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RESUMEN 
 

En este trabajo de grado en modalidad de pasantía se presentan los resultados 
obtenidos del proyecto “Desarrollo de módulo didáctico de integración de ROS con 
robot OpenBotv v1 para fines académicos e investigación”, el cual se plantea con el 
objetivo de desarrollar un módulo didáctico para la empresa Robotics 4.0 S.A.S, 
para que entusiastas en temáticas de robótica hispano hablantes cuenten con una 
mayor oferta en el mercado local y nacional, en lo que respecta a formas de 
instruirse en el manejo de softwares especializados en robótica como lo es ROS y 
robots académicos compatibles con el software como OpenBotv v1. 

El pasante que llevó a cabo la construcción del módulo didáctico lo realizó en 
distintas fases. Inicialmente, se centró en realizar el proceso de programación, 
simulación y manejo del robot académico “OpenBotv v1” desde el software ROS. 
Posteriormente, teniendo un control total sobre el robot se aplicaron modelos 
cinemáticos mediante el uso del software y, por último, se documentó el proceso 
realizado en forma de guías y videos para formar el material que conformaría el 
módulo didáctico. 

Actualmente, el material desarrollado por el pasante se encuentra publicado por 
Robotics 4.0 S.A.S en la plataforma de Udemy en forma del curso “Robótica 
Antropomórfica Básica en ROS”1. 

 
1 Robotics 4.0. (16 de febrero de 2023). Udemy. Obtenido de Robótica Antropomórfica Básica en ROS: 
https://www.udemy.com/course/robotica-antropomorfica-basica-en-
ros/?src=sac&amp;kw=robotica%2Bantropomorf 
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INTRODUCCIÓN 
 

El campo de la robótica es una rama fascinante que combina tanto los campos de 
hardware y software para diseñar robots que han sido programados para facilitar la 
ejecución de una tarea específica. Un detalle que no debe omitirse es que entre más 
difícil o compleja sea la tarea a realizar del robot, más arduo es el proceso de 
codificación. 

Esta es una de las razones por la cual la Universidad de Stanford en 2007 desarrolló 
el software conocido como Robot Operating System o comúnmente conocido como 
ROS (Quigley, Gerkey, & Smart, 2015, p.24). La literatura disponible lo define como 
“Un entorno de trabajo flexible, con una amplia variedad de herramientas, librerías 
y paquetes que busca la creación de un software complejo para tener robots 
robustos y con un comportamiento variado”. Igualmente, posee la ventaja de ser un 
software con libertad para uso comercial e investigación, con el apoyo de una 
comunidad fuerte. 

La principal desventaja de ROS, respecto a entusiastas en temáticas de robótica 
hispano hablantes, es que en el mercado local y nacional existe poca oferta de 
oportunidades que permitan instruirse fácilmente en el manejo de esta herramienta. 
ROBOTICS 4.0 S.A.S una empresa enfocada en diseñar, transferir e integrar 
tecnología robótica en el ámbito académico, servicios e industria; en conjunto con 
su robot académico OpenBotv v1 se propone a avanzar en la integración de éste 
con el software ROS y de manera paralela crear un módulo didáctico que genere un 
impacto social y académico para la comunidad interesada en temáticas de robótica. 

Basado en lo anterior, en este trabajo de grado en modalidad de pasantía se 
describe el proceso que llevó a cabo el pasante para realizar la programación y 
manejo del robot académico “OpenBotv v1” desde el software ROS, la 
implementación de modelos cinemáticos mediante el uso de esta herramienta y la 
posterior condensación de lo aprendido en un módulo didáctico. 

 

 

 

 

 

 

 



13 
 

1. PLANTEAMIENTO DEL PROBLEMA 

 

ROBOTICS 4.0 S.A.S es una empresa que ofrece soluciones robotizadas en el 
marco de los estándares de la cuarta revolución industrial para el área de servicios 
e industria. De manera paralela la empresa desde sus inicios ha intentado promover 
el aprendizaje de la rama de la robótica en la región a través de módulos didácticos 
y cursos en este campo para distintos niveles académicos. 

A pesar de haber interactuado con el software ROS (Robot Operating System) en 
el pasado, la empresa dentro sus contenidos académicos desarrollados y 
publicados no posee nada referente al uso de esta herramienta. Con la iniciativa de 
suplementar esta carencia, Robotics 4.0 S.A.S se propone a profundizar en el uso 
de este software para poder acoplarlo a su robot académico “OpenBotv v1” y aplicar 
modelos cinemáticos programados desde éste. Adicionalmente, con el objetivo de 
plasmar todo el procedimiento en un módulo didáctico. 

Para la anterior tarea se requiere de un recurso humano, cuyo perfil incluye un 
estudiante de ingeniería electrónica con experiencia en programación en Python, 
dispuesto a adquirir conocimientos básicos de robótica y el software ROS. Además, 
que vea en este campo una oportunidad futura de desarrollo profesional. 
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2. JUSTIFICACIÓN 

 

Como se ha mencionado, Robot Operating System es una herramienta usada a 
nivel industrial por distintas empresas en el área de la robótica por las distintas 
ventajas que ofrece a la hora de desarrollar proyectos. Tal es su popularidad que 
según ABI Research2, en su informe de “Proyectos de robótica de código abierto”, 
se espera que casi el 55% de los robots de todo el mundo incluyan al menos un 
paquete de ROS en 2024. Convirtiendo el uso de esta herramienta en el lenguaje 
común de automatización para proyectos de robótica.  

Por tal razón, la realización de esta propuesta no solo representa para el pasante 
una gran oportunidad de aprendizaje, permitiéndole familiarizarse con herramientas 
(software y hardware) relacionadas a la programación y manejo de robots como lo 
son ROS y el robot académico OpenBotv v1, sino también, que la construcción de 
un contenido académico respecto al proceso que realice el pasante, representa un 
gran impacto para la región para aquellas personas que vean un futuro desarrollo 
profesional en el campo de la robótica, debido a que contarían con un material de 
calidad, escrito en su lengua materna (Español), que les permitiera introducirse en 
un elemento tan potente en el área de la robótica como lo es ROS. 

 

 
2 ABI Research. (19 de febrero de 2023). Obtenido de The rise of ROS: Nearly 55% of total commercial robots 
shipped in 2024 will have at least one robot operating system package installed: 
https://www.abiresearch.com/press/rise-ros-nearly-55-total-commercial-robots-shipped-2024-will-have-
least-one-robot-operating-system-package-installed/ 
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3. ANTECEDENTES 

 

ROBOTICS 4.0 S.A.S es una empresa fundada a finales de 2018 que se dedica a 
desarrollar soluciones robotizadas a medida de la cuarta revolución industrial para 
el sector de servicios e industria. De manera paralela la empresa desde sus inicios 
ha intentado promover el aprendizaje de la rama de Robótica en la región a través de 
módulos didácticos y cursos en este campo para distintos niveles académicos. 

Todos los módulos académicos que maneja la empresa se complementan con el 
uso del robot OpenBotv v1 y sus derivados. 

Estos robots se caracterizan por ser reconfigurables y permitirle al estudiante tener 
la posibilidad de diseñar y probar distintas configuraciones o tareas. Además, como 
su nombre lo indica le brinda la facilidad al usuario de controlarse y programarse en 
distintos entornos como lo son Matlab, Labview, C++, Java, Python y ROS. Esta 
versatilidad que ofrece al ser una plataforma abierta es lo que motiva también a 
usarse en distintas aplicaciones de Robótica industrial. 

Desde la fundación de la empresa se pueden resaltar los siguientes proyectos3: 

• Teleoperación inalámbrica mio-eléctrica inteligente (2018): Proyecto 
desarrollado en colaboración con estudiantes de la Escuela Colombiana de 
ingeniería ‘Julio Garavito’. 

• Robot para localización Estereotáxica (2018-2020): PMV para FACOSEME SAC 
cofinanciado por INNOVATE / Perú. 

• Robot para limpieza de paneles solares (2020-2021): PMV implementado para 
la empresa SUNNYAPP SAS, cofinanciado por Minciencias y Tecnnova. 

 

 

 

 

 

 

 

 
3 Robotics 4.0. (16 de febrero de 2023). Youtube. Obtenido de HuilaFEST 4.0: https://youtu.be/iPjFRZ1tPg0 



16 
 

4. OBJETIVOS 
 
 

4.1 OBJETIVO GENERAL 

Desarrollar para ROBOTICS 4.0 S.A.S un módulo didáctico sobre la integración de 
ROS con el robot OpenBotv v1, para interactuar con hardware real y mediante 
modelos de simulación programados en ROS. 

