demás resultados presentados en la matriz de confusión, los
cuales solo apuntan a una gran incertidumbre siendo esto reforzado por la limitada
cantidad de datos los cuales dan cabida a que pequeños errores sean abruptos
considerando la desviación estándar que puede presentar un grupo tan pequeño
como el presentado.

Estos datos se ven reflejados en la información reflejada por la matriz de confusión
en la Tabla 7 donde la exactitud no supera un 25% y donde la precisión no obtiene
los niveles adecuados para un sistema aceptable donde la precisión supera el 90%.

Para esta segunda etapa, como se propuso anteriormente, el objetivo es evaluar la
calidad de los datos que emite el software respecto a los ECG’s que este acepta,
para esto manejamos el porcentaje de error como parámetro de medida.

67

El porcentaje de error es una operación que permite determinar de forma clara el
margen de error entre las diferencias existentes entre el valor estimado y el valor
real, por lo que, si se quiere obtener dicha respuesta, se hace indispensable tener
ambos valores para realizar la operación matemática51.

Basados en la definición y en la fórmula que especifica la manera de calcular el
porcentaje de error, este se calcula y se consigna en la columna “error” de la Tabla
5, esto con el fin de determinar la efectividad y calidad del proyecto desarrollado.

Dejando de lado la matriz de confusión y el análisis de la validez de cada ECG, el
paso siguiente es evaluar los resultados obtenidos de los ECG considerados válidos
por el software. Mediante el primer proceso de validación se obtiene resultados
dentro de parámetros duramente aceptables, pero al dar un vistazo al segundo
proceso de validación, se observa que la parametrización que realiza el software es
bastante cercana a los datos medicamente considerados.

La razón de esta variabilidad se puede obtener mediante una inspección de los
picos determinados por el software.

Figura 37. Pico seleccionado del documento #1

Fuente: Autores

Si se realiza una inspección del pico posterior a la onda S, se encuentra un doble
pico el cual puede generar confusión en el software, lo que inserta una gran cantidad
de error en las detecciones del documento 1, de no ser así, la señal posterior al pico

51 Web y Empresas. (s.f.). ¿Qué es el Porcentaje de Error? Web y Empresas.
https://www.webyempresas.com/porcentaje-de-error/#%C2%BFQue_es_el_porcentaje_de_error

68

S es más limpia, por lo cual el pico puede ser más limpio y los resultados mucho
más claros.

Figura 38. Pico seleccionado del documento #2

Fuente: Autores

El pico evaluado para el documento 2 de la Figura 38 muestra una señal más
acorde y que puede ser evaluada y analizada de manera normal, no presenta
picos adicionales y se logra distinguir fácilmente las ondas de la señal cardiaca;
esto también se ve evidenciado en el porcentaje de error reducido que se obtiene
de contrastar las validaciones medicas con los valores calculados por el software.

En contraste, los ECG’s no aceptados por el software, son electrocardiogramas
que presentan demasiado ruido o fallas en la toma de este como se menciona en
la Tabla 3, donde se encuentran las fallas que presenta cada ECG para no ser
validado por el software. En la

Figura 39 y la Figura 40 se pueden apreciar algunas secciones de algunos de los
electrocardiogramas presentados al software, donde se evidencia la dispersión de
una señal normal al presentado en la prueba. Como ECG’s normales podemos ver
los presentados en la Figura 37 y la Figura 38, en los cuales se pueden apreciar
claramente las componentes de un ciclo cardiaco en contraste con las señales en
donde se aprecia total distorsión de la señal.

69

Figura 39. Segmento intermedio del ecg-20230322-145221.pdf

Fuente: Autores

Figura 40. Segmento intermedio del ecg-20230322-145221.pdf

Fuente: Autores

Condensando la información recabada a lo largo de los resultados se encuentra
que el software aún carece de fiabilidad en cuanto a la naturaleza de los datos y
resultados que puede llegar a presentar, para la primera etapa se tiene gran

70

cantidad de entropía, la cual está siendo aumentada por la carencia de bancos de
datos con una varianza y dispersión adecuada para el proceso determinado, para
la segunda parte, partiendo de las fallas del primera sección se tienen pocos datos
para validar, que aunque los resultados presentados para los dos casos
particulares es muy cercano al resultado médico, no llegan a ser del todo fiables,
partiendo de la idea que con solo dos datos no se puede definir ni validar un
sistema como el presentado, donde la cantidad de muestras disponibles en un
entorno idónea podría llegar a ser infinitas. La naturaleza de los hallazgos llega a
ser desconcertante en la medida de se llegaron a esperar mejores resultados,
pero se espera que en futuros avances e investigaciones se llegue a mejorar la
data y se puedan trazar resultados estadísticamente reales.

71

11. DISCUSIONES Y TRABAJOS FUTUROS

Es de vital importancia que el avance y las mejoras tecnológicas en este campo de
investigación se sigan ampliando, por lo que se considera que este trabajo puede
mejorarse y optimizarse de manera considerable. Se tienen en cuenta los siguientes
aspectos que pueden incluirse o llevarse a cabo a futuro:

• Utilización de electrocardiogramas de 12 derivaciones, ya que las derivaciones
obtenidas en las inmediaciones del tórax suministran información de suma
importancia de la condición cardiaca del paciente.

• Realizar el análisis de la señal en un pico que pertenezca a la derivación II, ya
que los profesionales de la salud suelen basar su criterio y realizar los cálculos
de los valores de onda en esta derivación.

• Mejorar la calidad y la eficacia de la interfaz gráfica, ya que genera gastos
importantes de recursos en el procesador y la memoria RAM del equipo. Por lo
que se debe tener en cuenta la reducción de los recursos computacionales.

• Implementación de inteligencia artificial para el análisis y el diagnostico de los
ECG.

72

12. CONCLUSIONES

A través del trabajo de grado propuesto se detalla el proceso para el desarrollo y
elaboración de una interfaz gráfica para el reconocimiento y detección de
características en electrocardiogramas usando Python. Este proyecto evidencia el
uso de diferentes herramientas tecnológicas para lograr un correcto funcionamiento
y la respectiva documentación, investigación y estudio para lograr un manejo
optimo. Así pues, se tiene a continuación las siguientes conclusiones del presente
trabajo.

• A través de las matrices de confusión se obtuvo que el algoritmo tiene una

precisión de 67%. Esto se debe al sesgo existente entre la cantidad de

electrocardiogramas descartados y los que se pueden analizar correctamente.

• Para realizar cualquier análisis utilizando una matriz de confusión es necesario
tener un banco de datos mucho más extenso y también de mayor dispersión, de
esta manera se obtienen resultados mucho más sólidos y no susceptibles
a binarizaciones.

• Por medio del porcentaje de error calculado para cada parámetro de la señal

cardiaca se puede apreciar una alta congruencia en la mayoría de los resultados,

y una elevada discordancia en algunos otros, esto se debe a que el paciente o

la persona a la que se le realiza el examen debe encontrarse en un estado de

calma y sin estar en posesión de dispositivos o aparatos eléctricos y electrónicos

que alteren o añadan ruido a la señal pues esta se encuentra en el orden de

los milivoltios.

• Se creó un algoritmo de detección y análisis de los valores de onda presentes

en electrocardiogramas digitales a través de bibliotecas de código abierto como

Numpy y OpenCV de Python que favorecieron la manipulación de las imágenes

y los vectores de datos generados gracias a la digitalización. Estas librerías

proporcionan una amplia variedad de funciones y alternativas para manejar este

tipo de información.

• Se logró implementar una interfaz gráfica dinámica y de fácil uso gracias a la

librería Tkinter de Python, que permite cargar el examen cardiaco,

posteriormente entregar datos detallados de los valores de onda y las señales

digitalizadas de las seis derivaciones y finalmente un diagnóstico estimado a

partir de información contrastada previamente, lo que genera en el usuario cierta

comodidad a la hora de utilizarla.

• La interfaz presenta algunos inconvenientes de consumo de recursos

computacionales, debido a la cantidad de información que debe ser extraída a

partir del pdf cargado y también a la manipulación de los gráficos a través de los

73

botones. Teniendo esto en cuenta, se recomienda el uso del programa en

máquinas con una memoria RAM superior a 4 GB.

• La aplicación exitosa de análisis de señales en la detección de enfermedades

cardiacas representa un potencial transformador en la tecnología de la atención

médica. Al agilizar este proceso se traduce en una disminución de carga laboral

para los profesionales de la salud y en la mejora de la calidad de vida de los

pacientes. Este trabajo contribuye y sienta las bases para sistemas de apoyo a

decisiones clínicas más accesibles y efectivas.

• A partir de recomendaciones médicas, se recomienda para trabajos futuros, la

utilización de electrocardiógrafos capaces de entregar las doce derivaciones las

cuales suministran una mayor cantidad de información importante sobre el

estado del corazón del paciente y, así mismo, la ampliación en la cobertura de

la gama de enfermedades.

• Este trabajo significa una aportación importante en lo que se refiere al campo

médico y el desarrollo tecnológico. Es una base sólida para futuras

investigaciones relacionadas a la visión por computador, aplicados a Colombia

y el departamento del Huila que está haciendo uso de herramientas y tecnología

recientes.

• El proyecto cuenta con una buena orientación, pero carece de validez por la
carencia de bancos de datos con una buen densidad o desviación estándar, lo
cual hace que los resultados no sean concluyentes desde un punto de vista
estadístico. Al momento de realizar una construcción de bancos de datos es
necesario contar con una aprobación estadística de los datos para que se
consideren válidos para la determinación de resultados

74

BIBLIOGRAFÍA

A. BENHAMIDA and M. KOZLOVSZKY, "Human ECG data collection,
digitalization, streaming and storing," 2020 IEEE 18th World Symposium on
Applied Machine Intelligence and Informatics (SAMI), Herlany, Slovakia, 2020,
pp. 105-110, doi: 10.1109/SAMI48414.2020.9108765. [Conferencia]

Agencia Espacial Europea (ESA). Eduspace: Unidad de Recursos de
Educación Espacial. ESA. [Página web]. [consultado: 01 Agosto 2023].
Disponible en:
https://www.esa.int/SPECIALS/Eduspace_ES/SEMCDX3FEXF_2.html

AliveCor. KardiaMobile 6L. AliveCor España. [Página web]. [consultado: 04
Agosto 2023]. Disponible en: https://www.alivecor.es/kardiamobile6l

Anzeljg. Button - Tkinter 8.6. [Página web]. [consultado: 04 Agosto 2023].
Disponible en:
https://anzeljg.github.io/rin2/book2/2405/docs/tkinter/button.html

Arteris Médica. Electrocardiograma. [Imagen]. En: ¿Qué es un
electrocardiograma? Arteris Médica. [Página web]. [consultado: 01 Septiembre
2023]. Disponible en: https://www.arterismedica.com/que-es-un-
electrocardiograma/

Anonim. What Is Tk? McGill University. [Página web]. [consultado: 04 Agosto
2023]. Disponible en:
https://www.cs.mcgill.ca/~hv/classes/MS/TkinterPres/#WhatIsTk

CE-TekMed. AliveCor KardiaMobile 6-Lead ECG for iPhone and Android. CE-
TekMed. [Página web]. [consultado: 02 Septiembre 2023]. Disponible en:
https://www.ce-tekmed.ie/product-page/alivecor-kardia-mobile-6-lead-ecg-for-
iphone-and-android

CHACÓN, Paola Villegas. Interfaz gráfica de usuario. Tecnología.cr [página
web]. (12, mayo, 2016) [consultado: 01 Agosto 2023]. Disponible en:
https://periodicox.bigpress.net/texto-diario/mostrar/436057/interfaz-grafica-
usuario

Cleveland Clinic. Left Atrial Enlargement. Cleveland Clinic. [Página web].
[consultado: 03 Agosto 2023]. Disponible en:

75

https://my.clevelandclinic.org/health/diseases/23967-left-atrial-
enlargement#:~:text=Left%20atrial%20enlargement%20is%20when,pumps%2
0blood%20to%20your%20aorta

CodersLegacy. FigureCanvasTkAgg - Matplotlib & Tkinter. CodersLegacy.
[Página web]. [consultado: 02 Septiembre 2023]. Disponible en:
https://coderslegacy.com/figurecanvastkagg-matplotlib-tkinter/

CodersLegacy. Tkinter PhotoImage in Python. CodersLegacy. [Página web].
[consultado: 03 Agosto 2023]. Disponible en:
https://coderslegacy.com/python/tkinter-photoimage/

Cupi2-IP. Sección 3.4: Slicing. [Página web]. [consultado: 04 Agosto 2023].
Disponible en: https://cupi2-ip.github.io/IPBook/nivel3/seccion3-4.html

DataSource.ai. Comprensión de la Matriz de Confusión y Cómo Implementarla
en Python. DataSource.ai. [Página web]. [consultado: 02 Septiembre 2023].
Disponible en: https://www.datasource.ai/es/data-science-
articles/comprension-de-la-matriz-de-confusion-y-como-implementarla-en-
python

DeepAI. Computer Vision. DeepAI Machine Learning Glossary and Terms.
[Página web]. [consultado: 02 Agosto 2023]. Disponible en:
https://deepai.org/machine-learning-glossary-and-terms/computer-vision

GeeksforGeeks. Python askopenfile() function in tkinter. GeeksforGeeks.
[Página web]. [consultado: 01 Septiembre 2023]. Disponible en:
https://www.geeksforgeeks.org/python-askopenfile-function-in-tkinter/

GeeksforGeeks. Python Tkinter Label. GeeksforGeeks. [Página web].
[consultado: 02 Septiembre 2023]. Disponible en:
https://www.geeksforgeeks.org/python-tkinter-label/

IBM. Computer Vision. IBM. [Página web]. [consultado: 03 Septiembre 2023].
Disponible en: https://www.ibm.com/topics/computer-vision

INTERFAZ GRÁFICA de usuario gui [Anónimo]. Arimetrics [página web].
[consultado: 04 Agosto 2023]. Disponible en:
https://www.arimetrics.com/glosario-digital/interfaz-grafica-usuario-gui

76

Kardia. KardiaMobile 6L. Kardia Store. [Página web]. [consultado: 04 Agosto
2023]. Disponible en: https://store.kardia.com/products/kardiamobile6l

Manual Merck. Electrocardiografía. Manual Merck. [Página web]. [consultado:
01 Agosto 2023]. Disponible en:
https://www.msdmanuals.com/es/hogar/trastornos-del-coraz%C3%B3n-y-los-
vasos-sangu%C3%ADneos/diagn%C3%B3stico-de-las-enfermedades-
cardiovasculares/electrocardiograf%C3%ADa

MedlinePlus. Electrocardiograma (ECG). MedlinePlus. [Página web].
[consultado: 02 Septiembre 2023]. Disponible en:
https://medlineplus.gov/spanish/pruebas-de-
laboratorio/electrocardiograma/#:~:text=Un%20electrocardiograma%20(ECG)
%20es%20un,y%20con%20una%20fuerza%20normal

MSD Manuals. Miocarditis. MSD Manuals Profesional. [Página web].
[consultado: 03 Agosto 2023]. Disponible en: https://www.msdmanuals.com/es-
co/professional/trastornos-cardiovasculares/miocarditis-y-
pericarditis/miocarditis

Muñoz V., A. Electrocardiografía Básica. Repositorio Universidad del Rosario.
[Página web]. [consultado: 02 Septiembre 2023]. Disponible en:
https://repository.urosario.edu.co/server/api/core/bitstreams/b891abb3-2690-
4551-a0c1-b16f41a17427/content

My-EKG. Bloqueos AV (Bloqueos de la Conducción Aurículo-Ventricular). My-
EKG.com. [Página web]. [consultado: 04 Agosto 2023]. Disponible en:
https://www.my-ekg.com/arritmias-cardiacas/bloqueos-av.html

My-EKG. Bloqueos AV de Primer Grado. My-EKG.com. [Página web].
[consultado: 01 Agosto 2023]. Disponible en: https://www.my-
ekg.com/arritmias-cardiacas/bloqueos-av-primer-grado.html

My-EKG. Bloqueos de Rama. My-EKG.com. [Página web]. [consultado: 02
Septiembre 2023]. Disponible en: https://www.my-ekg.com/bloqueos-
rama/bloqueos-rama.html

My-EKG. Cardiopatía Isquémica. My-EKG.com. [Página web]. [consultado: 01
Septiembre 2023]. Disponible en: https://www.my-ekg.com/infarto-
ekg/cardiopatia-isquemica.php

77

My-EKG. Cómo leer un EKG: Intervalo QT. My-EKG.com. [Página web].
[consultado: 02 Septiembre 2023]. Disponible en: https://www.my-
ekg.com/como-leer-ekg/intervalo-qt.html

My-EKG. Cómo leer un EKG: Ritmo Cardiaco. My-EKG.com. [Página web].
[consultado: 03 Agosto 2023]. Disponible en: https://www.my-ekg.com/como-
leer-ekg/ritmo-cardiaco.html#tab

My-EKG. Dilatación de la Aurícula Derecha. My-EKG.com. [Página web].
[consultado: 02 Septiembre 2023]. Disponible en: https://www.my-
ekg.com/hipertrofia-dilatacion/dilatacion-auricula-derecha.html

My-EKG. Dilatación de la Aurícula Izquierda. My-EKG.com. [Página web].
[consultado: 04 Agosto 2023]. Disponible en: https://www.my-
ekg.com/hipertrofia-dilatacion/dilatacion-auricula-izquierda.html

My-EKG. Hipercalcemia en el EKG. My-EKG.com. [Página web]. [consultado:
01 Septiembre 2023]. Disponible en: https://www.my-ekg.com/metabolicas-
drogas/hipercalcemia-ekg.html

My-EKG. Hiperpotasemia en el EKG. My-EKG.com. [Página web]. [consultado:
01 Septiembre 2023]. Disponible en: https://www.my-ekg.com/metabolicas-
drogas/hiperpotasemia-ekg.html

My-EKG. Papel EKG - My-EKG.com. [Página web]. [consultado: 02 Septiembre
2023]. Disponible en: https://www.my-ekg.com/generalidades-ekg/papel-
ekg.html

My-EKG. Pericarditis Aguda en el EKG. My-EKG.com. [Página web].
[consultado: 03 Agosto 2023]. Disponible en: https://www.my-
ekg.com/enfermedades/pericarditis-aguda-ekg.html

My-EKG. Taquicardia Sinusal Inapropiada. My-EKG.com. [Página web].
[consultado: 02 Septiembre 2023]. Disponible en: https://www.my-
ekg.com/arritmias-cardiacas/taquicardia-sinusal-inapropiada.html

ONOS. ¿Qué es una GUI? IONOS Digital Guide. [Página web]. [consultado: 03
Agosto 2023]. Disponible en: https://www.ionos.es/digitalguide/paginas-
web/desarrollo-web/que-es-una-

78

gui/#:~:text=Una%20graphical%20user%20interface%20o,el%20manejo%20d
el%20usuario%20humano

OpenCV. Acerca de OpenCV. OpenCV. [Página web]. [consultado: 01 Agosto
2023]. Disponible en: https://opencv.org/about/

OpenCV. Acerca de OpenCV. OpenCV. [Página web]. [consultado: 01 Agosto
2023]. Disponible en:
https://opencv.org/about/#:~:text=OpenCV%20(Open%20Source%20Comput
er%20Vision,perception%20in%20the%20commercial%20products

OpenCV. Documentación de OpenCV: group__core__array.OpenCV. [Página
web]. [consultado: 03 Septiembre 2023]. Disponible en:
https://docs.opencv.org/3.4/d2/de8/group__core__array.html#ga4676b1376cd
c4e528dab6bd9edc51c1a

OPS/OMS. (2020, Diciembre 9). OMS revela las principales causas de muerte
y discapacidad en el mundo para 2000-2019. Organización Panamericana de
la Salud. [Página web]. [consultado: 01 Septiembre 2023]. Disponible en:
https://www.paho.org/es/noticias/9-12-2020-oms-revela-principales-causas-
muerte-discapacidad-mundo-2000-2019

Python Software Foundation. About Python. Python Software Foundation.
[Página web]. [consultado: 03 Agosto 2023]. Disponible en:
https://www.python.org/about/

Python Software Foundation. Cómo hacerlo: Ordenar. Documentación de
Python 3. [Página web]. [consultado: 03 Agosto 2023]. Disponible en:
https://docs.python.org/es/3/howto/sorting.html

RecursosPython. Checkbox (Checkbutton) en Tcl/Tk (Tkinter).
RecursosPython. [Página web]. [consultado: 01 Septiembre 2023]. Disponible
en: https://recursospython.com/guias-y-manuales/checkbox-checkbutton-en-
tcltk-tkinter/

RecursosPython. Lista Desplegable (Combobox) en Tkinter. RecursosPython.
[Página web]. [consultado: 04 Agosto 2023]. Disponible en:
https://recursospython.com/guias-y-manuales/lista-desplegable-combobox-en-
tkinter/

79

RecursosPython. Vista de Árbol (TreeView) en Tkinter. RecursosPython.
[Página web]. [consultado: 03 Agosto 2023]. Disponible en:
https://recursospython.com/guias-y-manuales/vista-de-arbol-treeview-en-
tkinter/

Rosvel. ¿Qué es un píxel? Rosvel Blog. [Página web]. [consultado: 02
Septiembre 2023]. Disponible en: https://www.rosvel.com/blog/que-es-un-pixel/

Universidad de Jaén. Práctica 4: Visión por Computadora. [Documento PDF].
[consultado: 02 Septiembre 2023]. Disponible en:
http://www4.ujaen.es/~satorres/practicas/practica4_vc.pdf

Uríbe Arango, W., Duque Ramírez, M., & Medina Durango, E.
Electrocardiografía y Arritmias. Siocardio. [Documento PDF]. [consultado: 03
Agosto 2023]. Disponible en: https://www.siacardio.com/wp-
content/uploads/2015/01/Libro-EKG-y-Arritmias-WU.pdf

Web y Empresas. ¿Qué es el Porcentaje de Error? Web y Empresas. [Página
web]. [consultado: 03 Agosto 2023]. Disponible en:
https://www.webyempresas.com/porcentaje-de-
error/#%C2%BFQue_es_el_porcentaje_de_error

Welchallyn, PC-based resting ECG - Hill-ROM, [Libro web]
https://www.welchallyn.com/content/dam/welchallyn/documents/upload-
docs/Catalogs/Full-Line-Catalog/Cardiopulomonary.pdf

A. BENHAMIDA and M. KOZLOVSZKY, "Human ECG data collection,
digitalization, streaming and storing," 2020 IEEE 18th World Symposium on
Applied Machine Intelligence and Informatics (SAMI), Herlany, Slovakia, 2020,
pp. 105-110, doi: 10.1109/SAMI48414.2020.9108765. [Conferencia]

80

ANEXO

Me complace enormemente recomendar el proyecto de grado titulado "Interfaz
Gráfica para Reconocimiento y Deteccion de Caracteristicas en
Electrocardiogramas Usando Python" propuesto por los estudiantes Byron
Hernando Galindo Suarez y Juan Esteban Narváez Carvajal en el campo de
detección de electrocardiogramas. He tenido el privilegio de trabajar de cerca
con estos estudiantes y he sido testiga de su dedicación y capacidad
excepcionales.

Este proyecto aborda una cuestión de gran relevancia en la actualidad: la
detección precisa y eficiente de anomalías en los electrocardiogramas. La
detección temprana de problemas cardíacos es de vital importancia para la salud
de los pacientes, y la utilización de técnicas de procesamiento de señales y
análisis de datos puede tener un impacto significativo en este campo. Durante el
desarrollo de su proyecto, estos estudiantes han demostrado una profunda
comprensión de los fundamentos teóricos detrás de las señales cardíacas, así
como la habilidad para implementar algoritmos sofisticados en plataformas
computacionales.

Con base en su desempeño académico y sus habilidades demostradas, estoy
segura de que los estudiantes realizadores del trabajo tienen el potencial para
contribuir significativamente al avance de la detección de electrocardiogramas y,
en última instancia, a la mejora de la atención médica en este campo.
Recomiendo encarecidamente que se considere su proyecto ya que estoy
convencida de que será un valioso aporte para la comunidad científica y médica.

Atentamente,

Angie Daniela Rendón Carvajal

Médico Cirujano MPPS: 163.516

Hospital Dr. Humberto De Pascuali

Guanare, Portuguesa, Venezuela

+58 4121536045

Adrc_c96@hotmail.com

12 de Agosto del 2023

Anexo A. Carta de parte del médico evaluador

81

global ruta_PDF

global emergente

emergente = None

SECCION DE LIBRERIAS ###

Aqui se realiza la importacion de las librerias

Back

import os # libreria para el manejo del sistema

import shutil # libreria para el control de archivos

import cv2 # libreria para el manejo de las imágenes

from pdf2image import convert_from_path # libreria de conversion de archivos

import matplotlib.pyplot as plt # libreria para visualizar imagen

import numpy as np # Libreria para manipular vectores de la

señal

import time # Libreria para control de tiempo

import sys # Libreria para puntos de ruptura

from scipy.signal import savgol_filter # Libreria para suavizar la señal muestreada

Front

from tkinter import *

import tkinter as tk

from tkinter import messagebox, ttk

from tkinter import filedialog

from PIL import ImageTk, Image

import matplotlib.pyplot as plt

from matplotlib.figure import Figure

from matplotlib.backends.backend_tkagg import FigureCanvasTkAgg, NavigationToolbar2Tk

import numpy as np

import pandas as pd

PREPARACION DE LAS RUTAS DE DATOS ###

Aqui se ajustan las variables de rutas para el proyecto

además de crear y validar los directorios necesarios

Anexo B. Código para el desarrollo de la interfaz

82

def Preparacion():

 if os.path.exists("./Code/Data/Output"):

 shutil.rmtree("./Code/Data/Output")

 os.mkdir("./Code/Data/Output")

 else:

 os.mkdir("./Code/Data/Output")

CUERPO DE FUNCIONES DEL CÓDIGO ###

Función de conversión de PDF a JPEG

def PDF_to_jpeg(ruta_PDF):

 global pages

 poppler_path = os.path.abspath("./Code/lib/poppler-22.04.0/Library/bin") #

Configuracion de rutas de los archivos

 pdf_path = os.path.abspath(ruta_PDF) #

Configuracion de rutas de los archivos

 saving_folder =

os.path.abspath("./Code/Data/Output") # Configuracion de

rutas de los archivos

 pages = convert_from_path(pdf_path = pdf_path, poppler_path = poppler_path) #

Obtención de la cantidad de páginas del documento

 i = 1

 for page in pages:

 img_name = f"img-{i}.jpeg"

 page.save(os.path.join(saving_folder,img_name),"JPEG") #

Conversion de las páginas a PDF

 i += 1

Función de recorte de las imágenes

def crop_image():

 global emergente

 for i in range (2,6,1):

 image="img-"+ str(i) + ".jpeg"

 rimage=

os.path.abspath("./Code/Data/Output/"+image) #

Construción de la ruta de imagen que se desea leer

 try:

 data = cv2.imread(rimage) #

Lectura de la imagen original

 data = data [204:2091,63:1638] #

Recorte de la imágen

 cv2.imwrite('./Code/Data/Output/img-'+ str(i)+'-

crop.jpeg',data) # Almacenaje de las immágenes recortadas

 except (TypeError):

 pass

83

Función para conectar las imágenes recortadas

def Concat_image():

 im2 = cv2.imread("./Code/Data/Output/img-2-crop.jpeg")

 im3 = cv2.imread("./Code/Data/Output/img-3-crop.jpeg")

 im4 = cv2.imread("./Code/Data/Output/img-4-crop.jpeg")

 im5 = cv2.imread("./Code/Data/Output/img-5-crop.jpeg")

 imga = cv2.hconcat([im2, im3])

 imgb = cv2.hconcat([im4, im5])

 img = cv2.hconcat([imga, imgb])

 img = img[:,97:6002]

 cv2.imwrite('./Code/Data/Output/img-ECG.jpeg',img)

Función para limpiar la imágen

def Limpiar_imagen():

 img = cv2.imread("./Code/Data/Output/img-ECG.jpeg")

 ###

 img = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)

 _,img = cv2.threshold(img,100,255,cv2.THRESH_BINARY)

 ###

 mask = cv2.imread("./Code/lib/mask.png",0)

 for f in range(img.shape[0]):

 for c in range(img.shape[1]):

 if (int(mask[f,c]) == 0):

 img[f,c] = 255

 ##

 cv2.imwrite('./Code/Data/Output/img-ECG.jpeg',img)

#Detecto los ejes y secciono la imágen

def Lines_Hough(img):

 global Ejesy

 gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)

 edges = cv2.Canny(gray, 50, 150, apertureSize = 3)

 lines = cv2.HoughLinesP(edges, 1, np.pi/180, 100, minLineLength=500, maxLineGap=50)

 Ejesx=[]

 Ejesy=[]

 for line in lines:

 x1, y1, x2, y2 = line[0]

 if (x1 != x2):

 Ejesx.append(y1)

 cv2.line(img, (x1,y1), (x2,y2), (0,255,0), 1, cv2.LINE_AA)

 else:

 Ejesy.append(x1)

 cv2.line(img, (x1,y1), (x2,y2), (0,255,0), 1, cv2.LINE_AA)

 #Determino el valor de los ejes de cada derivación

 temp=sorted(Ejesx)

 Ejesx=[]

 aux=[]

 x=0

84

 i=0

 while (i+x)<len(temp)-1:

 while (int(temp[x+i])-int(temp[i]))<=10 and (i+x)<len(temp)-1:

 aux.append(int(temp[x+i]))

 x=x+1

 i=x+i

 x=0

 Ejesx.append(round((sum(aux)/len(aux))))

 aux=[]

 temp=sorted(Ejesy)

 Ejesy=[]

 aux=[]

 x=0

 i=0

 while (i+x)<len(temp)-1:

 while (int(temp[x+i])-int(temp[i]))<=10 and (i+x)<len(temp)-1:

 aux.append(int(temp[x+i]))

 x=x+1

 i=x+i

 x=0

 Ejesy.append(round((sum(aux)/len(aux))))

 aux=[]

 img = cv2.imread("./Code/Data/Output/img-ECG.jpeg")

 cv2.imwrite('./Code/Data/Output/I.jpeg',img[Ejesx[0]-150:Ejesx[0]+150,:])

 cv2.imwrite('./Code/Data/Output/II.jpeg',img[Ejesx[1]-150:Ejesx[1]+150,:])

 cv2.imwrite('./Code/Data/Output/III.jpeg',img[Ejesx[2]-150:Ejesx[2]+150,:])

 cv2.imwrite('./Code/Data/Output/aVR.jpeg',img[Ejesx[3]-150:Ejesx[3]+150,:])

 cv2.imwrite('./Code/Data/Output/aVL.jpeg',img[Ejesx[4]-150:Ejesx[4]+150,:])

 cv2.imwrite('./Code/Data/Output/aVF.jpeg',img[Ejesx[5]-150:Ejesx[5]+150,:])

CONSIDERACIONES DE RESOLUCIÓN ####

################## ######################

TIEMPO #

------------ 1 Cuadro -> 5 mm -> 0.2 Seg --------------#

VOLTAJE #

------------ 1 Cuadro -> 5 mm -> 0.5 mV ---------------#

DIMENSIONES #

------------ 1 Cuadro -> 39px X 39px ---------------- #

--------- 1 px Vertical -> 12.82051282 uV ------------ #

-------- 1 px Horizontal -> 5.128205128 mS ---------- #

Vectorización de la Señal

def Vectorizacion_Señal():

85

 global aVF, aVL, aVR, I, II, III, Vtiempo

 global fallaCorte

 fallaCorte = False

 Signals = ['aVF','aVL','aVR','I','II','III']

 for signalstr in Signals:

 strtemp = './Code/Data/Output/' + signalstr + '.jpeg'

 img = cv2.imread(strtemp)

 gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)

 _,img = cv2.threshold(gray,10,255,cv2.THRESH_BINARY)

 aux = np.asarray(img)

 aux1 = np.sum(aux, axis=0)

 posceros = np.where(aux1==76245)

 aux2 = aux[:,posceros[0][0]]

 Ejex = np.where(aux2==0)

 Ejesx = Ejex[0][0]

 aux2 = aux[0,:]

 posceros = np.where(aux2==0)

 Ejesy = posceros[0][:]

 if len(Ejesy) == 30 :

 for i in range(len(aux1)):

 if aux1[i] < 76245:

 img[Ejesx, i] = 255

 for i in range(img.shape[0]):

 for ejey in Ejesy:

 temp = (((img[i,(ejey+1)]==255) or (img[i,(ejey-1)]==255)) and

i!=Ejesx)

 if temp:

 img[i,ejey]=255

 signal=[]

 for i in range(img.shape[1]):

 temp=aux[0:img.shape[0], i]

 ceros = np.where(temp==0)

 ceros = np.asanyarray(ceros[0])

 if len(ceros) == 0:

 val = -10000

 signal.append(val)

 else:

 temp = np.where(abs(ceros - Ejesx)==np.amax(abs(ceros - Ejesx)))

 if len(temp[0][:])==1:

 signal.append(ceros[temp][0])

 else:

 temp = ceros[temp]

 try:

 postemp=np.where(abs(temp-signal[-1])==np.amax(abs(temp-

signal[-1])))

 signal.append(temp[postemp][0])

 except IndexError:

 fallaCorte = True

 signal = np.array(signal)

 huecos = np.where(signal==-10000)

 for hueco in huecos:

86

 signal[hueco] = ((signal[hueco + 1]) + (signal[hueco - 1]))/2

 signal =(signal - Ejesx)*-0.000012820512819999999

 signal = savgol_filter(signal,7,2)

 if signalstr == 'aVF':

 aVF = signal

 elif signalstr == 'aVR':

 aVR = signal

 elif signalstr == 'aVL':

 aVL = signal

 elif signalstr == 'I':

 I = signal

 elif signalstr == 'II':

 II = signal

 else:

 III = signal

 Vtiempo = (np.arange(0,int(signal.shape[0]),1))*0.005128205128000001

 else:

 fallaCorte = True

#Caracterización de la señal

def ObtencionPico():

 global aVF, aVL, aVR, I, II, III, Vtiempo

 global SegmentoSeñal, SegmentoTiempo

 global Maximos, Periodo

 global FrecuenciaCardiaca

 if (len(np.where(I>0.0015)[0])>0):

 print('Descarte la señal')

 print('La señal presenta mucho ruido y picos demasiado altos')

 sys.exit()

 else:

 Maximos = np.where(I>0.0005)[0]

 if len(Maximos) == 0:

 print('Desarte la señal, la onda R se encuentra bajo el estandar de 0.5 mV')

 sys.exit()

 else:

 maximos=np.asarray(Maximos[:])

 if len(maximos) < 150:

 print('Error en la detección')

 print('La onda R no se detecta como marcador')

 sys.exit()

 else:

 temp = []

 aux = []

 Maximos = []

 for i in range(len(maximos)):

 if i >=1 :

 ja = maximos[i] - maximos[i-1]

 if (maximos[i] - maximos[i-1]) <= 20 :

 temp.append(maximos[i])

 else:

87

 aux = np.asarray(I[temp][:])

 indice = np.where(aux == indice)[:][0][0]

 Maximos.append(temp[indice])

 aux = []

 temp = []

 else:

 temp.append(maximos[i])

 temp = []

 for i in range(len(Maximos)):

 if i >= 1:

 temp.append(Maximos[i] - Maximos[i-1])

 Periodo = round(np.mean(temp))

 FrecuenciaCardiaca = len(Maximos)*2

 Picos = I[Maximos]-0.0005

 indice = [np.where(Picos==np.min(Picos))][:][0][0][0]

 indice = Maximos[indice]

 Pico = I[indice]

 Time = Vtiempo[indice]

 SegmentoSeñal = I[indice-round(Periodo/2):indice+round(Periodo/2)]

 SegmentoTiempo = Vtiempo[indice-round(Periodo/2):indice+round(Periodo/2)]

#Obtener características del pico

def Características():

 global SegmentoSeñal, SegmentoTiempo, Periodo

 global VdatoTiempo, VdatoAmplitud, VdatoString

 global divergencias

 divergencias = []

 SegmentoSeñal = savgol_filter(SegmentoSeñal,10,5) # Filtro la señal

 d1x = np.diff(SegmentoSeñal) # Extraigo las derivadas

 d2x = np.diff(d1x)

 ##

 #### CALCULO LAS ONDAS POR OBSERVACIONES EN LAS DERIVADAS ####

 ##

 picos_indices = np.where((np.diff(np.sign(d1x)) < 0) & (d1x[:-1] > 0))[0] +

1

 CaD = SegmentoTiempo[picos_indices]

 picos_indices = np.where((np.diff(np.sign(d1x)) > 0) & (d1x[:-1] < 0))[0] + 1

 DaC = SegmentoTiempo[picos_indices]

 picos_indices = np.where(np.diff(np.sign(d1x)))[0] + 1

 Picos = SegmentoTiempo[picos_indices]

88

 TiempoR = CaD[np.where(CaD == SegmentoTiempo[np.where(SegmentoSeñal ==

np.max(SegmentoSeñal))])][:][0]

 TiempoQa = DaC[np.where(DaC == SegmentoTiempo[np.where(SegmentoSeñal ==

np.min(SegmentoSeñal[0:np.where(SegmentoTiempo == TiempoR)[:][0][0]]))])][:][0]

 TiempoQb = Picos[np.where(Picos == TiempoR)[:][0][0]-1]

 if TiempoQa == TiempoQb:

 TiempoQ = TiempoQa

 else:

 divergencias.append('Q')

 if ((TiempoR - TiempoQa > 0.13) and (TiempoR - TiempoQb < 0.13)) :

 TiempoQ = TiempoQb

 elif ((TiempoR - TiempoQa < 0.13) and (TiempoR - TiempoQb > 0.13)):

 TiempoQ = TiempoQa

 elif SegmentoSeñal[np.where(SegmentoTiempo ==TiempoQa)[:][0][0]] >=

SegmentoSeñal[np.where(SegmentoTiempo ==TiempoQb)[:][0][0]]:

 TiempoQ = TiempoQb

 else:

 TiempoQ = TiempoQa

 TiempoSa = DaC[np.where(DaC == SegmentoTiempo[np.where(SegmentoSeñal ==

np.min(SegmentoSeñal[np.where(SegmentoTiempo == TiempoR)[:][0][0]:]))])][:][0]

 TiempoSb = Picos[np.where(Picos == TiempoR)[:][0][0]+1]

 if TiempoSa == TiempoSb:

 TiempoS = TiempoSa

 else:

 divergencias.append('S')

 if ((TiempoSa - TiempoR > 0.13) and (TiempoSb - TiempoR < 0.13)) :

 TiempoS = TiempoSb

 elif ((TiempoSa - TiempoR < 0.13) and (TiempoSb - TiempoR > 0.13)) :