 

4.2 OBJETIVOS ESPECÍFICOS 

• Aprender el funcionamiento de la arquitectura ROS para implementar algoritmos 
de modelado cinemático en robot OpenBotv v1 mediante el estudio de tutoriales 
y aplicación de simulaciones desarrolladas por la empresa. 

• Implementar e integrar modelos cinemáticos desarrollados en el robot OpenBotv 
v1 a través de ROS. 

• Validar la implementación de los modelos cinemáticos mediante simulaciones 
en ROS y su desempeño en el robot real. 

• Desarrollar material académico (guías de trabajo, videos, etc.) para explicar paso 
a paso la integración de ROS con OpenBotv v1 y la aplicación de los modelos 
cinemáticos. 
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5. MARCO TEÓRICO 

 

5.1 ¿QUÉ ES ROS? 

Robot Operating System, comúnmente llamado como ROS, es un framework de 
robótica de carácter gratuito y código abierto con posibilidad de uso para fines 
comerciales e investigación. Actualmente, se le considera la plataforma por defecto 
para el desarrollo de aplicaciones robotizadas debido a las ventajas que ofrece a 
sus usuarios, como: 

• Interfaz de paso de mensajes entre procesos (Nodos). 

• Funcionalidades similares a las de un sistema operativo (Workspace, Packages). 

• Soporte a lenguajes de programación de alto nivel (Python, C++) 

• Herramientas de simulación (Gazebo, Rviz) 

• Soporte por parte de la comunidad. (Lentin y Aleena, 2018, p.132)  

Figura 1. Logotipo de Robot Operating System 

 

Fuente: Open Robotics. (16 de febrero de 2023). ROS: Home. Obtenido de https://www.ros.org 

5.2 ¿CÓMO FUNCIONA ROS? 

5.2.1 Workspace 

Es una carpeta donde se introducen distintos paquetes para ejecutar una aplicación 
(Simulaciones, códigos de Python, etc.). 

La estructura de un Workspace está conformada por una carpeta src, devel y build. 

Figura 2. Estructura de espacio de trabajo en ROS 

 

Fuente: Propia 
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5.2.2 Paquete 

Es una subcarpeta que se diseña para que cumpla una funcionalidad especifica al 
ser llamada por ROS. Posee una carpeta src donde se colocan los archivos a 
emplear durante la ejecución y dos archivos de configuración (CmakeLists.txt y 
package.xml) para definir parámetros del paquete. 

Figura 3. Estructura de un paquete en ROS 

 

Fuente: Propia 

5.2.3 Nodos 

Según Fairchild & Harman (2017), básicamente son programas que realizan algún 
cálculo o tarea específica. Cada nodo está pensado para poder operar 
independientemente ejecutando un script, pero poseen la capacidad de 
comunicarse entre ellos mediante la estructura de comunicación de ROS. 

Figura 4. Forma de comunicación entre nodos 

 

Fuente: Propia 

A los canales de comunicación que existen entre los nodos se les denomina Topics 
y la manera como se envía información es por medio de unas estructuras conocidas 
como mensajes. 

Para el caso específico de Python, Rospy es la librería para la configuración e 
inicialización de un nodo mediante un script (Rospy - ROS Wiki, 2017). 

5.2.4 Nodo Publisher y Subscriber 

Se define como una relación emisor-receptor que existe entre los nodos para el 
intercambio de información. Es una de las maneras de intercambio de datos que 
ofrece ROS. 
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Figura 5. Comunicación entre nodo Publisher y Subscriber 

 

Fuente: Propia 

5.2.5 ROS control 

Es una librería de ROS que permite establecer controladores (generalmente PID) 
con distintos parámetros de entrada para el control de la articulación de un robot. 
Su implementación pide la configuración del propio controlador en un archivo .yaml 
y añadir unas estructuras conocidas como transmisores al archivo Xacro o URDF 
donde se encuentra descrito el modelo del robot. (ROS control,2023).  

Figura 6. Diagrama de funcionamiento ROS Control 

 

Fuente: Apache 2.0. (16 de febrero de 2023). Gazebo : Tutorial : ROS control. Obtenido de 
https://classic.gazebosim.org/tutorials?tut=ros_control#Aboutros_control 

5.2.6 Herramientas de simulación de ROS 

Gazebo: Es un entorno de simulación de robots gratuito y de código abierto 
desarrollado por Willow Garage. Como herramienta multifuncional para 
desarrolladores de robots en ROS, Gazebo soporta lo siguiente: 
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• Diseño de modelos de robots 

• Creación rápida de prototipos y pruebas de algoritmos 

• Simulación de ambientes (Interiores y exteriores) 

• Simulación de datos de sensores 

• Motores de física de alto rendimiento como: Object-Oriented Graphics Rendering 
Engine (OGRE), Open Dynamics Engine (ODE), Bullet, Simbody y Dynamic 
Animation and Robotics Toolkit (DART).   

(Fairchild & Harman, 2017, p.60) 

Figura 7. Logotipo de software de simulación Gazebo 

 

Fuente: Apache 2.0. (16 de febrero de 2023). Gazebo : Media. Obtenido de https://classic.gazebosim.org/media 

RVIZ: Son las siglas para ROS Visualization. Es un entorno 3D generalmente 
empleado para la visualización de robots, sensores y algoritmos. Como la mayoría 
de las herramientas de ROS, se puede utilizar para cualquier robot y rápidamente 
configurarlo para una aplicación particular (Quigley, Gerkey, & Smart, 2015, p.126). 

Figura 8. Logotipo de software de simulación RVIZ 

 

Fuente: ros visualization . GitHub. (16 de febrero de 2023). Obtenido de https://github.com/ros-visualization 
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La principal diferencia con Gazebo, es la manera como cada programa realiza su 
proceso de simulación. “RVIZ muestra lo que el robot piensa que está pasando 
mientras que Gazebo muestra lo que de verdad está pasando” (Quigley, Gerkey, & 
Smart, 2015, p.300). 

5.2.7 Componentes de una Simulación de ROS 

URDF: Son las siglas de (Unified Robot Description Format). Corresponde a un 
formato de lenguaje utilizado para describir robots empleando la gramática XML. A 
través de un formato URDF se puede modelar la estructura de un robot, sus 
dimensiones, masa, articulaciones, actuadores, etc. (Lentin y Aleena, 2018, p.132). 

Figura 9. Ejemplo de estructura de archivo URDF 

 

Fuente: Model with URDF from Scratch: 
http://wiki.ros.org/urdf/Tutorials/Building%20a%20Visual%20Robot%20Model%20with%20URDF%20from%20Scratch 

Xacro: Para Fairchild & Harman (2017, p.42), Xacro es un lenguaje de macros XML 
creado para hacer los archivos de descripción de robots URDF más fáciles de leer, 
reduciendo la duplicación de información dentro del archivo.  

Figura 10. Estructura de archivo Xacro de OpenBotv v1 

 

Fuente: Propia 
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Roslaunch: Es una herramienta para arrancar fácilmente varios nodos de ROS e 
inicializar parámetros. Los archivos de configuración de Roslaunch se escriben en 
XML y utilizan la extensión .launch. (Fairchild & Harman,2017, p.44). 

Figura 11. Ejemplo de estructura de archivo .launch 

 

Fuente: Propia 

Rqt-configure y archivos .cfg: Las herramientas rqt que forman parte del 
framework permiten representaciones gráficas de nodos, temas, mensajes y otro 
tipo de información (rqt/Plugins - ROS Wiki). La wiki de ROS enumera muchas de 
las posibles herramientas que se pueden usar como complementos, pero la usada 
durante el proyecto fue rqt_reconfigure 

Esta herramienta permite a nodos que hayan sido programados usando la 
rqt_reconfigure API ser visibles dentro la interfaz y que dentro del GUI aparezcan 
sus parámetros con los valores actuales y límites. (Fairchild & Harman,2017, p.198). 

Figura 12. Ejemplo de interfaz empleando rqt_configure 

 

Fuente: Propia 

Estos parámetros se definen empleando un archivo .cfg, en el cual se crean las 
variables que se quiere que aparezcan en la interfaz, su rango de trabajo y valor 
inicial.              
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Figura 13. Ejemplo de estructura de archivo .cfg 

 

Fuente: Propia 

Cmakelist: Este archivo contiene todos los comandos para construir el código 
fuente de ROS dentro del paquete y crear el ejecutable. (Lentin y Aleena, 2018, 
p.179). 