 TiempoS = TiempoSa

 elif SegmentoSeñal[np.where(SegmentoTiempo ==TiempoSa)[:][0][0]] >=

SegmentoSeñal[np.where(SegmentoTiempo ==TiempoSb)[:][0][0]]:

 TiempoS = TiempoSb

 else:

 TiempoS = TiempoSa

 TiempoPa = CaD[np.where(CaD == SegmentoTiempo[np.where(SegmentoSeñal ==

np.max(SegmentoSeñal[:np.where(SegmentoTiempo == TiempoQ)[:][0][0]]))])][:][0]

 TiempoPb = Picos[np.where(Picos == TiempoQ)[:][0][0]-1]

 if TiempoPa == TiempoPb:

 TiempoP = TiempoPa

 else:

 divergencias.append('P')

 if SegmentoSeñal[np.where(SegmentoTiempo ==TiempoPa)[:][0][0]] >=

SegmentoSeñal[np.where(SegmentoTiempo ==TiempoPb)[:][0][0]]:

 TiempoP = TiempoPa

 else:

 TiempoP = TiempoPb

89

 TiempoTa = CaD[np.where(CaD == SegmentoTiempo[np.where(SegmentoSeñal ==

np.max(SegmentoSeñal[np.where(SegmentoTiempo == TiempoS)[:][0][0]:]))])][:][0]

 TiempoTb = Picos[np.where(Picos == TiempoS)[:][0][0]+1]

 if TiempoTa == TiempoTb:

 TiempoT = TiempoTa

 else:

 divergencias.append('T')

 if SegmentoSeñal[np.where(SegmentoTiempo ==TiempoTa)[:][0][0]] >=

SegmentoSeñal[np.where(SegmentoTiempo ==TiempoTb)[:][0][0]]:

 TiempoT = TiempoTa

 else:

 TiempoT = TiempoTb

 xD = d2x[np.where(SegmentoTiempo == Picos[np.where(Picos == TiempoP)[:][0][0]-

1])[:][0][0] : np.where(SegmentoTiempo == TiempoP)[:][0][0]]

 aux = SegmentoTiempo[np.where(SegmentoTiempo == Picos[np.where(Picos ==

TiempoP)[:][0][0]-1])[:][0][0] : np.where(SegmentoTiempo == TiempoP)[:][0][0]]

 TiempoPI = aux[np.where(xD == np.max(xD))[:][0][0]]

 aux = SegmentoTiempo[np.where(SegmentoTiempo == TiempoP)[:][0][0] :

np.where(SegmentoTiempo == TiempoQ)[:][0][0]]

 TiempoPF = aux[int(len(aux)/2)]

 aux = SegmentoTiempo[np.where(SegmentoTiempo == Picos[np.where(Picos ==

TiempoT)[:][0][0]-1])[:][0][0] : np.where(SegmentoTiempo == TiempoT)[:][0][0]]

 TiempoTI = aux[int(len(aux)/2)]

 aux = SegmentoTiempo[np.where(SegmentoTiempo == TiempoT)[:][0][0] :

np.where(SegmentoTiempo == Picos[np.where(Picos == TiempoT)[:][0][0]+1])[:][0][0]]

 TiempoTF = aux[int(len(aux)/2)]

 R = SegmentoSeñal[np.where(SegmentoTiempo == TiempoR)][:][0]

 S = SegmentoSeñal[np.where(SegmentoTiempo == TiempoS)][:][0]

 T = SegmentoSeñal[np.where(SegmentoTiempo == TiempoT)][:][0]

 Q = SegmentoSeñal[np.where(SegmentoTiempo == TiempoQ)][:][0]

 P = SegmentoSeñal[np.where(SegmentoTiempo == TiempoP)][:][0]

 PI = SegmentoSeñal[np.where(SegmentoTiempo == TiempoPI)][:][0]

 PF = SegmentoSeñal[np.where(SegmentoTiempo == TiempoPF)][:][0]

 TI = SegmentoSeñal[np.where(SegmentoTiempo == TiempoTI)][:][0]

 TF = SegmentoSeñal[np.where(SegmentoTiempo == TiempoTF)][:][0]

 VdatoTiempo = [TiempoPI, TiempoP, TiempoPF, TiempoQ, TiempoR, TiempoS, TiempoTI,

TiempoT, TiempoTF]

 VdatoAmplitud = [PI, P, PF, Q, R, S, TI, T, TF]

 VdatoString = ['PI', 'P', 'PR', 'Q', 'R', 'S', 'TI', 'T', 'TF']

Obtencion de los segmentos y datos específicos

def ObtencionParametros():

 global VdatoAmplitud, VdatoTiempo, VdatoString, Periodo

 global VdataSegmento, VdatoSegmento

 SegmentoRR = Periodo*0.005128205128000001

 SegmentoPR = VdatoTiempo[3] - VdatoTiempo[0]

90

 SegmentoQRS = VdatoTiempo[5] - VdatoTiempo[3]

 SegmentoQT = ((VdatoTiempo[8] - VdatoTiempo[3])/np.sqrt(SegmentoRR))

 SegmentoST = VdatoTiempo[6] - VdatoTiempo[5]

 VdatoSegmento = ['RR', 'PR', 'QRS', 'QT', 'ST']

 VdataSegmento = [SegmentoRR, SegmentoPR, SegmentoQRS, SegmentoQT, SegmentoST]

DESARROLLO DE LA INTERFAZ DE USUARIO ###

Parametros de personalizacion

fondo = "#FFF"

fuente = "PT Sans"

ancho = 900

alto = 700

color_letra_titulo = "#8F141B"

color_letra_texto = "#000"

Declaracion de la ventana

ventana = Tk()

#Configuracion para pantalla centrada y dimensiones de la ventana

ancho_ventana = ventana.winfo_screenwidth() // 2 - ancho // 2

alto_ventana = ventana.winfo_screenheight() // 2 - alto // 2

posicion = str(ancho) + "x" + str(alto) + "+" + str(ancho_ventana) + "+" +

str(alto_ventana)

ventana.geometry(posicion)

#Personalizacion de la ventana

ventana.resizable(0,0)

 # No puede maximizarse

icono = PhotoImage(file =

"./Code/lib/usco.png") # Icono

de la ventana

ventana.iconphoto(True, icono)

ventana.title("Interfaz grafica de digitalización y detección de enfermedades

cardíacas") # Titulo de la ventana

ventana.config(bg = fondo)

frameMayor = Frame(ventana, bg = fondo)

frameMayor.pack(fill = 'both', expand = True)

imagenUsco = ImageTk.PhotoImage(Image.open("./Code/lib/universidad-surcolombiana.png"))

archivo = None

def inicio():

 Preparacion()

 for widgets in frameMayor.winfo_children():

 widgets.destroy()

 global inicioFrame

91

 inicioFrame = Frame(frameMayor, bg = "#F2F2F2")

 inicioFrame.pack(fill = 'both', expand = 1)

 frameHeader = Frame(inicioFrame, bg = "#F2F2F2")

 frameMid = Frame(inicioFrame, bg = "#F2F2F2")

 frameFooter = Frame(inicioFrame, bg = "#F2F2F2")

 # Declaracion de etiquetas

 label1 = Label(frameHeader, text = "Interfaz de digitalización y detección de

enfermedades cardíacas", fg = color_letra_titulo, bg = "#F2F2F2", font = (fuente, 20,

"bold"))

 label2 = Label(frameMid, text = "Byron Hernando Galindo Suárez - 20171155352", fg =

"black", bg = "#F2F2F2", font = (fuente, 17, "bold"))

 label3 = Label(frameMid, text = "Juan Esteban Narváez Carvajal - 20171159625", fg =

"black", bg = "#F2F2F2", font = (fuente, 17, "bold"))

 label4 = Label(frameMid, image = imagenUsco, bg ="#F2F2F2")

 # Declaracion de botones

 btnContinuar = Button(frameFooter, text = "Continuar", font = (fuente, 20, "bold"),

command = datos, width = 20, height = 20)

 # Posicionamiento de frames

 frameHeader.pack(side = "top", fill = "both")

 frameMid.pack(fill = "both", expand = True)

 frameFooter.pack(side = "bottom", fill = "both")

 # Posicionamiento de etiquetas

 label1.pack(pady = 100)

 label2.pack()

 label3.pack()

 label4.pack(pady = 75)

 # Posicionamiento de botones

 btnContinuar.pack(pady = 50)

def datos():

 for widgets in frameMayor.winfo_children():

 widgets.destroy()

 global datosFrame

 datosFrame = Frame(frameMayor, bg = "#F2F2F2")

 datosFrame.pack(fill = "both", expand = 1)

 frameHeader = Frame(datosFrame, bg = "#F2F2F2")

 frameMid = Frame(datosFrame, bg = "#F2F2F2")

 frameFooter = Frame(datosFrame, bg = "#F2F2F2")

 # Posicionamiento de frames

 frameHeader.pack(side = "top", fill = "both")

 frameMid.pack(fill = "both", expand = True)

92

 frameFooter.pack(side = "bottom", fill = "both")

 lbl7 = Label(frameMid, text = "Archivo: ", fg = "black", bg = "#F2F2F2", font =

(fuente, 10, "bold"))

 def abrirArchivo():

 btnProcesar['state'] = DISABLED

 lbl7['text'] = "Archivo: "

 global archivo, pages

 try:

 archivo = filedialog.askopenfile(title = "Abrir", initialdir =

os.path.abspath(os.getcwd()), filetypes = (("Formato PDF", "*.pdf"),))

 if archivo.name != None :

 PDF_to_jpeg(archivo.name)

 lbl7['text'] = lbl7['text'] + str(archivo.name)

 ventana.imgtk = ImageTk.PhotoImage((Image.open("./Code/Data/Output/img-

1.jpeg")).resize((250,300)))

 labelvista.configure(image=ventana.imgtk)

 labelvista.pack()

 if len(pages)==5:

 btnProcesar['state'] = NORMAL

 else:

 emergente = tk.Toplevel(ventana)

 emergente.title('File Error!!!')

 emergente.geometry(str('290x180+' +

str(ventana.winfo_screenwidth()//2 - 290 // 2) + "+" + str(ventana.winfo_screenheight()

// 2 - 180 // 2)))

 emergente.configure(background = 'white')

 emergente.attributes("-toolwindow", True)

 emergente.resizable(False,False)

 emergente.protocol("WM_DELETE_WINDOW", lambda: None)

 etiqueta = tk.Label(emergente, text = "Error!!!")

 etiqueta.pack(anchor = CENTER)

 etiqueta.config(font = (fuente, 10, "bold"), fg = 'red', bg ='white')

 labelAlerta = tk.Label(emergente, bg = fondo, image = None)

 ventana.alerta =

ImageTk.PhotoImage((Image.open("./Code/lib/alerta.png")))

 labelAlerta.configure(image=ventana.alerta)

 labelAlerta.pack()

 etiqueta2 = tk.Label(emergente, text = "El archivo seleccionado no

cumple con las \ncaracterísticas de un ECG de Kardia")

 etiqueta2.pack(anchor = CENTER)

 etiqueta2.configure(font = (fuente, 10, "bold"), bg ='white')

 btn_aceptar = tk.Button(emergente, text = "Aceptar", command =

emergente.destroy, font = (fuente, 10, "bold"))

 btn_aceptar.pack(pady = 10)

 btnProcesar['state'] = DISABLED

 except AttributeError:

 pass

93

 lbl5 = Label(frameHeader, text = "Por favor, cargue el archivo en formato PDF\n del

electrocardiograma entregado por Kardia 6L", fg = "black", bg = "#F2F2F2", font =

(fuente, 12))

 btnCargar = Button(frameHeader, text = "Cargar archivo", font = (fuente, 15, "bold"),

command = abrirArchivo)

 lbl6 = Label(frameMid, text = "Previsualizacion del pdf cargado", fg = "black", bg =

"#F2F2F2", font = (fuente, 15, "bold"))

 frameVisualizacion = Frame(frameMid, bg = "white", width = 250, height = 300,

highlightbackground = "black", highlightthickness = 2)

 labelvista = Label(frameVisualizacion, bg = "#F2F2F2", image = None)

 btnVolver = Button(frameFooter, text = "Volver", font = (fuente, 20, "bold"), command

= inicio)

 btnProcesar = Button(frameFooter, text = "Procesar", font = (fuente, 20, "bold"),

command = resultados, state = DISABLED)

 lbl5.pack(side = "left", padx = 75, pady = 75)

 btnCargar.pack(side = "right", padx = 75, pady = 75)

 lbl6.pack()

 frameVisualizacion.pack(pady = 10)

 lbl7.pack()

 btnVolver.pack(side = "left", padx = 75, pady = 25)

 btnProcesar.pack(side = "right", padx = 75, pady = 25)

def resultados():

 global fallaCorte, ancho_ventana, alto_ventana, divergencias

 global resultadosFrame, SignalPlot, Clicks, Capsulasegmento, Capsulapico

 global I, II, III, aVR, aVL, aVF, Vtiempo, SegmentoTiempo, SegmentoSeñal

 global Inicio_pico_Seg, Fin_pico_Seg

 global Maximos, Periodo

 global FrecuenciaCardiaca

 for widgets in frameMayor.winfo_children():

 widgets.destroy()

 crop_image()

 Concat_image()

 Limpiar_imagen()

 Lines_Hough(cv2.imread('./Code/Data/Output/img-ECG.jpeg'))

 Vectorizacion_Señal()

 if fallaCorte == True:

 emergente = tk.Toplevel(ventana)

 emergente.title('Process Error!!!')

 emergente.geometry(str('390x250+' + str(ventana.winfo_screenwidth()//2 - 390 //

2) + "+" + str(ventana.winfo_screenheight() // 2 - 250 // 2)))

 emergente.configure(background = 'white')

 emergente.attributes("-toolwindow", True)

 emergente.resizable(False,False)

 emergente.protocol("WM_DELETE_WINDOW", lambda: None)

 etiqueta = tk.Label(emergente, text = "Error")

 etiqueta.pack(anchor = CENTER)

 etiqueta.config(font = (fuente, 10, "bold"), fg = 'red', bg ='white')

94

 labelAlerta = tk.Label(emergente, bg = fondo, image = None)

 ventana.alerta =

ImageTk.PhotoImage((Image.open("./Code/lib/alerta2.png")).resize((80,80),

resample=Image.LANCZOS))

 labelAlerta.configure(image=ventana.alerta)

 labelAlerta.pack()

 etiqueta2 = tk.Label(emergente, text = "La señal detectada fue cortada durante la

digitalización, \nla señal puede tener mucho ruido o \n es una señal con muy poca

amplitud. \nEl procesamiento no es válido \nReintente con un nuevo archivo!")

 etiqueta2.pack(anchor = CENTER)

 etiqueta2.configure(font = (fuente, 10, "bold"), bg ='white')

 def alfa():

 emergente.destroy()

 datos()

 btn_aceptar = tk.Button(emergente, text = "Aceptar", command = alfa, font =

(fuente, 10, "bold"))

 btn_aceptar.pack(pady = 10)

 else:

 if (len(np.where(I>0.0015)[0])>0):

 emergente = tk.Toplevel(ventana)

 emergente.title('Process Error!!!')

 emergente.geometry(str('310x210+' + str(ventana.winfo_screenwidth()//2 - 310

// 2) + "+" + str(ventana.winfo_screenheight() // 2 - 210 // 2)))

 emergente.configure(background = 'white')

 emergente.attributes("-toolwindow", True)

 emergente.resizable(False,False)

 emergente.protocol("WM_DELETE_WINDOW", lambda: None)

 etiqueta = tk.Label(emergente, text = "Error")

 etiqueta.pack(anchor = CENTER)

 etiqueta.config(font = (fuente, 10, "bold"), fg = 'red', bg ='white')

 labelAlerta = tk.Label(emergente, bg = fondo, image = None)

 ventana.alerta =

ImageTk.PhotoImage((Image.open("./Code/lib/alerta2.png")).resize((80,80),

resample=Image.LANCZOS))

 labelAlerta.configure(image=ventana.alerta)

 labelAlerta.pack()

 etiqueta2 = tk.Label(emergente, text = "La señal detectada presenta demasido

ruido \nEl procesamiento no es válido \nReintente con un nuevo archivo!")

 etiqueta2.pack(anchor = CENTER)

 etiqueta2.configure(font = (fuente, 10, "bold"), bg ='white')

 def alfa():

 emergente.destroy()

 datos()

 btn_aceptar = tk.Button(emergente, text = "Aceptar", command = alfa, font =

(fuente, 10, "bold"))

 btn_aceptar.pack(pady = 10)

 else:

 Maximos = np.where(I>0.0005)[0]

 if len(Maximos) == 0:

 emergente = tk.Toplevel(ventana)

95

 emergente.title('Process Error!!!')

 emergente.geometry(str('250x210+' + str(ventana.winfo_screenwidth()//2 -

250 // 2) + "+" + str(ventana.winfo_screenheight() // 2 - 210 // 2)))

 emergente.configure(background = 'white')

 emergente.attributes("-toolwindow", True)

 emergente.resizable(False,False)

 emergente.protocol("WM_DELETE_WINDOW", lambda: None)

 etiqueta = tk.Label(emergente, text = "Error")

 etiqueta.pack(anchor = CENTER)

 etiqueta.config(font = (fuente, 10, "bold"), fg = 'red', bg ='white')

 labelAlerta = tk.Label(emergente, bg = fondo, image = None)

 ventana.alerta =

ImageTk.PhotoImage((Image.open("./Code/lib/alerta2.png")).resize((80,80),

resample=Image.LANCZOS))

 labelAlerta.configure(image=ventana.alerta)

 labelAlerta.pack()

 etiqueta2 = tk.Label(emergente, text = "En la señal detectada presenta

poca amplitud \nEl procesamiento no es válido \nReintente con un nuevo archivo!")

 etiqueta2.pack(anchor = CENTER)

 etiqueta2.configure(font = (fuente, 10, "bold"), bg ='white')

 def alfa():

 emergente.destroy()

 datos()

 btn_aceptar = tk.Button(emergente, text = "Aceptar", command =

alfa, font = (fuente, 10, "bold"))

 btn_aceptar.pack(pady = 10)

 else:

 maximos=np.asarray(Maximos[:])

 if len(maximos) < 100:

 emergente = tk.Toplevel(ventana)

 emergente.title('Process Error!!!')

 emergente.geometry(str('250x210+' +

str(ventana.winfo_screenwidth()//2 - 250 // 2) + "+" + str(ventana.winfo_screenheight()

// 2 - 210 // 2)))

 emergente.configure(background = 'white')

 emergente.attributes("-toolwindow", True)

 emergente.resizable(False,False)

 emergente.protocol("WM_DELETE_WINDOW", lambda: None)

 etiqueta = tk.Label(emergente, text = "Error")

 etiqueta.pack(anchor = CENTER)

 etiqueta.config(font = (fuente, 10, "bold"), fg = 'red', bg ='white')

 labelAlerta = tk.Label(emergente, bg = fondo, image = None)

 ventana.alerta =

ImageTk.PhotoImage((Image.open("./Code/lib/alerta2.png")).resize((80,80),

resample=Image.LANCZOS))

 labelAlerta.configure(image=ventana.alerta)

 labelAlerta.pack()

 etiqueta2 = tk.Label(emergente, text = "Error en la detección de la

onda R \nEl procesamiento no es válido \nReintente con un nuevo archivo!")

 etiqueta2.pack(anchor = CENTER)

 etiqueta2.configure(font = (fuente, 10, "bold"), bg ='white')

96

 def alfa():

 emergente.destroy()

 datos()

 btn_aceptar = tk.Button(emergente, text = "Aceptar", command =

alfa, font = (fuente, 10, "bold"))

 btn_aceptar.pack(pady = 10)

 else:

 temp = []

 aux = []

 Maximos = []

 for i in range(len(maximos)):

 if i >=1 :

 ja = maximos[i] - maximos[i-1]

 if (maximos[i] - maximos[i-1]) <= 20 :

 temp.append(maximos[i])

 else:

 aux = np.asarray(I[temp][:])

 indice = np.max(aux)

 indice = np.where(aux == indice)[:][0][0]

 Maximos.append(temp[indice])

 aux = []

 temp = []

 else:

 temp.append(maximos[i])

 temp = []

 for i in range(len(Maximos)):

 if i >= 1:

 temp.append(Maximos[i] - Maximos[i-1])

 Periodo = round(np.mean(temp))

 FrecuenciaCardiaca = len(Maximos)*2

 Picos = I[Maximos]-0.0005

 indice = [np.where(Picos==np.min(Picos))][:][0][0][0]

 indice = Maximos[indice]

 Pico = I[indice]

 Time = Vtiempo[indice]

 SegmentoSeñal = I[indice-round(Periodo/2):indice+round(Periodo/2)]

 SegmentoTiempo = Vtiempo[indice-

round(Periodo/2):indice+round(Periodo/2)]

 Características()

 ObtencionParametros()

 SignalPlot = I

 Clicks = 0

 # Vista por defecto es con la señal I

97

 Inicio_pico_Seg = Vtiempo[np.where (Vtiempo ==

SegmentoTiempo[0])][:][0]

 Fin_pico_Seg = Vtiempo[np.where (Vtiempo == SegmentoTiempo[-

1])][:][0]

 Datospicoplottiempo = Vtiempo[np.where(Vtiempo ==

Inicio_pico_Seg)[:][0][0] : np.where(Vtiempo == Fin_pico_Seg)[:][0][0]]

 Datospicoplotseñal = SignalPlot[np.where(Vtiempo ==

Inicio_pico_Seg)[:][0][0] : np.where(Vtiempo == Fin_pico_Seg)[:][0][0]]*1000

 Datossegmentoplottiempo = Vtiempo[(Clicks*590):((Clicks+1)*590)]

 Datossegmentoplotseñal =

SignalPlot[(Clicks*590):((Clicks+1)*590)]*1000

 resultadosFrame = Frame(frameMayor, bg = "#F2F2F2")

 resultadosFrame.pack(fill = "both", expand = 1)

 frameHeader = Frame(resultadosFrame, height = 50, bg = "#F2F2F2")

 frameParametros = Frame(resultadosFrame, height = 100, bg =

"#F2F2F2")

 frameFooter = Frame(resultadosFrame, height = 50, bg = "#F2F2F2")

 ecgFrame = Frame(frameParametros, height = 50, bg = "#F2F2F2")

 def res_3s():

 global Clicks, SignalPlot, Capsulasegmento, Vtiempo

 if Clicks > 0:

 Capsulasegmento.get_tk_widget().destroy()

 Clicks = Clicks - 1

 Datossegmentoplottiempo =

Vtiempo[(Clicks*590):((Clicks+1)*590)]

 Datossegmentoplotseñal =

SignalPlot[(Clicks*590):((Clicks+1)*590)]*1000

 figure = plt.Figure(dpi=55)

 Segmento = figure.add_subplot(1, 1, 1)

 Segmento.set_ylabel('Amplitud (mV)')

 Segmento.plot(Datossegmentoplottiempo,Datossegmentoplotseñal)

 Segmento.set_xlabel('Tiempo (s)')

 Segmento.set_title(' Señal I')

 Capsulasegmento = FigureCanvasTkAgg(figure, master =

ecgFrame)

 Capsulasegmento.get_tk_widget().pack(pady = 5)

 # aqui debe de actualizar el plot

 # Debe de desplazar la señal hacia atras 6seg, ojo para clicks >

0

 def sum_3s():

 global Clicks, SignalPlot, Capsulasegmento, Vtiempo

 if Clicks < 9:

 Capsulasegmento.get_tk_widget().destroy()

 Clicks = Clicks + 1

98

 Datossegmentoplottiempo =

Vtiempo[(Clicks*590):((Clicks+1)*590)]

 Datossegmentoplotseñal =

SignalPlot[(Clicks*590):((Clicks+1)*590)]*1000

 figure = plt.Figure(dpi=55)

 Segmento = figure.add_subplot(1, 1, 1)

 Segmento.set_ylabel('Amplitud (mV)')

 Segmento.plot(Datossegmentoplottiempo,Datossegmentoplotseñal)

 Segmento.set_xlabel('Tiempo (s)')

 Segmento.set_title(' Señal I')

 Capsulasegmento = FigureCanvasTkAgg(figure, master =

ecgFrame)

 Capsulasegmento.get_tk_widget().pack(pady = 5)

 # aqui debe de actualizar el plot

 # debe de desplazar la señal hacia adelante 6seg, ojo para clicks

< 5

 def Cambiar_grafica(event):

 global SignalPlot, Capsulasegmento, Capsulapico, Clicks

 global Inicio_pico_Seg, Fin_pico_Seg

 global Vtiempo, VdatoTiempo, VdataSegmento, VdatoSegmento

 global VdatoTiempo, VdatoAmplitud, VdatoString,

FrecuenciaCardiaca

 Clicks = 0

 SignalSelect = desplegable.get()

 SignalPlot = globals()[SignalSelect]

 Datospicoplottiempo = Vtiempo[np.where(Vtiempo ==

Inicio_pico_Seg)[:][0][0] : np.where(Vtiempo == Fin_pico_Seg)[:][0][0]]

 Datospicoplotseñal = SignalPlot[np.where(Vtiempo ==

Inicio_pico_Seg)[:][0][0] : np.where(Vtiempo == Fin_pico_Seg)[:][0][0]]*1000

 Datossegmentoplottiempo = Vtiempo[(Clicks*590):((Clicks+1)*590)]

 Datossegmentoplotseñal =

SignalPlot[(Clicks*590):((Clicks+1)*590)]*1000

 Capsulasegmento.get_tk_widget().destroy()

 figure = plt.Figure(dpi=55)

 Segmento = figure.add_subplot(1, 1, 1)

 Segmento.set_ylabel('Amplitud (mV)')

 Segmento.plot(Datossegmentoplottiempo,Datossegmentoplotseñal)

 Segmento.set_xlabel('Tiempo (s)')

 Segmento.set_title(' Señal '+ SignalSelect)

 Capsulasegmento = FigureCanvasTkAgg(figure, master = ecgFrame)

 Capsulasegmento.get_tk_widget().pack(pady = 5)

 Capsulapico.get_tk_widget().destroy()

 P = (SignalPlot[np.where(Vtiempo == VdatoTiempo[1])][:][0])*1000

 Q = (SignalPlot[np.where(Vtiempo == VdatoTiempo[3])][:][0])*1000

99

 R = (SignalPlot[np.where(Vtiempo ==

VdatoTiempo[4])][:][0])*1000

 S = (SignalPlot[np.where(Vtiempo == VdatoTiempo[5])][:][0])*1000

 T = (SignalPlot[np.where(Vtiempo ==

VdatoTiempo[7])][:][0])*1000

 figure = plt.Figure(dpi=55)

 Pico = figure.add_subplot(1, 1, 1)

 Pico.set_ylabel('Amplitud (mV)')

 Pico.plot(Datospicoplottiempo,Datospicoplotseñal)

 Pico.annotate("P", xy = (VdatoTiempo[1],P), xytext =

(VdatoTiempo[1],P+0.05), arrowprops=dict(facecolor='black', arrowstyle='->'))

 Pico.annotate("Q", xy = (VdatoTiempo[3],Q), xytext =

(VdatoTiempo[3],Q-0.05), arrowprops=dict(facecolor='black', arrowstyle='->'))

 Pico.annotate("R", xy = (VdatoTiempo[4],R), xytext =

(VdatoTiempo[4],R+0.05), arrowprops=dict(facecolor='black', arrowstyle='->'))

 Pico.annotate("S", xy = (VdatoTiempo[5],S), xytext =

(VdatoTiempo[5],S-0.05), arrowprops=dict(facecolor='black', arrowstyle='->'))

 Pico.annotate("T", xy = (VdatoTiempo[7],T), xytext =

(VdatoTiempo[7],T+0.05), arrowprops=dict(facecolor='black', arrowstyle='->'))

 Pico.set_xlabel('Tiempo (s)')

 Pico.set_title('Pico Seleleccionado en '+ SignalSelect)

 Capsulapico = FigureCanvasTkAgg(figure, master = picoFrame)

 Capsulapico.get_tk_widget().pack(pady = 5)

 #actualizar el graficos el segmento y el pico

 btnAtras = Button(ecgFrame, text = "- 3s", font = (fuente, 15,

"bold"), command = res_3s)

 btnAdelante = Button(ecgFrame, text = "+ 3s", font = (fuente, 15,

"bold"), command = sum_3s)

 btnAtras.pack(side = 'left', padx = (150, 0), pady = 50)

 btnAdelante.pack(side = 'right', padx = (0, 150), pady = 50)

 figure = plt.Figure(dpi=55)

 Segmento = figure.add_subplot(1, 1, 1)

 Segmento.set_ylabel('Amplitud (mV)')

 Segmento.plot(Datossegmentoplottiempo,Datossegmentoplotseñal)

 Segmento.set_xlabel('Tiempo (s)')

 Segmento.set_title(' Señal I')

 Capsulasegmento = FigureCanvasTkAgg(figure, master = ecgFrame)

 Capsulasegmento.get_tk_widget().pack(pady = 5)

 picoFrame = Frame(frameParametros, height = 50, bg = "#F2F2F2")

 frameComplejos = Frame(picoFrame, highlightbackground="black",

highlightthickness=2)

 frameComplejos.pack(side = "left", padx = (75,0))

 labelCabecera = Label(frameComplejos,fg = color_letra_texto, text =

'Características', bg = "#F2F2F2", font = (fuente, 13, "bold"))

 labelCabecera.pack(pady=10)

 tabla = ttk.Treeview(frameComplejos)

 tabla['columns'] = ('Parámetro', 'Valor')

100

 tabla.column('#0', width=0, stretch=tk.NO) # Columna de índice

oculta

 tabla.column('Parámetro', width=115)

 tabla.column('Valor', width=100)

 tabla.heading('#0', text='', anchor=tk.W)

 tabla.heading('Parámetro', text='Parámetro', anchor=tk.W)

 tabla.heading('Valor', text='Valor', anchor=tk.W)

 tabla.insert('', 'end', text='1', values=('Frecuencia Cardiaca

',str(FrecuenciaCardiaca)+' LPM'))

 tabla.insert('', 'end', text='2', values=('Momento ' +

VdatoString[1],str(round(VdatoTiempo[1],2))+' Seg'))

 tabla.insert('', 'end', text='3', values=('Momento ' +

VdatoString[3],str(round(VdatoTiempo[3],2))+' Seg'))

 tabla.insert('', 'end', text='4', values=('Momento ' +

VdatoString[4],str(round(VdatoTiempo[4],2))+' Seg'))

 tabla.insert('', 'end', text='5', values=('Momento ' +

VdatoString[5],str(round(VdatoTiempo[5],2))+' Seg'))

 tabla.insert('', 'end', text='6', values=('Momento ' +

VdatoString[7],str(round(VdatoTiempo[7],2))+' Seg'))

 tabla.insert('', 'end', text='7', values=('Duración ' +

VdatoString[1],str(round(VdatoTiempo[2]-VdatoTiempo[0],2))+' Seg'))

 tabla.insert('', 'end', text='8', values=('Duración ' +

VdatoString[7],str(round(VdatoTiempo[8]-VdatoTiempo[6],2))+' Seg'))

 tabla.insert('', 'end', text='9', values=('Amplitud ' +

VdatoString[4],str(round(VdatoAmplitud[4]*1000,2))+' mV'))

 tabla.insert('', 'end', text='10', values=('Dur. Comp. ' +

VdatoSegmento[0],str(round(VdataSegmento[0],2))+' Seg'))

 tabla.insert('', 'end', text='11', values=('Dur. Comp. ' +

VdatoSegmento[1],str(round(VdataSegmento[1],2))+' Seg'))

 tabla.insert('', 'end', text='12', values=('Dur. Comp. ' +

VdatoSegmento[2],str(round(VdataSegmento[2],2))+' Seg'))

 tabla.insert('', 'end', text='13', values=('Dur. Comp. ' +

VdatoSegmento[3],str(round(VdataSegmento[3],2))+' Seg'))

 tabla.insert('', 'end', text='14', values=('Dur. Comp. ' +

VdatoSegmento[4],str(round(VdataSegmento[4],2))+' Seg'))

 tabla.pack()

 desplegable = ttk.Combobox(picoFrame, values = ["I", "II", "III",

"aVR", "aVL", "aVF"], font = (fuente, 13), width = 5)

 desplegable.set("I")

 desplegable.bind("<<ComboboxSelected>>", Cambiar_grafica)

 desplegable.pack(side = "right", padx = (0,75))

 P = (SignalPlot[np.where(Vtiempo == VdatoTiempo[1])][:][0])*1000

 Q = (SignalPlot[np.where(Vtiempo == VdatoTiempo[3])][:][0])*1000

 R = (SignalPlot[np.where(Vtiempo ==

VdatoTiempo[4])][:][0])*1000

 S = (SignalPlot[np.where(Vtiempo == VdatoTiempo[5])][:][0])*1000

 T = (SignalPlot[np.where(Vtiempo == VdatoTiempo[7])][:][0])*1000

 figure = plt.Figure(dpi=55)

101

 Pico = figure.add_subplot(1, 1, 1)

 Pico.set_ylabel('Amplitud (mV)')

 Pico.plot(Datospicoplottiempo,Datospicoplotseñal)

 Pico.annotate("P", xy = (VdatoTiempo[1],P), xytext =

(VdatoTiempo[1]+0.02,P), arrowprops=dict(facecolor='red', arrowstyle='->'))

 Pico.annotate("Q", xy = (VdatoTiempo[3],Q), xytext =

(VdatoTiempo[3]+0.02,Q), arrowprops=dict(facecolor='red', arrowstyle='->'))

 Pico.annotate("R", xy = (VdatoTiempo[4],R), xytext =

(VdatoTiempo[4]+0.02,R), arrowprops=dict(facecolor='red', arrowstyle='->'))

 Pico.annotate("S", xy = (VdatoTiempo[5],S), xytext =

(VdatoTiempo[5]+0.02,S), arrowprops=dict(facecolor='red', arrowstyle='->'))

 Pico.annotate("T", xy = (VdatoTiempo[7],T), xytext =

(VdatoTiempo[7]+0.02,T), arrowprops=dict(facecolor='red', arrowstyle='->'))

 Pico.set_xlabel('Tiempo (s)')

 Pico.set_title('Pico Seleleccionado en I')

 Capsulapico = FigureCanvasTkAgg(figure, master = picoFrame)

 Capsulapico.get_tk_widget().pack(pady = 5)

 lbl8 = Label(frameHeader, text = "PARAMETROS", fg = "black", font =

(fuente, 17, "bold"), bg = "#F2F2F2")

 btnVolver = Button(frameFooter, text = "Volver", font = (fuente, 12,

"bold"), command = datos)

 btnDiagnosticar = Button(frameFooter, text = "Diagnosticar", font =

(fuente, 12, "bold"), command = diagnostico)

 frameHeader.pack(side = 'top', fill = 'x')

 frameParametros.pack(fill = 'both', expand = '1')

 frameFooter.pack(side = 'bottom', fill = 'x')

 ecgFrame.pack(side = 'top', fill = 'both', expand = True)

 picoFrame.pack(side = 'bottom', fill = 'both', expand = True)

 lbl8.pack(side = 'top', fill = 'both', expand = 1, pady = 5)

 btnVolver.pack(side = 'left', padx = (100, 0), pady = 25)

 btnDiagnosticar.pack(side = 'right', padx = (0, 100), pady = 25)

 if len(divergencias)>=1:

 if len(divergencias)==1:

 emergente = tk.Toplevel(ventana)

 emergente.title('Advertencia')

 emergente.geometry(str('240x180+' +

str(ventana.winfo_screenwidth()//2 - 240 // 2) + "+" + str(ventana.winfo_screenheight()

// 2 - 180 // 2)))

 emergente.configure(background = 'white')

 emergente.attributes("-toolwindow", True)

 emergente.resizable(False,False)

 emergente.protocol("WM_DELETE_WINDOW", lambda: None)

 etiqueta = tk.Label(emergente, text = "Advertencia!!!")

 etiqueta.pack(anchor = CENTER)

 etiqueta.config(font = (fuente, 10, "bold"), fg = 'red', bg

='white')

102

 labelAlerta = tk.Label(emergente, bg = fondo, image = None)

 ventana.alerta =

ImageTk.PhotoImage((Image.open("./Code/lib/alerta3.png")))

 labelAlerta.configure(image=ventana.alerta)

 labelAlerta.pack()

 etiqueta2 = tk.Label(emergente, text =("Divergencia en la

estimación de \n" + "la onda " + str(divergencias[0])))

 etiqueta2.pack(anchor = CENTER)

 etiqueta2.configure(font = (fuente, 10, "bold"), bg

='white')

 btn_aceptar = tk.Button(emergente, text = "Aceptar", command

= emergente.destroy, font = (fuente, 10, "bold"))

 btn_aceptar.pack(pady = 10)

 else:

 temp = ""

 for i in range(len(divergencias)):

 if i == len(divergencias)-1:

 temp = temp + str(divergencias[i]) + "."

 else:

 temp = temp + str(divergencias[i]) + ","

 emergente = tk.Toplevel(ventana)

 emergente.title('Advertencia')

 emergente.geometry(str('240x180+' +

str(ventana.winfo_screenwidth()//2 - 240 // 2) + "+" + str(ventana.winfo_screenheight()

// 2 - 180 // 2)))

 emergente.configure(background = 'white')

 emergente.attributes("-toolwindow", True)

 emergente.resizable(False,False)

 emergente.protocol("WM_DELETE_WINDOW", lambda: None)

 etiqueta = tk.Label(emergente, text = "Advertencia!!!")

 etiqueta.pack(anchor = CENTER)

 etiqueta.config(font = (fuente, 10, "bold"), fg = 'red', bg

='white')

 labelAlerta = tk.Label(emergente, bg = fondo, image = None)

 ventana.alerta =

ImageTk.PhotoImage((Image.open("./Code/lib/alerta3.png")))

 labelAlerta.configure(image=ventana.alerta)

 labelAlerta.pack()

 etiqueta2 = tk.Label(emergente, text =("Divergencia en la

estimación de \n" + "las ondas " + temp))

 etiqueta2.pack(anchor = CENTER)

 etiqueta2.configure(font = (fuente, 10, "bold"), bg

='white')

 btn_aceptar = tk.Button(emergente, text = "Aceptar", command

= emergente.destroy, font = (fuente, 10, "bold"))

 btn_aceptar.pack(pady = 10)

def diagnostico():

 for widgets in frameMayor.winfo_children():

 widgets.destroy()

103

 global diagnosticoFrame

 global VdataSegmento, VdatoTiempo, VdatoAmplitud, FrecuenciaCardiaca

 global Diagnostico

 diagnosticoFrame = Frame(frameMayor, bg = "#F2F2F2")

 diagnosticoFrame.pack(fill = "both", expand = 1)

 frameHeader = Frame(diagnosticoFrame, height = 50, bg = "#F2F2F2")

 lbl25 = Label(frameHeader, text = "DIAGNOSTICO", fg = "black", font = (fuente, 20,