Package.xml: Es un archivo XML que contiene principalmente las dependencias 
del paquete, información, etc. (Lentin y Aleena, 2018, p.180). 

5.3 OPENBOTV V1  

5.3.1 Definición 

Es un robot bioinspirado, didáctico y reconfigurable con 6 grados de libertad, 
especializado en resolver problemas de desplazamiento de objetos y movimiento 
espacial. Mediante un accesorio de intercambio de datos, es capaz de controlarse 
y programarse desde un PC, mediante distintos entornos como Matlab, LabView, 
C++, Java, Python, ROS. (E-Robotics 4.0, 2023). 

Figura 14. Robot académico OpenBotv v1 

 

Fuente: Robotics 4.0. (15 de Marzo de 2023). Robotics 4.0. Obtenido de E-Robotics 4.0 I Robotics 4.0: 
https://robotics40.com/wp-content/uploads/2019/04/OpenBotvv1.jpg 
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5.3.2 Motores 

El OpenBotv v1 está compuesto por 6 motores de la marca Dynamixel serie AX-12. 
Los servomotores de esta referencia operan en un rango de trabajo de 0 a 1023 
posiciones. (AX-12A, 2023). 

Todos los motores de la marca Dynamixel son manipulables desde distintos 
lenguajes de programación y para el caso específico de ROS poseen una librería 
denominada Dynamixel_Workbench para hacer más fácil el acople con el software. 
(DYNAMIXEL Workbench, 2023). 

5.4 ELEMENTOS USADOS EN EL MONTAJE 

5.4.1 Convertidor U2D2 

“Es un convertidor de comunicación USB de pequeño tamaño que permite controlar 
y operar DYNAMIXEL desde un PC” (Robotis e-Manual U2D2,2023). 

Figura 16. Convertidor U2D2 

 

Fuente: ROBOTIS. (13 de febrero de 2023). ROBOTIS e-Manual. Obtenido de DYNAMIXEL Workbench: 
https://emanual.robotis.com/docs/en/software/dynamixel/dynamixel_workbench/ 

Figura 15. Rango de posiciones de motor Dynamixel AX-12A 

Fuente: ROBOTIS. (15 de febrero de 2023). ROBOTIS e-Manual. Obtenido de AX-12A: 
https://emanual.robotis.com/docs/en/dxl/ax/ax-12a/ 
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5.4.2 SMPS2Dynamixel 

Este dispositivo proporciona energía a un Dynamixel desde un SMPS. Posee 
conectores de 3 pines para la serie AX y conectores de 4 pines para la serie 
DX/RX/EX. Las líneas de alimentación y comunicación están conectadas, lo que 
permite desempeñar el papel de bus de expansión del Dynamixel. (Robotis 
SMPS2Dynamixel, 2023). 

Figura 17. SMPS2 Dynamixel 

 

Fuente: ROBOTIS. (15 de febrero de 2023). ROBOTIS. Obtenido de SMPS2Dynamixel - ROBOTIS: 
https://www.robotis.us/smps2dynamixel/ 

5.5 DESARROLLO TEÓRICO DE LOS MODELOS CINEMÁTICOS 

5.5.1 Aclaraciones 

La construcción de los modelos cinemáticos que se aplican sobre el OpenBotv v1 
en conjunto con ROS, se implementan según los siguientes aspectos: 

• El modelo se define para un movimiento planar respecto al plano XZ 

considerando una configuración de 2 y 3 grados de libertad. 

                  Figura 18. Diagrama de modelo cinemático de 2GDL y 3GDL 

 

Fuente: Propia 
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La diferencia entre ambas configuraciones es como el modelo de 3 grados de 
libertad considera la orientación o ángulo del efector final (qy) al realizar el 
movimiento planar. 

• El desarrollo teórico respecto al plano XZ se realiza exclusivamente para el 
primer y segundo cuadrante.  

Figura 19. Cuadrantes del plano (x, z) empleados en el modelo 

 

Fuente: Propia 

• Adicionalmente, el análisis del modelo 2 y 3 grados de libertad se plantea 
respecto a dos orientaciones de codo (arriba y abajo) para representar el 
comportamiento de un brazo robótico. 

Figura 20. Orientaciones de codo abajo y arriba 

 

Fuente: Propia 
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5.5.2 Cinemática inversa 

Es una técnica que permite calcular los giros de las articulaciones del robot para 
llevar su efector final a unas coordenadas específicas en el plano.  

Para 2GDL, se planteó el modelo a través de un sistema de triángulos que permite 
calcular fácilmente los ángulos de interés (𝒒𝟏, 𝒒𝟐) en ambas orientaciones de codo 
(arriba y abajo). 

Figura 21. Diagrama de cinemática inversa 2GDL Codo abajo  

 
Fuente: Propia 

Figura 22. Diagrama de cinemática inversa 2GDL Codo arriba  

 

Fuente: Propia 
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• L1 es la longitud del eslabón 1. 

• L2 es la longitud del eslabón 2. 

• q1 es el ángulo que se forma entre el eslabón 1 y el eje x. 

• q2 es el ángulo que se forma entre la prolongación del eslabón 1 y el eslabón 2. 

• q1p es un ángulo auxiliar para relacionar q1 en el segundo cuadrante. 

El sistema de triángulos está conformado por un elemento de color azul y uno 
naranja. El primero relaciona el ángulo 𝒂 para obtener una distancia 𝒓 y el segundo 
a los ángulos internos b y c. 

Figura 23.  Análisis triángulo azul C. inversa 2GDL 

 

Fuente: Propia                  

Por trigonometría se tiene que la expresión para 𝒂 es:  

𝒂 = 𝐚𝐭𝐚 𝐧 (
𝒛

𝒙
) (𝟏) 

 

Por teorema de Pitágoras se halla la expresión para 𝒓: 

𝒓 = √𝐱𝟐 + 𝐳𝟐 (𝟐) 
 

Conociendo el valor de 𝒓, se emplea la ley del coseno como un método que permite 
relacionar los valores de b y c. 

Figura 24. Análisis naranja C. inversa 2GDL 

 
Fuente: Propia 
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𝐋𝟐𝟐 = 𝐋𝟏𝟐 + 𝐫𝟐 − 𝟐 ∗ 𝐋𝟏 ∗ 𝐫 ∗ 𝐜𝐨𝐬 (𝐛) (𝟑) 
Despejando b: 

𝒃 = 𝒂𝒄𝒐𝒔(
𝑳𝟏𝟐 + 𝒓𝟐 − 𝑳𝟐𝟐

𝟐 ∗ 𝑳𝟏 ∗ 𝒓
) (𝟒) 

Para c se hace el mismo proceso: 

𝒄 = 𝒂𝒄𝒐𝒔(
𝑳𝟏𝟐 − 𝒓𝟐 + 𝑳𝟐𝟐

𝟐 ∗ 𝑳𝟏 ∗ 𝑳𝟐
) (𝟓)

Independientemente de la orientación codo y el cuadrante, el sistema de triángulos 
siempre se resuelve de la misma manera empleando las ecuaciones (1) al (5). Lo 
único que varía al obtener 𝒒𝟏 y 𝒒𝟐 mediante 𝒂, b y c son las relaciones que se 
plantean entre estos. 

Figura 25. Ecuaciones para hallar q1 y q2 con a, b y c 

 

Fuente: Propia 

Para 3GDL, se aplica nuevamente el sistema de triángulos con el añadido de 
considerar el ángulo de orientación del efector final (qy). El modelo resultante 
permite calcular fácilmente los ángulos de interés 𝒒𝟏, 𝒒𝟐 y 𝒒𝟑 en ambas 
configuraciones de codo (arriba y abajo). 
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Figura 26. Diagrama de cinemática inversa 3GDL Codo abajo 

 

Fuente: Propia 

Figura 27. Diagrama de cinemática inversa 3GDL Codo arriba 

 

Fuente: Propia 

El ángulo de orientación del efector (qy), dependiendo del cuadrante donde se 
encuentre varia su forma de obtener las coordenadas (xp, zp) mediante el triángulo 
de color verde. 
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Figura 28. Análisis triángulo verde C. inversa 3GDL 

 
Fuente: Propia 

 

 
 

Posteriormente, conociendo los valores de (xp, zp), se calculan los ángulos internos 
a, b y c para determinar los valores de q1, q2 y q3. 