"bold"), bg = "#F2F2F2")

 lbl25.pack(side = 'top', fill = 'both', expand = 1, pady = 30)

 frameHeader.pack(side = 'top', fill = 'x')

 frameEnfermedades = Frame(diagnosticoFrame, height = 100, bg = "#F2F2F2")

 frameEnfermedades.pack(fill = 'both', expand = '1')

 listaFrame = Frame(frameEnfermedades, bg = "#F2F2F2", highlightbackground = 'black',

highlightthickness = 2)

 lbl9 = Label(listaFrame, text = "Posibles enfermedades: ", fg = "black", font =

(fuente, 13, "bold"), bg = "#F2F2F2")

 lbl9.pack(side = 'top', fill = 'both', pady = 15, padx = 50, anchor = "w")

 listaFrame.pack(side = 'left', fill = 'both', padx = 5)

 frameSoporte = Frame(frameEnfermedades, bg = "#F2F2F2")

 lbl26 = Label(frameSoporte, text = "Soporte de diagnóstico", fg = "black", font =

(fuente, 15, "bold"), bg = "#F2F2F2")

 lbl26.pack(side = 'top', fill = 'both', pady = 12, anchor = 'w')

 lbl27 = Label(frameSoporte, text = "", fg = "black", font = (fuente, 12, "bold"), bg

= "#F2F2F2")

 lbl27.pack(fill = 'both', pady = 5, anchor = 'w')

 frameSoporte.pack(side = 'right', fill = 'both', expand = '1')

 ventana.a = tk.BooleanVar()

 ventana.b = tk.BooleanVar()

 ventana.c = tk.BooleanVar()

 ventana.d = tk.BooleanVar()

 ventana.m = tk.BooleanVar()

 ventana.f = tk.BooleanVar()

 ventana.e = tk.BooleanVar()

 ventana.g = tk.BooleanVar()

 ventana.h = tk.BooleanVar()

 ventana.i = tk.BooleanVar()

 ventana.k = tk.BooleanVar()

 ventana.l = tk.BooleanVar()

 ventana.j = tk.BooleanVar()

 if (VdatoTiempo[8]-VdatoTiempo[6] < 0.1 and VdatoAmplitud[1] < 0.00005 and

VdataSegmento[2] > 0.12):

 ventana.a.set(True)

 lbl27['text'] = lbl27['text'] + "\n Hiperpotacemia: \n"

104

 if VdatoTiempo[8]-VdatoTiempo[6] < 0.1:

 lbl27['text'] = lbl27['text'] + "- La duración de la onda T es inferior a

0.1 Seg. \n"

 if VdatoAmplitud[1] < 0.00005:

 lbl27['text'] = lbl27['text'] + "- La amplitud de la onda P es inferior a

0.05 mV. \n"

 if VdataSegmento[2] > 0.12:

 lbl27['text'] = lbl27['text'] + "- La duración del complejo QRS es

superior a 0.12 Seg. \n"

 else:

 ventana.a.set(False)

 if (VdatoAmplitud[1] > 0.00025):

 ventana.b.set(True)

 lbl27['text'] = lbl27['text'] + "\n Hipertrofia auricular derecha: \n"

 lbl27['text'] = lbl27['text'] + "- La amplitud de la onda P es inferior a 0.25

mV. \n"

 else:

 ventana.b.set(False)

 if (VdatoTiempo[2]-VdatoTiempo[0] > 0.1):

 ventana.c.set(True)

 lbl27['text'] = lbl27['text'] + "\n Dilatacion auricular: \n"

 lbl27['text'] = lbl27['text'] + "- La duración de la onda P es superior a 0.1

Seg. \n"

 else:

 ventana.c.set(False)

 if (VdataSegmento[1] > 0.2):

 ventana.d.set(True)

 lbl27['text'] = lbl27['text'] + "\n Bloqueo auroventricular: \n"

 lbl27['text'] = lbl27['text'] + "- La duración del complejo PR es superior a 0.2

Seg. \n"

 else:

 ventana.d.set(False)

 if (VdataSegmento[2] > 0.12):

 ventana.m.set(True)

 lbl27['text'] = lbl27['text'] + "\n Bloqueo de rama: \n"

 lbl27['text'] = lbl27['text'] + "- La duración del complejo QRS es superior a

0.12 Seg. \n"

 else:

 ventana.m.set(False)

 if (VdataSegmento[3] > 0.42 and VdatoAmplitud[4] < 0.002):

 ventana.f.set(True)

 lbl27['text'] = lbl27['text'] + "\n Miocarditis: \n"

 if VdataSegmento[3] > 0.42:

105

 lbl27['text'] = lbl27['text'] + "- La duración del complejo QT es superior a

0.42 Seg. \n"

 if VdatoAmplitud[4] < 0.002:

 lbl27['text'] = lbl27['text'] + "- La amplitud de la onda R es inferior a 0.2

mV. \n"

 else:

 ventana.f.set(False)

 if (VdataSegmento[3] < 0.32):

 ventana.e.set(True)

 lbl27['text'] = lbl27['text'] + "\n Hipercalcemia: \n"

 lbl27['text'] = lbl27['text'] + "- La duración del complejo QT es inferior a 0.32

Seg. \n"

 else:

 ventana.e.set(False)

 if (VdataSegmento[3] > 0.42):

 ventana.g.set(True)

 lbl27['text'] = lbl27['text'] + "\n Sindrome del QT Prolongado: \n"

 lbl27['text'] = lbl27['text'] + "- La duración del complejo QT es superior a 0.42

Seg. \n"

 else:

 ventana.g.set(False)

 if (VdataSegmento[4] > 0.15 and VdatoAmplitud[7] > (VdatoAmplitud[4]/0.003)):

 ventana.h.set(True)

 lbl27['text'] = lbl27['text'] + "\n Pericarditis: \n"

 if VdataSegmento[4] > 0.15:

 lbl27['text'] = lbl27['text'] + "- La duración del complejo ST es superior a

0.15 Seg. \n"

 if VdatoAmplitud[7] > (VdatoAmplitud[4]/0.003):

 lbl27['text'] = lbl27['text'] + "- la amplitud de la onda T es superior a la

Amplitud de R / 3mV. \n"

 else:

 ventana.h.set(False)

 if (VdatoTiempo[8]-VdatoTiempo[6] > 0.12):

 ventana.j.set(True)

 lbl27['text'] = lbl27['text'] + "\n Hipertrófia Auricular Izquierda: \n"

 lbl27['text'] = lbl27['text'] + "- La duración de la onda T es superior a 0.12

Seg. \n"

 else:

 ventana.j.set(False)

 if (VdatoTiempo[8]-VdatoTiempo[6] > 0.12 and VdatoAmplitud[7] >

(VdatoAmplitud[4]/0.003)):

 ventana.i.set(True)

 lbl27['text'] = lbl27['text'] + "\n Isquemia: \n"

 if VdatoTiempo[8]-VdatoTiempo[6] > 0.12:

106

 lbl27['text'] = lbl27['text'] + "- La duración de la onda T es superior a

0.12 Seg. \n"

 if VdatoAmplitud[7] > (VdatoAmplitud[4]/0.003):

 lbl27['text'] = lbl27['text'] + "- la amplitud de la onda T es superior a la

Amplitud de R / 3mV. \n"

 else:

 ventana.i.set(False)

 if (FrecuenciaCardiaca > 100):

 ventana.k.set(True)

 lbl27['text'] = lbl27['text'] + "\n Taquicardia Sinusual: \n"

 lbl27['text'] = lbl27['text'] + "- La frecuencia cardiaca es superior a 100 LPM.

\n"

 else:

 ventana.k.set(False)

 if (FrecuenciaCardiaca < 60):

 ventana.l.set(True)

 lbl27['text'] = lbl27['text'] + "\n Bradicardia Sinusual: \n"

 lbl27['text'] = lbl27['text'] + "- La frecuencia cardiaca es inferior a 60 LPM.

\n"

 else:

 ventana.l.set(False)

 lblDisclaimer = Label(frameSoporte, text = "Los resultados de este análisis se basan

en la derivación I y no son concluyentes, \n por lo que se recomienda consultar con un

médico.", bg = "#F2F2F2", fg = color_letra_texto, font = (fuente, 10, "bold"))

 lblDisclaimer.pack(side = 'bottom', pady = 10)

 lbl10 = Checkbutton(listaFrame, state = "disabled", variable = ventana.a , text =

"Hiperpotacemia", fg = color_letra_texto, font = (fuente, 10))

 lbl11 = Checkbutton(listaFrame, state = "disabled", variable = ventana.b , text =

"Hipertrofia auricular derecha", fg = color_letra_texto, font = (fuente, 10))

 lbl12 = Checkbutton(listaFrame, state = "disabled", variable = ventana.c , text =

"Dilatacion auricular", fg = color_letra_texto, font = (fuente, 10))

 lbl15 = Checkbutton(listaFrame, state = "disabled", variable = ventana.d , text =

"Bloqueo Auroventricular", fg = color_letra_texto, font = (fuente, 10))

 lbl16 = Checkbutton(listaFrame, state = "disabled", variable = ventana.e , text =

"Hipercalcemia", fg = color_letra_texto, font = (fuente, 10))

 lbl17 = Checkbutton(listaFrame, state = "disabled", variable = ventana.f , text =

"Miocarditis", fg = color_letra_texto, font = (fuente, 10))

 lbl18 = Checkbutton(listaFrame, state = "disabled", variable = ventana.g , text =

"Sindrome del QT Prolongado", fg = color_letra_texto, font = (fuente, 10))

 lbl19 = Checkbutton(listaFrame, state = "disabled", variable = ventana.h , text =

"Pericarditis", fg = color_letra_texto, font = (fuente, 10))

 lbl20 = Checkbutton(listaFrame, state = "disabled", variable = ventana.i , text =

"Isquemia", fg = color_letra_texto, font = (fuente, 10))

 lbl21 = Checkbutton(listaFrame, state = "disabled", variable = ventana.j , text =

"Hipertrofia auricular izquierda", fg = color_letra_texto, font = (fuente, 10))

 lbl22 = Checkbutton(listaFrame, state = "disabled", variable = ventana.k , text =

"Taquicardia", fg = color_letra_texto, font = (fuente, 10))

107

 lbl23 = Checkbutton(listaFrame, state = "disabled", variable = ventana.l , text =

"Bradicardia", fg = color_letra_texto, font = (fuente, 10))

 lbl24 = Checkbutton(listaFrame, state = "disabled", variable = ventana.m , text =

"Hipertrofia Ventricular o Bloqueo de Rama", fg = color_letra_texto, font = (fuente, 10))

 lbl10.pack(anchor = "w")

 lbl11.pack(anchor = "w")

 lbl12.pack(anchor = "w")

 lbl15.pack(anchor = "w")

 lbl16.pack(anchor = "w")

 lbl17.pack(anchor = "w")

 lbl18.pack(anchor = "w")

 lbl19.pack(anchor = "w")

 lbl20.pack(anchor = "w")

 lbl21.pack(anchor = "w")

 lbl22.pack(anchor = "w")

 lbl23.pack(anchor = "w")

 lbl24.pack(anchor = "w")

 frameFooter = Frame(diagnosticoFrame, height = 50, bg = "#F2F2F2")

 btnVolver = Button(frameFooter, text = "Volver", font = (fuente, 15, "bold"), command

= resultados)

 btnVolver.pack(side = 'left', padx = (100, 0), pady = 25)

 btnSalir = Button(frameFooter, text = "Salir", font = (fuente, 15, "bold"), command =

ventana.destroy)

 btnSalir.pack(side = 'right', padx = (0, 100), pady = 25)

 btnHome = Button(frameFooter, text = "Inicio", font = (fuente, 15, "bold"), command =

inicio)

 btnHome.pack(pady = 25)

 frameFooter.pack(side = 'bottom', fill = 'x')

inicio()

ventana.mainloop()

SECCION DE PRUEBAS SIN UI ###

inicio = time.time()

Preparacion()

PDF_to_jpeg(ruta_PDF)

crop_image()

Concat_image()

Limpiar_imagen()

Lines_Hough(cv2.imread('./Code/Data/Output/img-ECG.jpeg'))

Vectorizacion_Señal()

ObtencionPico()

Características()

ObtencionParametros()

Diagnosticar()

fin = time.time()

108

print(str(fin-inicio))

global ruta_PDF

global emergente

emergente = None

SECCION DE LIBRERIAS ###

Aqui se realiza la importacion de las librerias

Back

import os # libreria para el manejo del sistema

import shutil # libreria para el control de archivos

import cv2 # libreria para el manejo de las imágenes

from pdf2image import convert_from_path # libreria de conversion de archivos

import matplotlib.pyplot as plt # libreria para visualizar imagen

import numpy as np # Libreria para manipular vectores de la

señal

import time # Libreria para control de tiempo

import sys # Libreria para puntos de ruptura

from scipy.signal import savgol_filter # Libreria para suavizar la señal muestreada

Front

from tkinter import *

import tkinter as tk

from tkinter import messagebox, ttk

from tkinter import filedialog

from PIL import ImageTk, Image

import matplotlib.pyplot as plt

from matplotlib.figure import Figure

from matplotlib.backends.backend_tkagg import FigureCanvasTkAgg, NavigationToolbar2Tk

import numpy as np

import pandas as pd

PREPARACION DE LAS RUTAS DE DATOS ###

Aqui se ajustan las variables de rutas para el proyecto

además de crear y validar los directorios necesarios

def Preparacion():

 if os.path.exists("./Code/Data/Output"):

 shutil.rmtree("./Code/Data/Output")

 os.mkdir("./Code/Data/Output")

 else:

 os.mkdir("./Code/Data/Output")

CUERPO DE FUNCIONES DEL CÓDIGO ###

Función de conversión de PDF a JPEG

def PDF_to_jpeg(ruta_PDF):

 global pages

 poppler_path = os.path.abspath("./Code/lib/poppler-22.04.0/Library/bin") #

Configuracion de rutas de los archivos

 pdf_path = os.path.abspath(ruta_PDF) #

Configuracion de rutas de los archivos

 saving_folder = os.path.abspath("./Code/Data/Output")

 # Configuracion de rutas de los archivos

 pages = convert_from_path(pdf_path = pdf_path, poppler_path = poppler_path) #

Obtención de la cantidad de páginas del documento

 i = 1

 for page in pages:

 img_name = f"img-{i}.jpeg"

 page.save(os.path.join(saving_folder,img_name),"JPEG") #

Conversion de las páginas a PDF

 i += 1

Función de recorte de las imágenes

def crop_image():

 global emergente

 for i in range (2,6,1):

 image="img-"+ str(i) + ".jpeg"

 rimage= os.path.abspath("./Code/Data/Output/"+image)

 # Construción de la ruta de imagen que se desea leer

 try:

 data = cv2.imread(rimage) #

Lectura de la imagen original

 data = data [204:2091,63:1638] #

Recorte de la imágen

 cv2.imwrite('./Code/Data/Output/img-'+ str(i)+'-crop.jpeg',data)

 # Almacenaje de las immágenes recortadas

 except (TypeError):

 pass

Función para conectar las imágenes recortadas

def Concat_image():

 im2 = cv2.imread("./Code/Data/Output/img-2-crop.jpeg")

 im3 = cv2.imread("./Code/Data/Output/img-3-crop.jpeg")

 im4 = cv2.imread("./Code/Data/Output/img-4-crop.jpeg")

 im5 = cv2.imread("./Code/Data/Output/img-5-crop.jpeg")

 imga = cv2.hconcat([im2, im3])

 imgb = cv2.hconcat([im4, im5])

 img = cv2.hconcat([imga, imgb])

 img = img[:,97:6002]

 cv2.imwrite('./Code/Data/Output/img-ECG.jpeg',img)

Función para limpiar la imágen

def Limpiar_imagen():

 img = cv2.imread("./Code/Data/Output/img-ECG.jpeg")

 ###

 img = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)

 _,img = cv2.threshold(img,100,255,cv2.THRESH_BINARY)

 ###

 mask = cv2.imread("./Code/lib/mask.png",0)

 for f in range(img.shape[0]):

 for c in range(img.shape[1]):

 if (int(mask[f,c]) == 0):

 img[f,c] = 255

 ##

 cv2.imwrite('./Code/Data/Output/img-ECG.jpeg',img)

#Detecto los ejes y secciono la imágen

def Lines_Hough(img):

 global Ejesy

 gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)

 edges = cv2.Canny(gray, 50, 150, apertureSize = 3)

 lines = cv2.HoughLinesP(edges, 1, np.pi/180, 100, minLineLength=500, maxLineGap=50)

 Ejesx=[]

 Ejesy=[]

 for line in lines:

 x1, y1, x2, y2 = line[0]

 if (x1 != x2):

 Ejesx.append(y1)

 cv2.line(img, (x1,y1), (x2,y2), (0,255,0), 1, cv2.LINE_AA)

 else:

 Ejesy.append(x1)

 cv2.line(img, (x1,y1), (x2,y2), (0,255,0), 1, cv2.LINE_AA)

 #Determino el valor de los ejes de cada derivación

 temp=sorted(Ejesx)

 Ejesx=[]

 aux=[]

 x=0

 i=0

 while (i+x)<len(temp)-1:

 while (int(temp[x+i])-int(temp[i]))<=10 and (i+x)<len(temp)-1:

 aux.append(int(temp[x+i]))

 x=x+1

 i=x+i

 x=0

 Ejesx.append(round((sum(aux)/len(aux))))

 aux=[]

 temp=sorted(Ejesy)

 Ejesy=[]

 aux=[]

 x=0

 i=0

 while (i+x)<len(temp)-1:

 while (int(temp[x+i])-int(temp[i]))<=10 and (i+x)<len(temp)-1:

 aux.append(int(temp[x+i]))

 x=x+1

 i=x+i

 x=0

 Ejesy.append(round((sum(aux)/len(aux))))

 aux=[]

 img = cv2.imread("./Code/Data/Output/img-ECG.jpeg")

 cv2.imwrite('./Code/Data/Output/I.jpeg',img[Ejesx[0]-150:Ejesx[0]+150,:])

 cv2.imwrite('./Code/Data/Output/II.jpeg',img[Ejesx[1]-150:Ejesx[1]+150,:])

 cv2.imwrite('./Code/Data/Output/III.jpeg',img[Ejesx[2]-150:Ejesx[2]+150,:])

 cv2.imwrite('./Code/Data/Output/aVR.jpeg',img[Ejesx[3]-150:Ejesx[3]+150,:])

 cv2.imwrite('./Code/Data/Output/aVL.jpeg',img[Ejesx[4]-150:Ejesx[4]+150,:])

 cv2.imwrite('./Code/Data/Output/aVF.jpeg',img[Ejesx[5]-150:Ejesx[5]+150,:])

CONSIDERACIONES DE RESOLUCIÓN ####

################## ######################

TIEMPO #

------------ 1 Cuadro -> 5 mm -> 0.2 Seg --------------#

VOLTAJE #

------------ 1 Cuadro -> 5 mm -> 0.5 mV ---------------#

DIMENSIONES #

------------ 1 Cuadro -> 39px X 39px ---------------- #

--------- 1 px Vertical -> 12.82051282 uV ------------ #

-------- 1 px Horizontal -> 5.128205128 mS ---------- #

Vectorización de la Señal

def Vectorizacion_Señal():

 global aVF, aVL, aVR, I, II, III, Vtiempo

 global fallaCorte

 fallaCorte = False

 Signals = ['aVF','aVL','aVR','I','II','III']

 for signalstr in Signals:

 strtemp = './Code/Data/Output/' + signalstr + '.jpeg'

 img = cv2.imread(strtemp)

 gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)

 _,img = cv2.threshold(gray,10,255,cv2.THRESH_BINARY)

 aux = np.asarray(img)

 aux1 = np.sum(aux, axis=0)

 posceros = np.where(aux1==76245)

 aux2 = aux[:,posceros[0][0]]

 Ejex = np.where(aux2==0)

 Ejesx = Ejex[0][0]

 aux2 = aux[0,:]

 posceros = np.where(aux2==0)

 Ejesy = posceros[0][:]

 if len(Ejesy) == 30 :

 for i in range(len(aux1)):

 if aux1[i] < 76245:

 img[Ejesx, i] = 255

 for i in range(img.shape[0]):

 for ejey in Ejesy:

 temp = (((img[i,(ejey+1)]==255) or (img[i,(ejey-1)]==255)) and

i!=Ejesx)

 if temp:

 img[i,ejey]=255

 signal=[]

 for i in range(img.shape[1]):

 temp=aux[0:img.shape[0], i]

 ceros = np.where(temp==0)

 ceros = np.asanyarray(ceros[0])

 if len(ceros) == 0:

 val = -10000

 signal.append(val)

 else:

 temp = np.where(abs(ceros - Ejesx)==np.amax(abs(ceros - Ejesx)))

 if len(temp[0][:])==1:

 signal.append(ceros[temp][0])

 else:

 temp = ceros[temp]

 try:

 postemp=np.where(abs(temp-signal[-1])==np.amax(abs(temp-

signal[-1])))

 signal.append(temp[postemp][0])

 except IndexError:

 fallaCorte = True

 signal = np.array(signal)

 huecos = np.where(signal==-10000)

 for hueco in huecos:

 signal[hueco] = ((signal[hueco + 1]) + (signal[hueco - 1]))/2

 signal =(signal - Ejesx)*-0.000012820512819999999

 signal = savgol_filter(signal,7,2)

 if signalstr == 'aVF':

 aVF = signal

 elif signalstr == 'aVR':

 aVR = signal

 elif signalstr == 'aVL':

 aVL = signal

 elif signalstr == 'I':

 I = signal

 elif signalstr == 'II':

 II = signal

 else:

 III = signal

 Vtiempo = (np.arange(0,int(signal.shape[0]),1))*0.005128205128000001

 else:

 fallaCorte = True

#Caracterización de la señal

def ObtencionPico():

 global aVF, aVL, aVR, I, II, III, Vtiempo

 global SegmentoSeñal, SegmentoTiempo

 global Maximos, Periodo

 global FrecuenciaCardiaca

 if (len(np.where(I>0.0015)[0])>0):

 print('Descarte la señal')

 print('La señal presenta mucho ruido y picos demasiado altos')

 sys.exit()

 else:

 Maximos = np.where(I>0.0005)[0]

 if len(Maximos) == 0:

 print('Desarte la señal, la onda R se encuentra bajo el estandar de 0.5 mV')

 sys.exit()

 else:

 maximos=np.asarray(Maximos[:])

 if len(maximos) < 150:

 print('Error en la detección')

 print('La onda R no se detecta como marcador')

 sys.exit()

 else:

 temp = []

 aux = []

 Maximos = []

 for i in range(len(maximos)):

 if i >=1 :

 ja = maximos[i] - maximos[i-1]

 if (maximos[i] - maximos[i-1]) <= 20 :

 temp.append(maximos[i])

 else:

 aux = np.asarray(I[temp][:])

 indice = np.where(aux == indice)[:][0][0]

 Maximos.append(temp[indice])

 aux = []

 temp = []

 else:

 temp.append(maximos[i])

 temp = []

 for i in range(len(Maximos)):

 if i >= 1:

 temp.append(Maximos[i] - Maximos[i-1])

 Periodo = round(np.mean(temp))

 FrecuenciaCardiaca = len(Maximos)*2

 Picos = I[Maximos]-0.0005

 indice = [np.where(Picos==np.min(Picos))][:][0][0][0]

 indice = Maximos[indice]

 Pico = I[indice]

 Time = Vtiempo[indice]

 SegmentoSeñal = I[indice-round(Periodo/2):indice+round(Periodo/2)]

 SegmentoTiempo = Vtiempo[indice-round(Periodo/2):indice+round(Periodo/2)]

#Obtener características del pico

def Características():

 global SegmentoSeñal, SegmentoTiempo, Periodo

 global VdatoTiempo, VdatoAmplitud, VdatoString

 global divergencias

 divergencias = []

 SegmentoSeñal = savgol_filter(SegmentoSeñal,10,5) # Filtro la señal

 d1x = np.diff(SegmentoSeñal) # Extraigo las derivadas

 d2x = np.diff(d1x)

 ##

 #### CALCULO LAS ONDAS POR OBSERVACIONES EN LAS DERIVADAS ####

 ##

 picos_indices = np.where((np.diff(np.sign(d1x)) < 0) & (d1x[:-1] > 0))[0] + 1

 CaD = SegmentoTiempo[picos_indices]

 picos_indices = np.where((np.diff(np.sign(d1x)) > 0) & (d1x[:-1] < 0))[0] + 1

 DaC = SegmentoTiempo[picos_indices]

 picos_indices = np.where(np.diff(np.sign(d1x)))[0] + 1

 Picos = SegmentoTiempo[picos_indices]

 TiempoR = CaD[np.where(CaD == SegmentoTiempo[np.where(SegmentoSeñal ==

np.max(SegmentoSeñal))])][:][0]

 TiempoQa = DaC[np.where(DaC == SegmentoTiempo[np.where(SegmentoSeñal ==

np.min(SegmentoSeñal[0:np.where(SegmentoTiempo == TiempoR)[:][0][0]]))])][:][0]

 TiempoQb = Picos[np.where(Picos == TiempoR)[:][0][0]-1]

 if TiempoQa == TiempoQb:

 TiempoQ = TiempoQa

 else:

 divergencias.append('Q')

 if ((TiempoR - TiempoQa > 0.13) and (TiempoR - TiempoQb < 0.13)) :

 TiempoQ = TiempoQb

 elif ((TiempoR - TiempoQa < 0.13) and (TiempoR - TiempoQb > 0.13)):

 TiempoQ = TiempoQa

 elif SegmentoSeñal[np.where(SegmentoTiempo ==TiempoQa)[:][0][0]] >=

SegmentoSeñal[np.where(SegmentoTiempo ==TiempoQb)[:][0][0]]:

 TiempoQ = TiempoQb

 else:

 TiempoQ = TiempoQa

 TiempoSa = DaC[np.where(DaC == SegmentoTiempo[np.where(SegmentoSeñal ==

np.min(SegmentoSeñal[np.where(SegmentoTiempo == TiempoR)[:][0][0]:]))])][:][0]

 TiempoSb = Picos[np.where(Picos == TiempoR)[:][0][0]+1]

 if TiempoSa == TiempoSb:

 TiempoS = TiempoSa

 else:

 divergencias.append('S')

 if ((TiempoSa - TiempoR > 0.13) and (TiempoSb - TiempoR < 0.13)) :

 TiempoS = TiempoSb

 elif ((TiempoSa - TiempoR < 0.13) and (TiempoSb - TiempoR > 0.13)) :

 TiempoS = TiempoSa

 elif SegmentoSeñal[np.where(SegmentoTiempo ==TiempoSa)[:][0][0]] >=

SegmentoSeñal[np.where(SegmentoTiempo ==TiempoSb)[:][0][0]]:

 TiempoS = TiempoSb

 else:

 TiempoS = TiempoSa

 TiempoPa = CaD[np.where(CaD == SegmentoTiempo[np.where(SegmentoSeñal ==

np.max(SegmentoSeñal[:np.where(SegmentoTiempo == TiempoQ)[:][0][0]]))])][:][0]

 TiempoPb = Picos[np.where(Picos == TiempoQ)[:][0][0]-1]

 if TiempoPa == TiempoPb:

 TiempoP = TiempoPa

 else:

 divergencias.append('P')

 if SegmentoSeñal[np.where(SegmentoTiempo ==TiempoPa)[:][0][0]] >=

SegmentoSeñal[np.where(SegmentoTiempo ==TiempoPb)[:][0][0]]:

 TiempoP = TiempoPa

 else:

 TiempoP = TiempoPb

 TiempoTa = CaD[np.where(CaD == SegmentoTiempo[np.where(SegmentoSeñal ==

np.max(SegmentoSeñal[np.where(SegmentoTiempo == TiempoS)[:][0][0]:]))])][:][0]

 TiempoTb = Picos[np.where(Picos == TiempoS)[:][0][0]+1]

 if TiempoTa == TiempoTb:

 TiempoT = TiempoTa

 else:

 divergencias.append('T')

 if SegmentoSeñal[np.where(SegmentoTiempo ==TiempoTa)[:][0][0]] >=

SegmentoSeñal[np.where(SegmentoTiempo ==TiempoTb)[:][0][0]]:

 TiempoT = TiempoTa

 else:

 TiempoT = TiempoTb

 xD = d2x[np.where(SegmentoTiempo == Picos[np.where(Picos == TiempoP)[:][0][0]-

1])[:][0][0] : np.where(SegmentoTiempo == TiempoP)[:][0][0]]

 aux = SegmentoTiempo[np.where(SegmentoTiempo == Picos[np.where(Picos ==

TiempoP)[:][0][0]-1])[:][0][0] : np.where(SegmentoTiempo == TiempoP)[:][0][0]]

 TiempoPI = aux[np.where(xD == np.max(xD))[:][0][0]]

 aux = SegmentoTiempo[np.where(SegmentoTiempo == TiempoP)[:][0][0] :

np.where(SegmentoTiempo == TiempoQ)[:][0][0]]

 TiempoPF = aux[int(len(aux)/2)]

 aux = SegmentoTiempo[np.where(SegmentoTiempo == Picos[np.where(Picos ==

TiempoT)[:][0][0]-1])[:][0][0] : np.where(SegmentoTiempo == TiempoT)[:][0][0]]

 TiempoTI = aux[int(len(aux)/2)]

 aux = SegmentoTiempo[np.where(SegmentoTiempo == TiempoT)[:][0][0] :

np.where(SegmentoTiempo == Picos[np.where(Picos == TiempoT)[:][0][0]+1])[:][0][0]]

 TiempoTF = aux[int(len(aux)/2)]

 R = SegmentoSeñal[np.where(SegmentoTiempo == TiempoR)][:][0]

 S = SegmentoSeñal[np.where(SegmentoTiempo == TiempoS)][:][0]

 T = SegmentoSeñal[np.where(SegmentoTiempo == TiempoT)][:][0]

 Q = SegmentoSeñal[np.where(SegmentoTiempo == TiempoQ)][:][0]

 P = SegmentoSeñal[np.where(SegmentoTiempo == TiempoP)][:][0]

 PI = SegmentoSeñal[np.where(SegmentoTiempo == TiempoPI)][:][0]

 PF = SegmentoSeñal[np.where(SegmentoTiempo == TiempoPF)][:][0]

 TI = SegmentoSeñal[np.where(SegmentoTiempo == TiempoTI)][:][0]

 TF = SegmentoSeñal[np.where(SegmentoTiempo == TiempoTF)][:][0]

 VdatoTiempo = [TiempoPI, TiempoP, TiempoPF, TiempoQ, TiempoR, TiempoS, TiempoTI,

TiempoT, TiempoTF]

 VdatoAmplitud = [PI, P, PF, Q, R, S, TI, T, TF]

 VdatoString = ['PI', 'P', 'PR', 'Q', 'R', 'S', 'TI', 'T', 'TF']

Obtencion de los segmentos y datos específicos

def ObtencionParametros():

 global VdatoAmplitud, VdatoTiempo, VdatoString, Periodo

 global VdataSegmento, VdatoSegmento

 SegmentoRR = Periodo*0.005128205128000001

 SegmentoPR = VdatoTiempo[3] - VdatoTiempo[0]

 SegmentoQRS = VdatoTiempo[5] - VdatoTiempo[3]

 SegmentoQT = ((VdatoTiempo[8] - VdatoTiempo[3])/np.sqrt(SegmentoRR))

 SegmentoST = VdatoTiempo[6] - VdatoTiempo[5]

 VdatoSegmento = ['RR', 'PR', 'QRS', 'QT', 'ST']

 VdataSegmento = [SegmentoRR, SegmentoPR, SegmentoQRS, SegmentoQT, SegmentoST]

DESARROLLO DE LA INTERFAZ DE USUARIO ###

Parametros de personalizacion

fondo = "#FFF"

fuente = "PT Sans"

ancho = 900

alto = 700

color_letra_titulo = "#8F141B"

color_letra_texto = "#000"

Declaracion de la ventana

ventana = Tk()

#Configuracion para pantalla centrada y dimensiones de la ventana

ancho_ventana = ventana.winfo_screenwidth() // 2 - ancho // 2

alto_ventana = ventana.winfo_screenheight() // 2 - alto // 2

posicion = str(ancho) + "x" + str(alto) + "+" + str(ancho_ventana) + "+" +

str(alto_ventana)

ventana.geometry(posicion)

#Personalizacion de la ventana

ventana.resizable(0,0)

 # No puede maximizarse

icono = PhotoImage(file = "./Code/lib/usco.png")

 # Icono de la ventana

ventana.iconphoto(True, icono)

ventana.title("Interfaz grafica de digitalización y detección de enfermedades cardíacas")

 # Titulo de la ventana

ventana.config(bg = fondo)

frameMayor = Frame(ventana, bg = fondo)

frameMayor.pack(fill = 'both', expand = True)

imagenUsco = ImageTk.PhotoImage(Image.open("./Code/lib/universidad-surcolombiana.png"))

archivo = None

def inicio():

 Preparacion()

 for widgets in frameMayor.winfo_children():

 widgets.destroy()

 global inicioFrame

 inicioFrame = Frame(frameMayor, bg = "#F2F2F2")

 inicioFrame.pack(fill = 'both', expand = 1)

 frameHeader = Frame(inicioFrame, bg = "#F2F2F2")

 frameMid = Frame(inicioFrame, bg = "#F2F2F2")

 frameFooter = Frame(inicioFrame, bg = "#F2F2F2")

 # Declaracion de etiquetas

 label1 = Label(frameHeader, text = "Interfaz de digitalización y detección de

enfermedades cardíacas", fg = color_letra_titulo, bg = "#F2F2F2", font = (fuente, 20,

"bold"))

 label2 = Label(frameMid, text = "Byron Hernando Galindo Suárez - 20171155352", fg =

"black", bg = "#F2F2F2", font = (fuente, 17, "bold"))

 label3 = Label(frameMid, text = "Juan Esteban Narváez Carvajal - 20171159625", fg =

"black", bg = "#F2F2F2", font = (fuente, 17, "bold"))

 label4 = Label(frameMid, image = imagenUsco, bg ="#F2F2F2")

 # Declaracion de botones

 btnContinuar = Button(frameFooter, text = "Continuar", font = (fuente, 20, "bold"),

command = datos, width = 20, height = 20)

 # Posicionamiento de frames

 frameHeader.pack(side = "top", fill = "both")

 frameMid.pack(fill = "both", expand = True)

 frameFooter.pack(side = "bottom", fill = "both")

 # Posicionamiento de etiquetas

 label1.pack(pady = 100)

 label2.pack()

 label3.pack()

 label4.pack(pady = 75)

 # Posicionamiento de botones

 btnContinuar.pack(pady = 50)

def datos():

 for widgets in frameMayor.winfo_children():

 widgets.destroy()

 global datosFrame

 datosFrame = Frame(frameMayor, bg = "#F2F2F2")

 datosFrame.pack(fill = "both", expand = 1)

 frameHeader = Frame(datosFrame, bg = "#F2F2F2")

 frameMid = Frame(datosFrame, bg = "#F2F2F2")

 frameFooter = Frame(datosFrame, bg = "#F2F2F2")

 # Posicionamiento de frames

 frameHeader.pack(side = "top", fill = "both")

 frameMid.pack(fill = "both", expand = True)

 frameFooter.pack(side = "bottom", fill = "both")

 lbl7 = Label(frameMid, text = "Archivo: ", fg = "black", bg = "#F2F2F2", font =

(fuente, 10, "bold"))

 def abrirArchivo():

 btnProcesar['state'] = DISABLED

 lbl7['text'] = "Archivo: "

 global archivo, pages

 try:

 archivo = filedialog.askopenfile(title = "Abrir", initialdir =

os.path.abspath(os.getcwd()), filetypes = (("Formato PDF", "*.pdf"),))

 if archivo.name != None :

 PDF_to_jpeg(archivo.name)

 lbl7['text'] = lbl7['text'] + str(archivo.name)

 ventana.imgtk = ImageTk.PhotoImage((Image.open("./Code/Data/Output/img-

1.jpeg")).resize((250,300)))

 labelvista.configure(image=ventana.imgtk)

 labelvista.pack()

 if len(pages)==5:

 btnProcesar['state'] = NORMAL

 else:

 emergente = tk.Toplevel(ventana)

 emergente.title('File Error!!!')

 emergente.geometry(str('290x180+' +

str(ventana.winfo_screenwidth()//2 - 290 // 2) + "+" + str(ventana.winfo_screenheight()

// 2 - 180 // 2)))

 emergente.configure(background = 'white')

 emergente.attributes("-toolwindow", True)

 emergente.resizable(False,False)

 emergente.protocol("WM_DELETE_WINDOW", lambda: None)

 etiqueta = tk.Label(emergente, text = "Error!!!")

 etiqueta.pack(anchor = CENTER)

 etiqueta.config(font = (fuente, 10, "bold"), fg = 'red', bg ='white')

 labelAlerta = tk.Label(emergente, bg = fondo, image = None)

 ventana.alerta =

ImageTk.PhotoImage((Image.open("./Code/lib/alerta.png")))

 labelAlerta.configure(image=ventana.alerta)

 labelAlerta.pack()

 etiqueta2 = tk.Label(emergente, text = "El archivo seleccionado no

cumple con las \ncaracterísticas de un ECG de Kardia")

 etiqueta2.pack(anchor = CENTER)

 etiqueta2.configure(font = (fuente, 10, "bold"), bg ='white')

 btn_aceptar = tk.Button(emergente, text = "Aceptar", command =

emergente.destroy, font = (fuente, 10, "bold"))

 btn_aceptar.pack(pady = 10)

 btnProcesar['state'] = DISABLED

 except AttributeError:

 pass

 lbl5 = Label(frameHeader, text = "Por favor, cargue el archivo en formato PDF\n del

electrocardiograma entregado por Kardia 6L", fg = "black", bg = "#F2F2F2", font =

(fuente, 12))

 btnCargar = Button(frameHeader, text = "Cargar archivo", font = (fuente, 15, "bold"),

command = abrirArchivo)

 lbl6 = Label(frameMid, text = "Previsualizacion del pdf cargado", fg = "black", bg =

"#F2F2F2", font = (fuente, 15, "bold"))

 frameVisualizacion = Frame(frameMid, bg = "white", width = 250, height = 300,

highlightbackground = "black", highlightthickness = 2)

 labelvista = Label(frameVisualizacion, bg = "#F2F2F2", image = None)

 btnVolver = Button(frameFooter, text = "Volver", font = (fuente, 20, "bold"), command