Figura 29. Análisis triángulo azul C. inversa 3GDL 

 
Fuente: Propia 

Por trigonometría se tiene que la expresión para 𝒂 es: 

𝐚 = 𝐚𝐭𝐚𝐧 (
𝐳𝐩

𝐱𝐩
) (𝟏𝟎) 

 

Por teorema de Pitágoras se halla la expresión para 𝒓: 

𝐫 = √𝐱𝐩𝟐 + 𝐳𝐩𝟐 (𝟏𝟏) 
 

Conociendo el valor de 𝒓, se emplea la ley del coseno como un método para  

relacionar los valores de b y c.  

𝒙𝒑 = 𝒙 − 𝑳𝟑 ∗ 𝒄𝒐𝒔(𝒒𝒚) (𝟔) 

𝒛𝒑 = 𝒛 − 𝑳𝟑 ∗ 𝒔𝒆𝒏(𝒒𝒚) (𝟕) 

 

 

 

 

 

 

𝒙𝒑 = 𝒙 − 𝑳𝟑 ∗ 𝒄𝒐𝒔(𝟏𝟖𝟎 − 𝒒𝒚) (𝟖)  

𝒛𝒑 = 𝒛 − 𝑳𝟑 ∗ 𝒔𝒆𝒏(𝟏𝟖𝟎 − 𝒒𝒚)  (𝟗) 
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Figura 30. Análisis triángulo naranja C. inversa 3GDL 

 
Fuente: Propia 

𝐋𝟐𝟐 = 𝐋𝟏𝟐 + 𝐫𝟐 − 𝟐 ∗ 𝐋𝟏 ∗ 𝐫 ∗ 𝐜𝐨𝐬 (𝐛)(𝟏𝟐) 
 
Despejando b: 

𝒃 = 𝒂𝒄𝒐𝒔 (
𝑳𝟏𝟐 + 𝒓𝟐 − 𝑳𝟐𝟐

𝟐 ∗ 𝑳𝟏 ∗ 𝒓
) (𝟏𝟑) 

Para c se hace el mismo proceso: 

𝒄 = 𝒂𝒄𝒐𝒔(
𝑳𝟏𝟐 − 𝒓𝟐 + 𝑳𝟐𝟐

𝟐 ∗ 𝑳𝟏 ∗ 𝑳𝟐
) (𝟏𝟒) 

 

Finalmente, 𝒒𝟏 y 𝒒𝟐 se obtienen operando los ángulos a, b y c hallados. Respecto a 
𝒒𝟑, mediante una relación que tienen los 3 ángulos de las articulaciones con 𝒒𝐲 es 
posible calcularlo. En la Figura 32, se traza una línea paralela al eslabón 1 para 
comprobar como 𝒒𝐲 es la suma de estos componentes.  

Figura 31. Ecuaciones para hallar q1 y q2 con a, b y c 

 

Fuente: Propia 



33 
 

Figura 32. Relación de qy con los ángulos de las articulaciones del sistema (q1, q2 y q3) 

 

Fuente: Propia 

  

5.5.3 Cinemática directa 

Es un método para calcular las coordenadas del efector final a partir de los ángulos 
de rotación de las articulaciones del robot, es decir, según los ángulos q1, q2 y q3 
dependiendo de cuántos grados de libertad tenga el modelo (2GDL o 3GDL). 

Para 2GDL, se plantea el modelo a través de un sistema de triángulos que permite 
calcular fácilmente la coordenada del efector final (x, z) en ambas configuraciones 
de codo (arriba y abajo). 

Figura 33. Diagrama de cinemática directa 2GDL Codo abajo 

 
Fuente: Propia 

𝒒𝒚 = 𝒒𝟏 + 𝒒𝟐 + 𝒒𝟑 (𝟏𝟓) 
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Figura 34. Diagrama de cinemática directa 2GDL Codo arriba 

 
Fuente: Propia 

Como se conoce el valor de q1 y q2, independientemente del cuadrante y orientación 
de codo, se hallan las coordenadas de cada triángulo rectángulo por medio de 
relaciones trigonométricas y posteriormente, se suman los segmentos de cada eje 
para hallar la coordenada (x, z). Por ejemplo, para el primer cuadrante en codo abajo 
el procedimiento es el siguiente: 

Figura 35. Análisis triángulo azul C. directa 2GDL 

 

Fuente: Propia 

Para 𝑥1 y 𝑧1: 

𝑥1 = 𝐿1 ∗ cos(𝑞1) (𝟏𝟔) 

𝑧1 = 𝐿1 ∗ sen (𝑞1) (𝟏𝟕) 

Figura 36. Análisis triángulo naranjal C. directa 2GDL 

 

Fuente: Propia 
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Para 𝑥2 y 𝑧2: 

𝑥2 = 𝐿2 ∗ cos(𝑞1 + 𝑞2) (𝟏𝟖) 

𝑧2 = 𝐿2 ∗ sen(𝑞1 + 𝑞2) (𝟏𝟗) 

Se suman los segmentos de cada eje para obtener 𝒙 y 𝒛: 

Para 𝒙: 

𝒙 = 𝑥1 + 𝑥2 (𝟐𝟎) 

𝑥 = 𝐿1 ∗ cos (𝑞1) + 𝐿2 ∗ cos (𝑞1 + 𝑞2) 

Para 𝒛: 

𝒛 = 𝑧1 + 𝑧2 (𝟐𝟏) 

𝑧 = 𝐿1 ∗ sen (𝑞1) + 𝐿2 ∗ sen (𝑞1 + 𝑞2) 

Para 3GDL, se aplica el mismo método, pero considerando que son 3 segmentos 
los que deben sumarse para hallar las coordenadas del efector final (x, z). 

 

Figura 37. Diagrama de cinemática directa 3GDL Codo abajo 

 

Fuente: Propia 



36 
 

Figura 38. Diagrama de cinemática directa 3GDL Codo arriba 

 

Fuente: Propia 

El triángulo de color azul y naranja en el modelo de 3GDL se resuelven de igual 
manera que en el de 2GDL, empleando las ecuaciones del (16) al (21). Esto se debe 
a que la única variación entre ambos sistemas es el valor de las distancias L1 y L2. 

Para el triángulo de color verde, similar a la demostración en la Figura 32, se realiza 
un paralelo al eslabón 1 y se dibujan los ángulos q1, q2 y q3 para ver su relación 
respecto a qy. 

Figura 39. Análisis triángulo verde C. directa 3GDL 

 

Fuente: Propia 

𝑥3 = 𝐿3 ∗ 𝐶𝑜𝑠(𝑞1 + 𝑞2 + 𝑞3) (𝟐𝟑) 

𝑧3 = 𝐿3 ∗ 𝑆𝑒𝑛(𝑞1 + 𝑞2 + 𝑞3) (𝟐𝟒) 
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Para 𝒙: 

𝑥 = 𝑥1 + 𝑥2 + 𝑥3 (𝟐𝟓) 

𝑥 = 𝐿1 ∗ cos(𝑞1) + 𝐿2 ∗ cos(𝑞1 + 𝑞2) + 𝐿3 ∗ 𝑐𝑜𝑠(𝑞1 + 𝑞2 + 𝑞3) 

Para 𝒛: 

𝑧 = 𝑧1 + 𝑧2 + 𝑧3 (𝟐𝟔) 

𝑧 = 𝐿1 ∗ sen (𝑞1) + 𝐿2 ∗ sen(𝑞1 + 𝑞2) + 𝐿3 ∗ 𝑠𝑒𝑛(𝑞1 + 𝑞2 + 𝑞3) 

Para 𝒒𝒚: 

𝑞𝑦 = 𝒒𝟏 + 𝒒𝟐 + 𝒒𝟑 (𝟐𝟕) 

5.5.4 Espacio de trabajo 

Se define como el conjunto de puntos que puede alcanzar el robot alrededor de sí 
mismo considerando su configuración (2GDL-3GDL), el tamaño de sus eslabones y 
los límites de sus articulaciones. En otras palabras, el espacio de trabajo es el rango 
de movilidad del robot. 

Su construcción respecto a 2GDL, se hace asumiendo intervalos de giro para las 
articulaciones de interés. Estos rangos de operación que se asumen para (𝒒𝟏, 𝒒𝟐) 
a través del método de cinemática directa permiten obtener las coordenadas en el 
plano para realizar el trazo del espacio de trabajo. 

Tabla 1. Límites para trazar el espacio de trabajo 2GDL 

  Limites 

Orientación 

 codo 

Ángulo  

de 

articulación 

Barrido general de 

q1 manteniendo 

constante q2 

q1 constante 

 y q2 varía hasta  

el valor soportado por 

su articulación (120°) 

q2 constante y 

 q1 varía hasta 

un valor 

calculado 

Abajo 

q1 0° a 180 °    0 ° 0° a 80.73° 

q2 0° 0° a 120° 120° 

Arriba 

q1 180 ° a 0° 180 ° 

180° a 

99.26°     

q2 0° 0° a -120° -120° 

 

Para la construcción del tercer límite presente en la Tabla 1, como se desconoce el 
valor hasta el que puede girar q1 manteniendo un valor de q2. Se plantea el siguiente 
sistema de triángulos: 
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Figura 40. Análisis para calcular ultimo límite de Espacio de trabajo 2GDL 

 

Fuente: Propia 

 

 

 

 

 

 

 

 

 

 

 

 

 

Finalmente, tras calcular los 3 límites, la gráfica equivalente al área de trabajo para 

el robot con una configuración de 2 grados de libertad, es la siguiente: 

 
𝐶. 𝐴𝑏𝑎𝑗𝑜 → 𝜃 = 180°+ 𝑞2 (𝟐𝟖) 

𝐶. 𝐴𝑟𝑟𝑖𝑏𝑎 → 𝜃 = 180°− 𝑞2 (𝟐𝟗) 

 

A través de la ley del coseno: 

𝐿𝑎 = √𝐿12 + 𝐿22 − (2𝐿1 ∗ 𝐿2 ∗ cos(𝜃)) (𝟑𝟎) 

 

A través de la ley del coseno: 

𝑞𝑥 = acos (
𝐿𝑎2 + 𝐿12 − 𝐿22

2 ∗ 𝐿1 ∗ 𝐿𝑎
) (𝟑𝟏) 

Finalmente, conociendo qx, q1 manteniendo q2 
variará hasta: 

𝐶. 𝐴𝑏𝑎𝑗𝑜 → 𝒒𝟏 = 180°− qx (𝟑𝟐) 

𝐶. 𝐴𝑟𝑟𝑖𝑏𝑎 → 𝒒𝟏 = qx (𝟑𝟑) 

 

 



39 
 

Figura 41. Gráfica de Espacio de trabajo 2GDL 

 

Nota: Cada color de trazo del espacio de trabajo se corresponde con el límite que lo produce de la Tabla 1 

Fuente: Propia 

Respecto a 3GDL, se trazan dos espacios de trabajo. Uno general, aplicando la 
misma lógica que en 2GDL, asumiendo distintos intervalos de giro considerando los 
límites de las articulaciones. Resultando en rangos de operación para (𝒒𝟏, 𝒒𝟐, 𝒒𝟑) 
a los cuales se les aplica el método de cinemática directa para obtener las 
coordenadas del espacio de trabajo. 

Tabla 2. Límites para trazar el espacio de trabajo 3GDL 

  Limites 

Orientación 

 codo 

Ángulo  

de 

articulación 

Barrido de q1  

manteniendo 

constante q2 y 

q3 

q1 y q2 

constante 

 y q3 varía hasta  

su límite 

máximo (120°) 

q1 y q3 

constante 

 y q2 varía 

hasta  

su límite 

máximo (90°) 

q2 y q3 

constante y 

 q1 varía 

hasta un valor 

calculado 

Abajo 

q1 0° a 180 °    0 ° 0 ° 0° a 13.45° 

q2 0° 0°  0° a 120° 120° 

q3 0° 0° a 90° 90° 90° 

Arriba 

q1 180 ° a 0° 180° 180 ° 

180° a 

166.54°     

q2 0° 0° 0° a -120° -120° 

q3 0° 0° a -90° 0° a 120° 90° 
 
 

Para la construcción del último límite, como se desconoce el valor hasta el que 
puede girar q1 para mantener el valor de q2 y q3. Se plantea el siguiente sistema de 
triángulos:  
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Figura 42. Análisis para calcular ultimo límite de Espacio de trabajo 3GDL 

 

Fuente: Propia 

 

 

  

 

 

 

 

𝜃 𝑠𝑒 𝑜𝑏𝑡𝑖𝑒𝑛𝑒 𝑒𝑚𝑝𝑙𝑒𝑎𝑛𝑑𝑜 𝑙𝑎 𝑒𝑐𝑢𝑎𝑐𝑖ó𝑛 (𝟐𝟖) 𝑜 (𝟐𝟗) 𝑠𝑒𝑔ú𝑛 𝑙𝑎 𝑜𝑟𝑖𝑒𝑛𝑡𝑎𝑐𝑖ó𝑝𝑛 𝑑𝑒 𝑐𝑜𝑑𝑜. 

𝐿𝑎 se obtiene empleando la ecuación (𝟑𝟎) 

Se halla q1p a través de la ley del coseno: 

𝑞1𝑝 = acos (
𝐿12 + 𝐿𝑎2 − 𝐿22

2 ∗ 𝐿1 ∗ 𝐿𝑎
) (𝟑𝟒) 

Finalmente, conociendo q1p: 

𝐶. 𝐴𝑏𝑎𝑗𝑜 → 𝜶 = 180°− q3 − 𝛽 (𝟑𝟓) 

𝐶. 𝐴𝑟𝑟𝑖𝑏𝑎 → 𝜶 = 180° + q3 − 𝛽 (𝟑𝟔) 

 

 

𝜷 = 180°− q1p − 𝜃 

 

 

Se halla q1c a través de la ley del coseno: 

𝑞1𝑐 = acos (
𝐿𝑎2 + 𝐿𝑏2 − 𝐿32

2 ∗ 𝐿𝑎 ∗ 𝐿𝑏
) (𝟑𝟕) 

Finalmente, conociendo q1p y q1c: 

𝐶. 𝐴𝑏𝑎𝑗𝑜 → 𝒒𝟏 = 180°− q1p − q1c (𝟑𝟖) 

𝐶. 𝐴𝑟𝑟𝑖𝑏𝑎 → 𝒒𝟏 = q1p + q1c (𝟑𝟗) 
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Figura 43. Gráfica de Espacio de trabajo 3GDL 

 

Nota: Cada color de trazo del espacio de trabajo se corresponde con el límite que lo produce de la Tabla 2 

Fuente: Propia 

El segundo espacio de trabajo respecto a 3GDL, aplica la misma lógica anterior, 
pero considerando que los rangos de operación para  (𝒒𝟏, 𝒒𝟐, 𝒒𝟑) deben garantizar 
que se mantenga el ángulo de orientación del efector final 𝒒𝐲. Resultando en un 
espacio de trabajo exclusivo para ese valor de ángulo. 

Figura 44. Gráfica de Espacio de trabajo 3GDL respecto a un valor de qy 

 

Fuente: Propia 

5.5.5 Trayectorias 

Inicialmente para el trazo de la trayectoria se pensó usar un movimiento lineal 
debido a que idealmente la velocidad sería constante y la aceleración nula. Pero 
este planteamiento aplicado en la realidad no resulta cierto, debido a que un 
movimiento realiza una aceleración al inicio y una desaceleración al final. Esto se 
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vería representado con dos picos respecto a la aceleración (Figura 45), trayendo 
consigo un riesgo que puede afectar los dispositivos físicos involucrados. 

Figura 45. Gráficas de posición, velocidad y aceleración para un movimiento lineal 

 

Fuente: Propia 

 

Tomando como base teórica lo expuesto sobre interpoladores cúbicos en el libro 
“FUNDAMENTOS DE ROBÓTICA” (Barrientos, Penín, Balaguer, & Aracil, 1997), la 
alternativa que se planteó para esta problemática fue utilizar un Spline cúbico en 
lugar de una línea recta para la construcción de la trayectoria. El polinomio 
planteado es el siguiente: 

𝒇(𝒕) = 𝒂 ∗ 𝒕𝟑 + 𝒃 ∗ 𝒕𝟐 + 𝒄 ∗ 𝒕 + 𝒅 (𝟒𝟎) 

    Válido para posicionamiento espacial y movimiento articular 

Este polinomio permite: 

• Un movimiento suave y en general, un ajuste a los puntos tabulados. 

• La velocidad cumple la función de acelerar (al inicio) y desacelerar (al final). 