= inicio)

 btnProcesar = Button(frameFooter, text = "Procesar", font = (fuente, 20, "bold"),

command = resultados, state = DISABLED)

 lbl5.pack(side = "left", padx = 75, pady = 75)

 btnCargar.pack(side = "right", padx = 75, pady = 75)

 lbl6.pack()

 frameVisualizacion.pack(pady = 10)

 lbl7.pack()

 btnVolver.pack(side = "left", padx = 75, pady = 25)

 btnProcesar.pack(side = "right", padx = 75, pady = 25)

def resultados():

 global fallaCorte, ancho_ventana, alto_ventana, divergencias

 global resultadosFrame, SignalPlot, Clicks, Capsulasegmento, Capsulapico

 global I, II, III, aVR, aVL, aVF, Vtiempo, SegmentoTiempo, SegmentoSeñal

 global Inicio_pico_Seg, Fin_pico_Seg

 global Maximos, Periodo

 global FrecuenciaCardiaca

 for widgets in frameMayor.winfo_children():

 widgets.destroy()

 crop_image()

 Concat_image()

 Limpiar_imagen()

 Lines_Hough(cv2.imread('./Code/Data/Output/img-ECG.jpeg'))

 Vectorizacion_Señal()

 if fallaCorte == True:

 emergente = tk.Toplevel(ventana)

 emergente.title('Process Error!!!')

 emergente.geometry(str('390x250+' + str(ventana.winfo_screenwidth()//2 - 390 //

2) + "+" + str(ventana.winfo_screenheight() // 2 - 250 // 2)))

 emergente.configure(background = 'white')

 emergente.attributes("-toolwindow", True)

 emergente.resizable(False,False)

 emergente.protocol("WM_DELETE_WINDOW", lambda: None)

 etiqueta = tk.Label(emergente, text = "Error")

 etiqueta.pack(anchor = CENTER)

 etiqueta.config(font = (fuente, 10, "bold"), fg = 'red', bg ='white')

 labelAlerta = tk.Label(emergente, bg = fondo, image = None)

 ventana.alerta =

ImageTk.PhotoImage((Image.open("./Code/lib/alerta2.png")).resize((80,80),

resample=Image.LANCZOS))

 labelAlerta.configure(image=ventana.alerta)

 labelAlerta.pack()

 etiqueta2 = tk.Label(emergente, text = "La señal detectada fue cortada durante la

digitalización, \nla señal puede tener mucho ruido o \n es una señal con muy poca

amplitud. \nEl procesamiento no es válido \nReintente con un nuevo archivo!")

 etiqueta2.pack(anchor = CENTER)

 etiqueta2.configure(font = (fuente, 10, "bold"), bg ='white')

 def alfa():

 emergente.destroy()

 datos()

 btn_aceptar = tk.Button(emergente, text = "Aceptar", command = alfa, font =

(fuente, 10, "bold"))

 btn_aceptar.pack(pady = 10)

 else:

 if (len(np.where(I>0.0015)[0])>0):

 emergente = tk.Toplevel(ventana)

 emergente.title('Process Error!!!')

 emergente.geometry(str('310x210+' + str(ventana.winfo_screenwidth()//2 - 310

// 2) + "+" + str(ventana.winfo_screenheight() // 2 - 210 // 2)))

 emergente.configure(background = 'white')

 emergente.attributes("-toolwindow", True)

 emergente.resizable(False,False)

 emergente.protocol("WM_DELETE_WINDOW", lambda: None)

 etiqueta = tk.Label(emergente, text = "Error")

 etiqueta.pack(anchor = CENTER)

 etiqueta.config(font = (fuente, 10, "bold"), fg = 'red', bg ='white')

 labelAlerta = tk.Label(emergente, bg = fondo, image = None)

 ventana.alerta =

ImageTk.PhotoImage((Image.open("./Code/lib/alerta2.png")).resize((80,80),

resample=Image.LANCZOS))

 labelAlerta.configure(image=ventana.alerta)

 labelAlerta.pack()

 etiqueta2 = tk.Label(emergente, text = "La señal detectada presenta demasido

ruido \nEl procesamiento no es válido \nReintente con un nuevo archivo!")

 etiqueta2.pack(anchor = CENTER)

 etiqueta2.configure(font = (fuente, 10, "bold"), bg ='white')

 def alfa():

 emergente.destroy()

 datos()

 btn_aceptar = tk.Button(emergente, text = "Aceptar", command = alfa, font =

(fuente, 10, "bold"))

 btn_aceptar.pack(pady = 10)

 else:

 Maximos = np.where(I>0.0005)[0]

 if len(Maximos) == 0:

 emergente = tk.Toplevel(ventana)

 emergente.title('Process Error!!!')

 emergente.geometry(str('250x210+' + str(ventana.winfo_screenwidth()//2 -

250 // 2) + "+" + str(ventana.winfo_screenheight() // 2 - 210 // 2)))

 emergente.configure(background = 'white')

 emergente.attributes("-toolwindow", True)

 emergente.resizable(False,False)

 emergente.protocol("WM_DELETE_WINDOW", lambda: None)

 etiqueta = tk.Label(emergente, text = "Error")

 etiqueta.pack(anchor = CENTER)

 etiqueta.config(font = (fuente, 10, "bold"), fg = 'red', bg ='white')

 labelAlerta = tk.Label(emergente, bg = fondo, image = None)

 ventana.alerta =

ImageTk.PhotoImage((Image.open("./Code/lib/alerta2.png")).resize((80,80),

resample=Image.LANCZOS))

 labelAlerta.configure(image=ventana.alerta)

 labelAlerta.pack()

 etiqueta2 = tk.Label(emergente, text = "En la señal detectada presenta

poca amplitud \nEl procesamiento no es válido \nReintente con un nuevo archivo!")

 etiqueta2.pack(anchor = CENTER)

 etiqueta2.configure(font = (fuente, 10, "bold"), bg ='white')

 def alfa():

 emergente.destroy()

 datos()

 btn_aceptar = tk.Button(emergente, text = "Aceptar", command = alfa,

 font = (fuente, 10, "bold"))

 btn_aceptar.pack(pady = 10)

 else:

 maximos=np.asarray(Maximos[:])

 if len(maximos) < 100:

 emergente = tk.Toplevel(ventana)

 emergente.title('Process Error!!!')

 emergente.geometry(str('250x210+' +

str(ventana.winfo_screenwidth()//2 - 250 // 2) + "+" + str(ventana.winfo_screenheight()

// 2 - 210 // 2)))

 emergente.configure(background = 'white')

 emergente.attributes("-toolwindow", True)

 emergente.resizable(False,False)

 emergente.protocol("WM_DELETE_WINDOW", lambda: None)

 etiqueta = tk.Label(emergente, text = "Error")

 etiqueta.pack(anchor = CENTER)

 etiqueta.config(font = (fuente, 10, "bold"), fg = 'red', bg ='white')

 labelAlerta = tk.Label(emergente, bg = fondo, image = None)

 ventana.alerta =

ImageTk.PhotoImage((Image.open("./Code/lib/alerta2.png")).resize((80,80),

resample=Image.LANCZOS))

 labelAlerta.configure(image=ventana.alerta)

 labelAlerta.pack()

 etiqueta2 = tk.Label(emergente, text = "Error en la detección de la

onda R \nEl procesamiento no es válido \nReintente con un nuevo archivo!")

 etiqueta2.pack(anchor = CENTER)

 etiqueta2.configure(font = (fuente, 10, "bold"), bg ='white')

 def alfa():

 emergente.destroy()

 datos()

 btn_aceptar = tk.Button(emergente, text = "Aceptar", command = alfa,

 font = (fuente, 10, "bold"))

 btn_aceptar.pack(pady = 10)

 else:

 temp = []

 aux = []

 Maximos = []

 for i in range(len(maximos)):

 if i >=1 :

 ja = maximos[i] - maximos[i-1]

 if (maximos[i] - maximos[i-1]) <= 20 :

 temp.append(maximos[i])

 else:

 aux = np.asarray(I[temp][:])

 indice = np.max(aux)

 indice = np.where(aux == indice)[:][0][0]

 Maximos.append(temp[indice])

 aux = []

 temp = []

 else:

 temp.append(maximos[i])

 temp = []

 for i in range(len(Maximos)):

 if i >= 1:

 temp.append(Maximos[i] - Maximos[i-1])

 Periodo = round(np.mean(temp))

 FrecuenciaCardiaca = len(Maximos)*2

 Picos = I[Maximos]-0.0005

 indice = [np.where(Picos==np.min(Picos))][:][0][0][0]

 indice = Maximos[indice]

 Pico = I[indice]

 Time = Vtiempo[indice]

 SegmentoSeñal = I[indice-round(Periodo/2):indice+round(Periodo/2)]

 SegmentoTiempo = Vtiempo[indice-

round(Periodo/2):indice+round(Periodo/2)]

 Características()

 ObtencionParametros()

 SignalPlot = I

 Clicks = 0

 # Vista por defecto es con la señal I

 Inicio_pico_Seg = Vtiempo[np.where (Vtiempo ==

SegmentoTiempo[0])][:][0]

 Fin_pico_Seg = Vtiempo[np.where (Vtiempo == SegmentoTiempo[-

1])][:][0]

 Datospicoplottiempo = Vtiempo[np.where(Vtiempo ==

Inicio_pico_Seg)[:][0][0] : np.where(Vtiempo == Fin_pico_Seg)[:][0][0]]

 Datospicoplotseñal = SignalPlot[np.where(Vtiempo ==

Inicio_pico_Seg)[:][0][0] : np.where(Vtiempo == Fin_pico_Seg)[:][0][0]]*1000

 Datossegmentoplottiempo = Vtiempo[(Clicks*590):((Clicks+1)*590)]

 Datossegmentoplotseñal =

SignalPlot[(Clicks*590):((Clicks+1)*590)]*1000

 resultadosFrame = Frame(frameMayor, bg = "#F2F2F2")

 resultadosFrame.pack(fill = "both", expand = 1)

 frameHeader = Frame(resultadosFrame, height = 50, bg = "#F2F2F2")

 frameParametros = Frame(resultadosFrame, height = 100, bg =

"#F2F2F2")

 frameFooter = Frame(resultadosFrame, height = 50, bg = "#F2F2F2")

 ecgFrame = Frame(frameParametros, height = 50, bg = "#F2F2F2")

 def res_3s():

 global Clicks, SignalPlot, Capsulasegmento, Vtiempo

 if Clicks > 0:

 Capsulasegmento.get_tk_widget().destroy()

 Clicks = Clicks - 1

 Datossegmentoplottiempo =

Vtiempo[(Clicks*590):((Clicks+1)*590)]

 Datossegmentoplotseñal =

SignalPlot[(Clicks*590):((Clicks+1)*590)]*1000

 figure = plt.Figure(dpi=55)

 Segmento = figure.add_subplot(1, 1, 1)

 Segmento.set_ylabel('Amplitud (mV)')

 Segmento.plot(Datossegmentoplottiempo,Datossegmentoplotseñal)

 Segmento.set_xlabel('Tiempo (s)')

 Segmento.set_title(' Señal I')

 Capsulasegmento = FigureCanvasTkAgg(figure, master =

ecgFrame)

 Capsulasegmento.get_tk_widget().pack(pady = 5)

 # aqui debe de actualizar el plot

 # Debe de desplazar la señal hacia atras 6seg, ojo para clicks >

0

 def sum_3s():

 global Clicks, SignalPlot, Capsulasegmento, Vtiempo

 if Clicks < 9:

 Capsulasegmento.get_tk_widget().destroy()

 Clicks = Clicks + 1

 Datossegmentoplottiempo =

Vtiempo[(Clicks*590):((Clicks+1)*590)]

 Datossegmentoplotseñal =

SignalPlot[(Clicks*590):((Clicks+1)*590)]*1000

 figure = plt.Figure(dpi=55)

 Segmento = figure.add_subplot(1, 1, 1)

 Segmento.set_ylabel('Amplitud (mV)')

 Segmento.plot(Datossegmentoplottiempo,Datossegmentoplotseñal)

 Segmento.set_xlabel('Tiempo (s)')

 Segmento.set_title(' Señal I')

 Capsulasegmento = FigureCanvasTkAgg(figure, master =

ecgFrame)

 Capsulasegmento.get_tk_widget().pack(pady = 5)

 # aqui debe de actualizar el plot

 # debe de desplazar la señal hacia adelante 6seg, ojo para clicks

< 5

 def Cambiar_grafica(event):

 global SignalPlot, Capsulasegmento, Capsulapico, Clicks

 global Inicio_pico_Seg, Fin_pico_Seg

 global Vtiempo, VdatoTiempo, VdataSegmento, VdatoSegmento

 global VdatoTiempo, VdatoAmplitud, VdatoString,

FrecuenciaCardiaca

 Clicks = 0

 SignalSelect = desplegable.get()

 SignalPlot = globals()[SignalSelect]

 Datospicoplottiempo = Vtiempo[np.where(Vtiempo ==

Inicio_pico_Seg)[:][0][0] : np.where(Vtiempo == Fin_pico_Seg)[:][0][0]]

 Datospicoplotseñal = SignalPlot[np.where(Vtiempo ==

Inicio_pico_Seg)[:][0][0] : np.where(Vtiempo == Fin_pico_Seg)[:][0][0]]*1000

 Datossegmentoplottiempo = Vtiempo[(Clicks*590):((Clicks+1)*590)]

 Datossegmentoplotseñal =

SignalPlot[(Clicks*590):((Clicks+1)*590)]*1000

 Capsulasegmento.get_tk_widget().destroy()

 figure = plt.Figure(dpi=55)

 Segmento = figure.add_subplot(1, 1, 1)

 Segmento.set_ylabel('Amplitud (mV)')

 Segmento.plot(Datossegmentoplottiempo,Datossegmentoplotseñal)

 Segmento.set_xlabel('Tiempo (s)')

 Segmento.set_title(' Señal '+ SignalSelect)

 Capsulasegmento = FigureCanvasTkAgg(figure, master = ecgFrame)

 Capsulasegmento.get_tk_widget().pack(pady = 5)

 Capsulapico.get_tk_widget().destroy()

 P = (SignalPlot[np.where(Vtiempo == VdatoTiempo[1])][:][0])*1000

 Q = (SignalPlot[np.where(Vtiempo == VdatoTiempo[3])][:][0])*1000

 R = (SignalPlot[np.where(Vtiempo == VdatoTiempo[4])][:][0])*1000

 S = (SignalPlot[np.where(Vtiempo == VdatoTiempo[5])][:][0])*1000

 T = (SignalPlot[np.where(Vtiempo == VdatoTiempo[7])][:][0])*1000

 figure = plt.Figure(dpi=55)

 Pico = figure.add_subplot(1, 1, 1)

 Pico.set_ylabel('Amplitud (mV)')

 Pico.plot(Datospicoplottiempo,Datospicoplotseñal)

 Pico.annotate("P", xy = (VdatoTiempo[1],P), xytext =

(VdatoTiempo[1],P+0.05), arrowprops=dict(facecolor='black', arrowstyle='->'))

 Pico.annotate("Q", xy = (VdatoTiempo[3],Q), xytext =

(VdatoTiempo[3],Q-0.05), arrowprops=dict(facecolor='black', arrowstyle='->'))

 Pico.annotate("R", xy = (VdatoTiempo[4],R), xytext =

(VdatoTiempo[4],R+0.05), arrowprops=dict(facecolor='black', arrowstyle='->'))

 Pico.annotate("S", xy = (VdatoTiempo[5],S), xytext =

(VdatoTiempo[5],S-0.05), arrowprops=dict(facecolor='black', arrowstyle='->'))

 Pico.annotate("T", xy = (VdatoTiempo[7],T), xytext =

(VdatoTiempo[7],T+0.05), arrowprops=dict(facecolor='black', arrowstyle='->'))

 Pico.set_xlabel('Tiempo (s)')

 Pico.set_title('Pico Seleleccionado en '+ SignalSelect)

 Capsulapico = FigureCanvasTkAgg(figure, master = picoFrame)

 Capsulapico.get_tk_widget().pack(pady = 5)

 #actualizar el graficos el segmento y el pico

 btnAtras = Button(ecgFrame, text = "- 3s", font = (fuente, 15,

"bold"), command = res_3s)

 btnAdelante = Button(ecgFrame, text = "+ 3s", font = (fuente, 15,

"bold"), command = sum_3s)

 btnAtras.pack(side = 'left', padx = (150, 0), pady = 50)

 btnAdelante.pack(side = 'right', padx = (0, 150), pady = 50)

 figure = plt.Figure(dpi=55)

 Segmento = figure.add_subplot(1, 1, 1)

 Segmento.set_ylabel('Amplitud (mV)')

 Segmento.plot(Datossegmentoplottiempo,Datossegmentoplotseñal)

 Segmento.set_xlabel('Tiempo (s)')

 Segmento.set_title(' Señal I')

 Capsulasegmento = FigureCanvasTkAgg(figure, master = ecgFrame)

 Capsulasegmento.get_tk_widget().pack(pady = 5)

 picoFrame = Frame(frameParametros, height = 50, bg = "#F2F2F2")

 frameComplejos = Frame(picoFrame, highlightbackground="black",

highlightthickness=2)

 frameComplejos.pack(side = "left", padx = (75,0))

 labelCabecera = Label(frameComplejos,fg = color_letra_texto, text =

'Características', bg = "#F2F2F2", font = (fuente, 13, "bold"))

 labelCabecera.pack(pady=10)

 tabla = ttk.Treeview(frameComplejos)

 tabla['columns'] = ('Parámetro', 'Valor')

 tabla.column('#0', width=0, stretch=tk.NO) # Columna de índice

oculta

 tabla.column('Parámetro', width=115)

 tabla.column('Valor', width=100)

 tabla.heading('#0', text='', anchor=tk.W)

 tabla.heading('Parámetro', text='Parámetro', anchor=tk.W)

 tabla.heading('Valor', text='Valor', anchor=tk.W)

 tabla.insert('', 'end', text='1', values=('Frecuencia Cardiaca

',str(FrecuenciaCardiaca)+' LPM'))

 tabla.insert('', 'end', text='2', values=('Momento ' +

VdatoString[1],str(round(VdatoTiempo[1],2))+' Seg'))

 tabla.insert('', 'end', text='3', values=('Momento ' +

VdatoString[3],str(round(VdatoTiempo[3],2))+' Seg'))

 tabla.insert('', 'end', text='4', values=('Momento ' +

VdatoString[4],str(round(VdatoTiempo[4],2))+' Seg'))

 tabla.insert('', 'end', text='5', values=('Momento ' +

VdatoString[5],str(round(VdatoTiempo[5],2))+' Seg'))

 tabla.insert('', 'end', text='6', values=('Momento ' +

VdatoString[7],str(round(VdatoTiempo[7],2))+' Seg'))

 tabla.insert('', 'end', text='7', values=('Duración ' +

VdatoString[1],str(round(VdatoTiempo[2]-VdatoTiempo[0],2))+' Seg'))

 tabla.insert('', 'end', text='8', values=('Duración ' +

VdatoString[7],str(round(VdatoTiempo[8]-VdatoTiempo[6],2))+' Seg'))

 tabla.insert('', 'end', text='9', values=('Amplitud ' +

VdatoString[4],str(round(VdatoAmplitud[4]*1000,2))+' mV'))

 tabla.insert('', 'end', text='10', values=('Dur. Comp. ' +

VdatoSegmento[0],str(round(VdataSegmento[0],2))+' Seg'))

 tabla.insert('', 'end', text='11', values=('Dur. Comp. ' +

VdatoSegmento[1],str(round(VdataSegmento[1],2))+' Seg'))

 tabla.insert('', 'end', text='12', values=('Dur. Comp. ' +

VdatoSegmento[2],str(round(VdataSegmento[2],2))+' Seg'))

 tabla.insert('', 'end', text='13', values=('Dur. Comp. ' +

VdatoSegmento[3],str(round(VdataSegmento[3],2))+' Seg'))

 tabla.insert('', 'end', text='14', values=('Dur. Comp. ' +

VdatoSegmento[4],str(round(VdataSegmento[4],2))+' Seg'))

 tabla.pack()

 desplegable = ttk.Combobox(picoFrame, values = ["I", "II", "III",

"aVR", "aVL", "aVF"], font = (fuente, 13), width = 5)

 desplegable.set("I")

 desplegable.bind("<<ComboboxSelected>>", Cambiar_grafica)

 desplegable.pack(side = "right", padx = (0,75))