• Corregir el error de los picos de aceleración.  
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Figura 46. Gráficas de posición, velocidad y aceleración para un movimiento empleando un Spline cúbico 

 
Fuente: Propia 

A partir de la ecuación del Spline Cúbico planteada y sus derivadas se obtiene la 
ecuación de posición, velocidad y aceleración para trayectorias: 

𝒇(𝒕) = 𝒂 ∙ 𝒕𝟑 + 𝒃 ∙ 𝒕𝟐 + 𝒄 ∙ 𝒕 + 𝒅 (𝟒𝟏) 

𝒇  ’(𝒕) = 𝒗(𝒕) = 𝟑 ∙ 𝒂 ∙ 𝒕𝟐 + 𝟐 ∙ 𝒃 ∙ 𝒕 + 𝒄 (𝟒𝟐) 

𝒇  ’’(𝒕) = 𝒂(𝒕) = 𝟔 ∙ 𝒂 ∙ 𝒕 + 𝟐 ∙ 𝒃 (𝟒𝟑) 
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6. METODOLOGÍA 

 

Para la realización de este proyecto el pasante se encontraba bajo la guía y 
dirección del ingeniero Mario Arbulú, supervisor en la empresa ROBOTICS 4.0 
S.A.S de este proyecto.  

Las actividades se realizaron de manera presencial en las instalaciones de 
Tecnoparque SENA en la ciudad de Neiva, cumpliendo con la intensidad horaria 
definida por la Universidad Surcolombiana de 20 horas semanales durante un 
periodo mínimo de 6 meses. 

Con base en los objetivos general y específicos descritos previamente (numeral 4) 
la metodología a utilizar durante la pasantía incluye procedimientos y técnicas de 
carácter investigativo y/o práctico con el fin de entregar el módulo didáctico 
planteado en el objetivo general. 

En términos generales, este proyecto de pasantía se divide en 4 fases: 

 

• Fase 1: Aprender el funcionamiento de la arquitectura ROS para 
implementar algoritmos de modelado cinemático en robot OpenBotv v1. 

Previo a la implementación de los algoritmos de modelado cinemático. Durante esta 
fase, el pasante se dedicó a estudiar el funcionamiento de ROS: Su estructura, las 
herramientas de simulación que posee (Gazebo y Rviz) y la manera de manipular 
tanto el robot en el entorno simulado como real empleando este software. 

El aprendizaje se realizó mediante el estudio de tutoriales, material proporcionado 
por Robotics 4.0 S.A.S (Simulaciones, Guías, avances previos de la empresa en 
ROS, etc.) y asesorías del supervisor a cargo del proyecto. 

Por último, la implementación de ROS durante la pasantía se realizó en un equipo 
con S.O. Ubuntu y la programación de los códigos se realizó a través de Python 3. 

• Fase 2: Implementar e integrar modelos cinemáticos desarrollados en el 
robot Openbotv1 a través de ROS. 

Durante esta fase, en conjunto con el robot OpenBotv v1, el pasante realizó en el 
software ROS la aplicación de distintos conceptos básicos de robótica, como: 
cinemática inversa, cinemática directa, espacio de trabajo y trayectorias. 

Los resultados de este proceso, se resumen en la creación de códigos en Python y 
demostraciones tanto para el robot simulado y real que permiten la verificación de 
las temáticas mencionadas anteriormente. 
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• Fase 3: Desarrollar un material académico (guías de trabajo, videos, etc.) 
para explicar paso a paso la integración de ROS con Openbotv1 y la 
aplicación de los modelos cinemáticos. 

Una vez alcanzadas las metas de la fase 2, el pasante basándose en los resultados 
obtenidos en el proceso de integración de ROS con OpenBotv v1 y la aplicación de 
los modelos cinemáticos, documentó en forma de guías de trabajo y videos el paso 
a paso que llevó a cabo. Este material realizado por el pasante será el 
contenido para el módulo didáctico que conservará Robotics 4.0 S.A.S. 

 

• Fase 4: Análisis y Documentación de los resultados finales del proceso de 
pasantía. 

Por último, el documento final de la pasantía contiene un informe detallado de los 
cálculos matemáticos, las simulaciones, las pruebas realizadas con el robot real y 
los códigos que se utilizaron para la realización de las distintas fases del proyecto. 
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7. DESARROLLO DE LA PASANTÍA Y ANÁLISIS DE RESULTADOS 

 

En esta sección, se mostrarán los resultados obtenidos durante el proceso que llevó 
a cabo el pasante para el desarrollo del módulo didáctico sobre la integración de 
OpenBotv v1 con el software ROS. Esto se resume en la socialización de: 

 

• Los ajustes que tuvo que realizar el pasante para el acople del hardware 
(OpenBotv v1) y el software (ROS). 

• Las demostraciones o demos realizadas para comprobar la implementación de 
los modelos cinemáticos en ROS. 

• El estado actual del módulo didáctico tras la finalización del proceso de pasantía. 

Previo a mostrar los resultados, se mostrará el material que fue suministrado al 
pasante por Robotics 4.0 S.A.S, para así, comprender el punto de inicio del 
proyecto. Inicialmente, el pasante contaba con lo siguiente: 

Figura 47. Workspace de ROS suministrado por Robotics 4.0 S.A.S 

 
Fuente: Propia 

• Un Workspace en ROS que incluye paquetes que definen las características 
(Dimensiones, controladores, articulaciones, etc.) del modelo de OpenBotv v1 
en las herramientas de simulación: Gazebo y Rviz (Ver sección 5.26). 

• Un ejemplo de una simulación en Gazebo que permitía simplemente visualizar 
el robot en un entorno 3D. 
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Figura 48. Ejemplo de simulación suministrado por Robotics 4.0 S.A.S 

 
Fuente: Propia 

7.1 AJUSTES REALIZADOS PARA EL ACOPLE DEL HARDWARE (OPENBOTV 
V1) Y EL SOFTWARE (ROS) 

Inicialmente solo se contaba con una simulación básica en la cual podía visualizarse 
el robot en un entorno 3D (Gazebo). Por lo que una de las primeras tareas que 
realizó el pasante fue ser capaz de manipular tanto el robot OpenBotv v1 simulado 
y real desde ROS. A continuación, se describe el proceso que llevó a cabo para 
realizar esta tarea. 

• Control sobre una articulación de OpenBotv v1 en entorno simulado: 

Para ser capaces de manipular las articulaciones del OpenBotv v1 en el entorno 
simulado fue necesario la implementación de la librería ROS Control (Ver sección 
5.25) que permite usar Effort_Controllers/Joint_position_controllers. Estos son 
controladores PID que permiten introducir un valor deseado en radianes de 0 a 2𝜋 
y generar en cada articulación un valor deseado de torque equivalente para llegar a 
esa posición. Para la correcta implementación de esta librería en el Workspace, fue 
necesario aplicar los siguientes cambios:  

Creación de un paquete de Control: Como ROS opera mediante el uso de 
paquetes, se crea uno relacionado a la librería ROS Control y se le denomina como 
“openbot_control”. 

Figura 49. Estructura del paquete openbot_control 

 
Fuente: Propia 
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Creación de un archivo de configuración: En el paquete openbot_control se crea 
un archivo llamado controller.yaml. Dentro de este se definen las articulaciones en 
las cuales se va a ejercer control, el valor de las constantes PID y el tipo de 
controlador a usar, que se decidió que fueran los effort_controllers/ 
JointPositionController debido a que la configuración es para servomotores. 

Figura 50. Estructura de archivo controller.yaml 

 
Fuente: Propia 

                   

Modificación de archivo Xacro para introducir transmisores: El uso de los 
controladores implica definir dentro del modelo de OpenBotv v1 la relación entre 
cada actuador y la articulación. Esto se hace con una estructura llamada transmisor4 
que se define para cada una de las articulaciones del OpenBotv v1 y la pinza. 

Estos cambios se realizan en el paquete openbot_v1_description, específicamente, 
el archivo openbot_v1.xacro, debido a que es el encargado de definir las 
características del modelo simulado del robot. 

 
4 Apache 2.0. (16 de febrero de 2023). Gazebo : Tutorial : ROS control. Obtenido de 
https://classic.gazebosim.org/tutorials?tut=ros_control#Aboutros_control 
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Figura 51. Definición de transmisores en Openbot_v1.xacro 

 

 
Fuente: Propia 

Posterior a esto, se procedió a comprobar el funcionamiento de las articulaciones 
en el OpenBotv v1 simulado enviando ángulos en radianes a distintas articulaciones. 
Este proceso de manipulación del robot se realizó desde el terminal mediante 
comandos y a través de un script en Python usando la librería Rospy5. Para ambos 
casos, se aplican los conceptos de nodo Publisher y Subscriber (Ver sección 5.24), 
funcionando el código y el terminal como emisor y la articulación del robot que recibe 
el ángulo a mover en radianes como el receptor.  

 

Figura 52. OpenBotv v1 manipulado a través de comandos en terminal 

 

Fuente: Propia 

 
5 ROS Wiki. (12 de febrero de 2023). Obtenido de rospy: http://wiki.ros.org/rospy 
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Figura 53. OpenBotv v1 manipulado desde script en Python empleando Rospy 

 
Fuente: Propia                    

      

Tras la sesión de pruebas, se observa que es más fácil manipular el robot desde 
Python en conjunto con ROS debido a que pueden definirse y controlarse varios 
canales de comunicación (Topics) a la vez, relegando el método por terminal como 
una forma de comprobar que existe comunicación con la articulación. Por esta 
razón, la manipulación desde Python será la forma por defecto en la que se operará 
el robot simulado al implementar los modelos cinemáticos. 

• Control sobre una articulación de OpenBotv v1 físico: 

Como se mencionó en el literal 6.3.3, el OpenBotv v1 emplea 6 motores de la 
referencia Dynamixel Ax-12. Estos cuentan con una librería especializada para su 
integración con ROS y que facilita el movimiento de todas las articulaciones del 
robot a la vez. Se denomina Dynamixel Workbench6 y es la que se usó para el 
desarrollo del proyecto.  

Adicionalmente, el montaje empleado para la comunicación con el OpenBotv v1 
incluye una convertidor USB U2D2 (Ver sección 5.4.1), un cable USB, un 
SMPS2Dynamixel (Ver sección 5.4.2) y una fuente de alimentación para los motores 
(12 V DC). 

 
6 ROBOTIS. (13 de febrero de 2023). ROBOTIS e-Manual. Obtenido de DYNAMIXEL Workbench: 
https://emanual.robotis.com/docs/en/software/dynamixel/dynamixel_workbench/ 
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Figura 54. Montaje para manipular OpenBotv v1   

 

Fuente: Propia 

Para comprobar el funcionamiento del control de las articulaciones del robot, se 
realiza el envío de posiciones de 0 a 1023 (Rango soportado por la referencia de 
Dynamixel AX-12) tanto por comandos en el terminal como la manipulación por 
medio de un script de Python empleando las librerías de Dynamixel_workbench. 

 
Figura 55. OpenBotv v1 físico manipulado a través de comandos en terminal 

 
Fuente: Propia 
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Figura 56. Script empleado para manipular OpenBotv v1 desde Python 

 
Fuente: Propia 

Tras la sesión de pruebas, se observa que es más fácil manipular el robot desde 
Python en conjunto con ROS debido a que pueden definirse y controlarse varias ID 
de motores a la vez, relegando el método de comunicación por terminal como una 
forma rápida de verificar la conexión con el Dynamixel. Por esta razón, esta será la 
forma por defecto en la que se manipulará el robot real al implementar los modelos 
cinemáticos. 

Implementación de un Spline Cúbico: Tras comprobar que era posible el control 
de las articulaciones del robot físico empleando la librería, fue necesario el uso de 
un método matemático que permitiera planear movimientos que involucran el 
recorrido de una serie de puntos de una coordenada espacial a otra.  

El método que se decidió usar fue un Spline cúbico por las razones que se 
especifican en la sección 5.5.5. Este se encuentra representado mediante la 
siguiente función de Python que considera una posición inicial (Po), una posición 
final (Pf), el tiempo de muestreo (Tf) y la cantidad de puntos (n). 
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Figura 57. Función desarrollada para aplicar método de Spline cúbico 

 
Fuente: Propia 

La función de Splinecub se integra al código previamente mostrado en la Figura 57. 
Permitiendo realizar movimientos más complejos (Figura 59) sin poner en riesgo la 
estructura del robot. 

Figura 58. Uso de la función Splinecub en código de control de Dynamixel 

 
Fuente: Propia 
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Figura 59. Movimiento en OpenBotv v1 aplicando el método de Spline Cúbico 

 
Fuente: Propia 

• Conversión de ángulos a posiciones: 

Conociendo de antemano que el modelo cinemático planteado entrega sus 
resultados en forma de ángulos en radianes, es necesario convertir este resultado 
a un valor de posición dentro del rango de operación del Dynamixel AX-12.  El 
proceso de conversión se realiza mediante el uso de una ecuación definida para 
cada articulación y se integran en un script de Python como puede observarse en la 
Figura 60. 

Figura 60. Ecuaciones para convertir de ángulos a posiciones (0 a 1023) 

p1=int( 512-q1*1023/(5/3*pi) ) #Articulación 1 

p2=int( 512-q2*1023/(5/3*pi) ) #Articulación 2 

p3=int( 512-q3*1023/(5/3*pi) ) #Articulación 3 

p4=int( 512-q4 *1023/(5/3*pi)) #Articulación 4 

p5=int( 512+q5*1023/(5/3*pi) ) #Articulación 5 

p6=int( 512-q6*1023/(5/3*pi) ) #Articulación 6 
Fuente: Propia 

• Incorporación de estos cambios en el Workspace: 

Tomando como base el Workspace entregado por Robotics 4.0 S.A.S (Figura 49), 
los cambios realizados se reflejan en la introducción de nuevos paquetes y cambios 
en los existentes. 

Figura 61. Estructura de Workspace en ROS desarrollado por el pasante 

 
Fuente: Propia 
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• DynamixelSDK: Contiene los archivos de la librería Dynamixel Workbench. 

• package_dynamixel: Contiene los archivos relacionados para manipular el 
robot físico.  

• Openbot_gazebo, openbot_v1_description, openbot_control: Contiene los 
archivos relacionados al control, la definición de los parámetros y la 
manipulación del robot simulado.  

• Modelos_cinematicos: Contendrá los archivos relacionados a estas temáticas. 

7.2 DEMOSTRACIONES DE LOS MODELOS CINEMÁTICOS APLICADOS EN 
ROS 

Tras tener un control total de las articulaciones simuladas y reales del robot se 
procedió a la implementación de los modelos cinemáticos. Para cada una de las 
temáticas se creó una subcarpeta dentro del paquete “modelos_cinematicos”.  

 
Figura 62. Estructura de package modelos_cinematicos 

 
Fuente: Propia 

 

Adicionalmente, cada tema que se trató posee una demostración o “Demo” que 
permite condensar y comprobar lo aprendido respecto a estas.  

Estructura de las demos: La creación de cada demo involucra el uso de un archivo 
.launch y un archivo de configuración .cfg para que en conjunto con la herramienta 
de ROS “rqt_reconfigure” se tenga una interfaz de usuario. (Ver sección 5.2.7) 

 
Figura 63. Archivos .launch desarrollados por el pasante 

 
Fuente: Propia 
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Figura 64. Archivos .cfg desarrollados por el pasante 

 
Fuente: Propia 

 

Figura 65. Ejemplo de demostración desarrollada en ROS 

 
Fuente: Propia 

• Demostración de aplicación de Cinemática inversa en Openbotv1 desde 
ROS: 

Los cálculos para el método de cinemática inversa se realizaron para una 
configuración de 2 y 3 grados de libertad (Ver sección 5.5.2). Estos dentro del 
Workspace, se encuentran definidos en una clase en Python denominada 
“cálculos_cinematica_inversa” que posee distintas funciones para representar las 
configuraciones que se consideran teóricamente. Cada función toma como entrada 
las coordenadas del efector final y retorna los ángulos producto del cálculo. 
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Fuente: Propia 

 
 
 
 
 
 
 
 

 
 

 

 
 
 
 
 
 

 

 

En otro script principal, se llama esta clase en Python para obtener el resultado de 
los cálculos y aplicar los métodos desarrollados previamente para mover el robot 
simulado y real. 

Figura 67. Aplicación de función en Python cálculos_cinematica_inversa 

 
Fuente: Propia 

Figura 66. Script desarrollado para cálculos de cinemática inversa 
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Figura 68. Script para mover robot simulado y real en base a los cálculos de cinemática inversa 

 
Fuente: Propia 

Explicación de las demos desarrolladas:  

Demo Cinemática inversa 2GDL: La demo desarrollada para 2GDL permite 
ingresar la coordenada deseada del efector final y la orientación de codo (arriba o 
abajo). Con estos datos, se realiza el cálculo a través del método de cinemática 
inversa y se mueve las articulaciones 2 y 3 del robot para colocarlo en la posición 
indicada.  