 P = (SignalPlot[np.where(Vtiempo == VdatoTiempo[1])][:][0])*1000

 Q = (SignalPlot[np.where(Vtiempo == VdatoTiempo[3])][:][0])*1000

 R = (SignalPlot[np.where(Vtiempo == VdatoTiempo[4])][:][0])*1000

 S = (SignalPlot[np.where(Vtiempo == VdatoTiempo[5])][:][0])*1000

 T = (SignalPlot[np.where(Vtiempo == VdatoTiempo[7])][:][0])*1000

 figure = plt.Figure(dpi=55)

 Pico = figure.add_subplot(1, 1, 1)

 Pico.set_ylabel('Amplitud (mV)')

 Pico.plot(Datospicoplottiempo,Datospicoplotseñal)

 Pico.annotate("P", xy = (VdatoTiempo[1],P), xytext =

(VdatoTiempo[1]+0.02,P), arrowprops=dict(facecolor='red', arrowstyle='->'))

 Pico.annotate("Q", xy = (VdatoTiempo[3],Q), xytext =

(VdatoTiempo[3]+0.02,Q), arrowprops=dict(facecolor='red', arrowstyle='->'))

 Pico.annotate("R", xy = (VdatoTiempo[4],R), xytext =

(VdatoTiempo[4]+0.02,R), arrowprops=dict(facecolor='red', arrowstyle='->'))

 Pico.annotate("S", xy = (VdatoTiempo[5],S), xytext =

(VdatoTiempo[5]+0.02,S), arrowprops=dict(facecolor='red', arrowstyle='->'))

 Pico.annotate("T", xy = (VdatoTiempo[7],T), xytext =

(VdatoTiempo[7]+0.02,T), arrowprops=dict(facecolor='red', arrowstyle='->'))

 Pico.set_xlabel('Tiempo (s)')

 Pico.set_title('Pico Seleleccionado en I')

 Capsulapico = FigureCanvasTkAgg(figure, master = picoFrame)

 Capsulapico.get_tk_widget().pack(pady = 5)

 lbl8 = Label(frameHeader, text = "PARAMETROS", fg = "black", font =

(fuente, 17, "bold"), bg = "#F2F2F2")

 btnVolver = Button(frameFooter, text = "Volver", font = (fuente, 12,

"bold"), command = datos)

 btnDiagnosticar = Button(frameFooter, text = "Diagnosticar", font =

(fuente, 12, "bold"), command = diagnostico)

 frameHeader.pack(side = 'top', fill = 'x')

 frameParametros.pack(fill = 'both', expand = '1')

 frameFooter.pack(side = 'bottom', fill = 'x')

 ecgFrame.pack(side = 'top', fill = 'both', expand = True)

 picoFrame.pack(side = 'bottom', fill = 'both', expand = True)

 lbl8.pack(side = 'top', fill = 'both', expand = 1, pady = 5)

 btnVolver.pack(side = 'left', padx = (100, 0), pady = 25)

 btnDiagnosticar.pack(side = 'right', padx = (0, 100), pady = 25)

 if len(divergencias)>=1:

 if len(divergencias)==1:

 emergente = tk.Toplevel(ventana)

 emergente.title('Advertencia')

 emergente.geometry(str('240x180+' +

str(ventana.winfo_screenwidth()//2 - 240 // 2) + "+" + str(ventana.winfo_screenheight()

// 2 - 180 // 2)))

 emergente.configure(background = 'white')

 emergente.attributes("-toolwindow", True)

 emergente.resizable(False,False)

 emergente.protocol("WM_DELETE_WINDOW", lambda: None)

 etiqueta = tk.Label(emergente, text = "Advertencia!!!")

 etiqueta.pack(anchor = CENTER)

 etiqueta.config(font = (fuente, 10, "bold"), fg = 'red', bg

='white')

 labelAlerta = tk.Label(emergente, bg = fondo, image = None)

 ventana.alerta =

ImageTk.PhotoImage((Image.open("./Code/lib/alerta3.png")))

 labelAlerta.configure(image=ventana.alerta)

 labelAlerta.pack()

 etiqueta2 = tk.Label(emergente, text =("Divergencia en la

estimación de \n" + "la onda " + str(divergencias[0])))

 etiqueta2.pack(anchor = CENTER)

 etiqueta2.configure(font = (fuente, 10, "bold"), bg

='white')

 btn_aceptar = tk.Button(emergente, text = "Aceptar", command

= emergente.destroy, font = (fuente, 10, "bold"))

 btn_aceptar.pack(pady = 10)

 else:

 temp = ""

 for i in range(len(divergencias)):

 if i == len(divergencias)-1:

 temp = temp + str(divergencias[i]) + "."

 else:

 temp = temp + str(divergencias[i]) + ","

 emergente = tk.Toplevel(ventana)

 emergente.title('Advertencia')

 emergente.geometry(str('240x180+' +

str(ventana.winfo_screenwidth()//2 - 240 // 2) + "+" + str(ventana.winfo_screenheight()

// 2 - 180 // 2)))

 emergente.configure(background = 'white')

 emergente.attributes("-toolwindow", True)

 emergente.resizable(False,False)

 emergente.protocol("WM_DELETE_WINDOW", lambda: None)

 etiqueta = tk.Label(emergente, text = "Advertencia!!!")

 etiqueta.pack(anchor = CENTER)

 etiqueta.config(font = (fuente, 10, "bold"), fg = 'red', bg

='white')

 labelAlerta = tk.Label(emergente, bg = fondo, image = None)

 ventana.alerta =

ImageTk.PhotoImage((Image.open("./Code/lib/alerta3.png")))

 labelAlerta.configure(image=ventana.alerta)

 labelAlerta.pack()

 etiqueta2 = tk.Label(emergente, text =("Divergencia en la

estimación de \n" + "las ondas " + temp))

 etiqueta2.pack(anchor = CENTER)

 etiqueta2.configure(font = (fuente, 10, "bold"), bg

='white')

 btn_aceptar = tk.Button(emergente, text = "Aceptar", command

= emergente.destroy, font = (fuente, 10, "bold"))

 btn_aceptar.pack(pady = 10)

def diagnostico():

 for widgets in frameMayor.winfo_children():

 widgets.destroy()

 global diagnosticoFrame

 global VdataSegmento, VdatoTiempo, VdatoAmplitud, FrecuenciaCardiaca

 global Diagnostico

 diagnosticoFrame = Frame(frameMayor, bg = "#F2F2F2")

 diagnosticoFrame.pack(fill = "both", expand = 1)

 frameHeader = Frame(diagnosticoFrame, height = 50, bg = "#F2F2F2")

 lbl25 = Label(frameHeader, text = "DIAGNOSTICO", fg = "black", font = (fuente, 20,

"bold"), bg = "#F2F2F2")

 lbl25.pack(side = 'top', fill = 'both', expand = 1, pady = 30)

 frameHeader.pack(side = 'top', fill = 'x')

 frameEnfermedades = Frame(diagnosticoFrame, height = 100, bg = "#F2F2F2")

 frameEnfermedades.pack(fill = 'both', expand = '1')

 listaFrame = Frame(frameEnfermedades, bg = "#F2F2F2", highlightbackground = 'black',

highlightthickness = 2)

 lbl9 = Label(listaFrame, text = "Posibles enfermedades: ", fg = "black", font =

(fuente, 13, "bold"), bg = "#F2F2F2")

 lbl9.pack(side = 'top', fill = 'both', pady = 15, padx = 50, anchor = "w")

 listaFrame.pack(side = 'left', fill = 'both', padx = 5)

 frameSoporte = Frame(frameEnfermedades, bg = "#F2F2F2")

 lbl26 = Label(frameSoporte, text = "Soporte de diagnóstico", fg = "black", font =

(fuente, 15, "bold"), bg = "#F2F2F2")

 lbl26.pack(side = 'top', fill = 'both', pady = 12, anchor = 'w')

 lbl27 = Label(frameSoporte, text = "", fg = "black", font = (fuente, 12, "bold"), bg

= "#F2F2F2")

 lbl27.pack(fill = 'both', pady = 5, anchor = 'w')

 frameSoporte.pack(side = 'right', fill = 'both', expand = '1')

 ventana.a = tk.BooleanVar()

 ventana.b = tk.BooleanVar()

 ventana.c = tk.BooleanVar()

 ventana.d = tk.BooleanVar()

 ventana.m = tk.BooleanVar()

 ventana.f = tk.BooleanVar()

 ventana.e = tk.BooleanVar()

 ventana.g = tk.BooleanVar()

 ventana.h = tk.BooleanVar()

 ventana.i = tk.BooleanVar()

 ventana.k = tk.BooleanVar()

 ventana.l = tk.BooleanVar()

 ventana.j = tk.BooleanVar()

 if (VdatoTiempo[8]-VdatoTiempo[6] < 0.1 and VdatoAmplitud[1] < 0.00005 and

VdataSegmento[2] > 0.12):

 ventana.a.set(True)

 lbl27['text'] = lbl27['text'] + "\n Hiperpotacemia: \n"

 if VdatoTiempo[8]-VdatoTiempo[6] < 0.1:

 lbl27['text'] = lbl27['text'] + "- La duración de la onda T es inferior a

0.1 Seg. \n"

 if VdatoAmplitud[1] < 0.00005:

 lbl27['text'] = lbl27['text'] + "- La amplitud de la onda P es inferior a

0.05 mV. \n"

 if VdataSegmento[2] > 0.12:

 lbl27['text'] = lbl27['text'] + "- La duración del complejo QRS es

superior a 0.12 Seg. \n"

 else:

 ventana.a.set(False)

 if (VdatoAmplitud[1] > 0.00025):

 ventana.b.set(True)

 lbl27['text'] = lbl27['text'] + "\n Hipertrofia auricular derecha: \n"

 lbl27['text'] = lbl27['text'] + "- La amplitud de la onda P es inferior a 0.25

mV. \n"

 else:

 ventana.b.set(False)

 if (VdatoTiempo[2]-VdatoTiempo[0] > 0.1):

 ventana.c.set(True)

 lbl27['text'] = lbl27['text'] + "\n Dilatacion auricular: \n"

 lbl27['text'] = lbl27['text'] + "- La duración de la onda P es superior a 0.1

Seg. \n"

 else:

 ventana.c.set(False)

 if (VdataSegmento[1] > 0.2):

 ventana.d.set(True)

 lbl27['text'] = lbl27['text'] + "\n Bloqueo auroventricular: \n"

 lbl27['text'] = lbl27['text'] + "- La duración del complejo PR es superior a 0.2

Seg. \n"

 else:

 ventana.d.set(False)

 if (VdataSegmento[2] > 0.12):

 ventana.m.set(True)

 lbl27['text'] = lbl27['text'] + "\n Bloqueo de rama: \n"

 lbl27['text'] = lbl27['text'] + "- La duración del complejo QRS es superior a

0.12 Seg. \n"

 else:

 ventana.m.set(False)

 if (VdataSegmento[3] > 0.42 and VdatoAmplitud[4] < 0.002):

 ventana.f.set(True)

 lbl27['text'] = lbl27['text'] + "\n Miocarditis: \n"

 if VdataSegmento[3] > 0.42:

 lbl27['text'] = lbl27['text'] + "- La duración del complejo QT es superior a

0.42 Seg. \n"

 if VdatoAmplitud[4] < 0.002:

 lbl27['text'] = lbl27['text'] + "- La amplitud de la onda R es inferior a 0.2

mV. \n"

 else:

 ventana.f.set(False)

 if (VdataSegmento[3] < 0.32):

 ventana.e.set(True)

 lbl27['text'] = lbl27['text'] + "\n Hipercalcemia: \n"

 lbl27['text'] = lbl27['text'] + "- La duración del complejo QT es inferior a 0.32

Seg. \n"

 else:

 ventana.e.set(False)

 if (VdataSegmento[3] > 0.42):

 ventana.g.set(True)

 lbl27['text'] = lbl27['text'] + "\n Sindrome del QT Prolongado: \n"

 lbl27['text'] = lbl27['text'] + "- La duración del complejo QT es superior a 0.42

Seg. \n"

 else:

 ventana.g.set(False)

 if (VdataSegmento[4] > 0.15 and VdatoAmplitud[7] > (VdatoAmplitud[4]/0.003)):

 ventana.h.set(True)

 lbl27['text'] = lbl27['text'] + "\n Pericarditis: \n"

 if VdataSegmento[4] > 0.15:

 lbl27['text'] = lbl27['text'] + "- La duración del complejo ST es superior a

0.15 Seg. \n"

 if VdatoAmplitud[7] > (VdatoAmplitud[4]/0.003):

 lbl27['text'] = lbl27['text'] + "- la amplitud de la onda T es superior a la

Amplitud de R / 3mV. \n"

 else:

 ventana.h.set(False)

 if (VdatoTiempo[8]-VdatoTiempo[6] > 0.12):

 ventana.j.set(True)

 lbl27['text'] = lbl27['text'] + "\n Hipertrófia Auricular Izquierda: \n"

 lbl27['text'] = lbl27['text'] + "- La duración de la onda T es superior a 0.12

Seg. \n"

 else:

 ventana.j.set(False)

 if (VdatoTiempo[8]-VdatoTiempo[6] > 0.12 and VdatoAmplitud[7] >

(VdatoAmplitud[4]/0.003)):

 ventana.i.set(True)

 lbl27['text'] = lbl27['text'] + "\n Isquemia: \n"

 if VdatoTiempo[8]-VdatoTiempo[6] > 0.12:

 lbl27['text'] = lbl27['text'] + "- La duración de la onda T es superior a

0.12 Seg. \n"

 if VdatoAmplitud[7] > (VdatoAmplitud[4]/0.003):

 lbl27['text'] = lbl27['text'] + "- la amplitud de la onda T es superior a la

Amplitud de R / 3mV. \n"

 else:

 ventana.i.set(False)

 if (FrecuenciaCardiaca > 100):

 ventana.k.set(True)

 lbl27['text'] = lbl27['text'] + "\n Taquicardia Sinusual: \n"

 lbl27['text'] = lbl27['text'] + "- La frecuencia cardiaca es superior a 100 LPM.

\n"

 else:

 ventana.k.set(False)

 if (FrecuenciaCardiaca < 60):

 ventana.l.set(True)

 lbl27['text'] = lbl27['text'] + "\n Bradicardia Sinusual: \n"

 lbl27['text'] = lbl27['text'] + "- La frecuencia cardiaca es inferior a 60 LPM.

\n"

 else:

 ventana.l.set(False)

 lblDisclaimer = Label(frameSoporte, text = "Los resultados de este análisis se basan

en la derivación I y no son concluyentes, \n por lo que se recomienda consultar con un

médico.", bg = "#F2F2F2", fg = color_letra_texto, font = (fuente, 10, "bold"))

 lblDisclaimer.pack(side = 'bottom', pady = 10)

 lbl10 = Checkbutton(listaFrame, state = "disabled", variable = ventana.a , text =

"Hiperpotacemia", fg = color_letra_texto, font = (fuente, 10))

 lbl11 = Checkbutton(listaFrame, state = "disabled", variable = ventana.b , text =

"Hipertrofia auricular derecha", fg = color_letra_texto, font = (fuente, 10))

 lbl12 = Checkbutton(listaFrame, state = "disabled", variable = ventana.c , text =

"Dilatacion auricular", fg = color_letra_texto, font = (fuente, 10))

 lbl15 = Checkbutton(listaFrame, state = "disabled", variable = ventana.d , text =

"Bloqueo Auroventricular", fg = color_letra_texto, font = (fuente, 10))

 lbl16 = Checkbutton(listaFrame, state = "disabled", variable = ventana.e , text =

"Hipercalcemia", fg = color_letra_texto, font = (fuente, 10))

 lbl17 = Checkbutton(listaFrame, state = "disabled", variable = ventana.f , text =

"Miocarditis", fg = color_letra_texto, font = (fuente, 10))

 lbl18 = Checkbutton(listaFrame, state = "disabled", variable = ventana.g , text =

"Sindrome del QT Prolongado", fg = color_letra_texto, font = (fuente, 10))

 lbl19 = Checkbutton(listaFrame, state = "disabled", variable = ventana.h , text =

"Pericarditis", fg = color_letra_texto, font = (fuente, 10))

 lbl20 = Checkbutton(listaFrame, state = "disabled", variable = ventana.i , text =

"Isquemia", fg = color_letra_texto, font = (fuente, 10))

 lbl21 = Checkbutton(listaFrame, state = "disabled", variable = ventana.j , text =

"Hipertrofia auricular izquierda", fg = color_letra_texto, font = (fuente, 10))

 lbl22 = Checkbutton(listaFrame, state = "disabled", variable = ventana.k , text =

"Taquicardia", fg = color_letra_texto, font = (fuente, 10))

 lbl23 = Checkbutton(listaFrame, state = "disabled", variable = ventana.l , text =

"Bradicardia", fg = color_letra_texto, font = (fuente, 10))

 lbl24 = Checkbutton(listaFrame, state = "disabled", variable = ventana.m , text =

"Hipertrofia Ventricular o Bloqueo de Rama", fg = color_letra_texto, font = (fuente, 10))

 lbl10.pack(anchor = "w")

 lbl11.pack(anchor = "w")

 lbl12.pack(anchor = "w")

 lbl15.pack(anchor = "w")

 lbl16.pack(anchor = "w")

 lbl17.pack(anchor = "w")

 lbl18.pack(anchor = "w")

 lbl19.pack(anchor = "w")

 lbl20.pack(anchor = "w")

 lbl21.pack(anchor = "w")

 lbl22.pack(anchor = "w")

 lbl23.pack(anchor = "w")

 lbl24.pack(anchor = "w")

 frameFooter = Frame(diagnosticoFrame, height = 50, bg = "#F2F2F2")

 btnVolver = Button(frameFooter, text = "Volver", font = (fuente, 15, "bold"), command

= resultados)

 btnVolver.pack(side = 'left', padx = (100, 0), pady = 25)

 btnSalir = Button(frameFooter, text = "Salir", font = (fuente, 15, "bold"), command =

ventana.destroy)

 btnSalir.pack(side = 'right', padx = (0, 100), pady = 25)

 btnHome = Button(frameFooter, text = "Inicio", font = (fuente, 15, "bold"), command =

inicio)

 btnHome.pack(pady = 25)

 frameFooter.pack(side = 'bottom', fill = 'x')

inicio()

ventana.mainloop()

SECCION DE PRUEBAS SIN UI ###

inicio = time.time()

Preparacion()

PDF_to_jpeg(ruta_PDF)

crop_image()

Concat_image()

Limpiar_imagen()

Lines_Hough(cv2.imread('./Code/Data/Output/img-ECG.jpeg'))

Vectorizacion_Señal()

ObtencionPico()

Características()

ObtencionParametros()

Diagnosticar()

fin = time.time()

print(str(fin-inicio))