Figura 69. Demo de cinemática inversa para 2GDL 

 
Fuente: Propia 

 

Demo Cinemática inversa 3GDL: La demo desarrollada para 3GDL permite al 
usuario ingresar la coordenada deseada del efector final, su orientación (qy) y la 
orientación del codo (arriba o abajo). Posteriormente, aplica el método de 
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cinemática inversa y mueve las articulaciones 2, 3 y 5 del robot para colocarlo en la 
posición indicada. 

Figura 70. Demo de cinemática inversa para 3GDL 

 
Fuente: Propia 

Comprobación y exactitud del método de Cinemática inversa: Para comprobar 
la exactitud del movimiento del robot real aplicando las demos desarrolladas para 
cinemática inversa, se empleó una cuadrícula y un metro para realizar las 
mediciones. 

Figura 71. Plano cartesiano en madera (35 cm X 35 cm) 

 
Fuente: Propia 
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Tabla 3. Prueba de exactitud para 2GDL 

 Valor Teórico (m) 
Valor Medido con un 

metro(m) 
Porcentaje de 

error 

 

Coordenada 
X 

Coordenada 
Z Coordenada X Coordenada Z Eje X Eje Z 

1 0,2 0,25 0,198 0,263 1,0 -5,200 

2 -0,2 0,26 -0,198 0,261 1,0 -0,385 

3 0,05 0,25 0,05 0,248 0,0 0,800 

4 0,1 0,25 0,1 0,245 0,0 2,000 

5 -0,23 0,23 -0,23 0,233 0,0 -1,304 

6 0,07 0,32 0,068 0,318 2,9 0,625 

7 0,18 0,28 0,17 0,29 5,6 -3,571 

8 0,3 0,03 0,295 0,028 1,7 6,667 

9 0,24 0,04 0,24 0,038 0,0 5,000 

10 0,24 0,2 0,24 0,198 0,0 1,000 

    Total 1,2079 2,6552 

 
Tabla 4. Prueba de exactitud para 3GDL 

 Valor Teórico (m) 
Valor Medido con un 

metro(m) 
Porcentaje de 

error 

 

Coordenada 
X 

Coordenada 
Z Coordenada X Coordenada Z Eje X Eje Z 

1 0,2 0,2 0,205 0,190 -2,5 5,000 

2 0,22 0,2 0,22 0,198 0,0 1,000 

3 0,26 0,2 0,265 0,198 -1,9 1,000 

4 0,24 0,18 0,24 0,188 0,0 -4,444 

5 0,24 0,15 0,238 0,145 0,8 3,333 

6 0,04 0,27 0,035 0,26 12,5 3,704 

7 0,04 0,2 0,05 0,18 -25,0 10,000 

8 0,14 0,22 0,14 0,217 0,0 1,364 

9 0,18 0,22 0,18 0,223 0,0 -1,364 

10 0,1 0,24 0,105 0,228 -5,0 5,000 

    Total 4,7756 3,6208 
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Tras realizar las mediciones para distintas configuraciones, se obtiene que para 
movimientos en 2GDL hay un porcentaje de error promedio de 1.2% en el eje x y 
2.65% en el eje z. Para 3GDL, se tiene 4.77% en el eje x y 3.62% para el eje z.  

Basado en los datos anteriores, el supervisor del proceso de pasantía decidió que 
el desempeño del método de cinemática inversa era aceptable para la aplicación de 
trayectorias que se haría posteriormente con este. 

• Demostración de trazo de espacio de trabajo en Openbotv1 desde ROS: 

Los cálculos desarrollados para cinemática directa (Ver sección 5.5.3) son la base 
para la construcción del espacio de trabajo. Estos de manera similar, al método de 
cinemática inversa se implementaron en una clase en Python denominada como 
“cálculos_cinematica_directa” que posee distintas funciones para representar las 
configuraciones que se consideraron teóricamente. Cada función toma como 
entrada los ángulos de las articulaciones y retorna la coordenada del efector final. 

Figura 72. Script desarrollado para cálculos de cinemática directa 

 
Fuente: Propia 



62 
 

Respecto al trazo del espacio de trabajo, los cálculos definidos para este (Ver 
sección 5.5.4) se encuentran en un script que contiene el gráfico equivalente para 
las configuraciones de 2GDL, 3GDL y 3GDL para una orientación específica del 
efector final. 

Figura 73. Script desarrollado para cálculos de Espacio de trabajo 

 
 

Fuente: Propia 

Trazo del Espacio de trabajo en Rviz: Esta tarea se realiza en conjunto de la 
librería MarkerArray7 que dibuja una serie de marcadores respecto a un punto de 
referencia. Para el trazo del espacio de trabajo, se escoge la articulación 2 del 
OpenBotv v1 debido a que al realizar los cálculos se asumió este punto como la 
coordenada (0,0) en el plano XZ. 

Adicionalmente, dentro del mismo script se crea una función en Python (Figura 75) 
que toma los intervalos de giro definidos en la Tabla 1 y hace que el robot se mueva 
respecto a estos. De esta manera, se puede comprobar que la gráfica de espacio 
de trabajo producida es correcta. 

 

 
7 Open Robotics. (3 de marzo de 2023). ROS Wiki. Obtenido de rviz/DisplayTypes/Marker: 
http://wiki.ros.org/rviz/DisplayTypes/Marker 
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Figura 74. Función desarrollada para trazar el Espacio de trabajo en Rviz 

 
Fuente: Propia 

Figura 75. Función desarrollada para mover OpenBotv v1 según los límites del Espacio de trabajo 

 
Fuente: Propia 
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Figura 76. OpenBotv v1 simulado recorriendo el Espacio de trabajo trazado. 

 
Fuente: Propia 

Explicación de las demos desarrolladas: 

Espacio de trabajo 2GDL: La demo desarrollada para 2GDL realiza un barrido de 
las articulaciones 2 y 3 para conocer todos los puntos en el plano XZ que puede 
alcanzar el efector final del robot. 

Figura 77. Demo desarrollada para Espacio de trabajo 2GDL 

 
Fuente: Propia 

 
Espacio de trabajo 3GDL: La demo desarrollada para 3GDL realiza un barrido de 
las articulaciones 2, 3 y 5 para conocer todos los puntos en plano XZ que puede 
alcanzar el efector final del robot. 

Figura 78. Demo desarrollada para Espacio de trabajo 3GDL 

 
Fuente: Propia 
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Espacio de trabajo 3GDL respecto a una orientación específica: La demo 
desarrollada para 3GDL realiza un barrido de las articulaciones 2, 3 y 5 pero 
considerando que debe mantener una orientación específica del efector durante 
todo el recorrido. De esta manera se pueden conocer todos los puntos en el plano 
XZ que puede alcanzar el efector final del robot respecto a esa configuración. 

Figura 79. Demo desarrollada para 3GDL respecto a una orientación especifica. 

 
Fuente: Propia 

• Demostración de trazo de trayectorias en Openbotv1 desde ROS: 

La aplicación de trayectorias se realizó mediante el trazo de 3 figuras geométricas 
(Un cuadrado, un triángulo y un círculo) dentro de los espacios de trabajo 
previamente definidos para las configuraciones de 2GDL Y 3GDL. 

Figura 80. Ejemplo de trazo de figuras geométricas dentro del espacio de trabajo 

 
Fuente: Propia  

La serie de puntos para trazar la trayectoria de cada una de las figuras geométricas 
se genera a través de un script que aplica el método de Spline Cúbico (Ver sección 
5.5.5). 
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Figura 81. Uso de la función Splinecub para cada figura geométrica. 

 
Fuente: Propia 

 

Posteriormente, a cada punto se le aplica el método de cinemática inversa y el robot 
se mueve por los métodos desarrollados previamente para el modelo simulado y 
real. 

Trazo de figuras en Rviz: En conjunto con la librería MarkerArray se dibuja un 
punto en cada posición que recorre el efector final formando de esta manera la figura 
geométrica.  

Figura 82. Función empleada para dibujar la posición del efector final en Rviz 

 
Fuente: Propia 
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Figura 83. OpenBotv v1 trazando figuras dentro del espacio de trabajo trazado en Rviz. 

 
Fuente: Propia 

           

Trazo de figuras con robot real: Tomando los ángulos productos del método de 
cinemática inversa, el robot real simplemente se mueve siguiendo el recorrido de 
puntos de la trayectoria de cada una de las figuras geométricas.  

 
Figura 84. Trazo de figuras con OpenBotv v1 respecto a 2GDL. 

 
Fuente: Propia 
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Figura 85. Trazo de figuras con OpenBotv v1 respecto a 3GDL. 

 
Fuente: Propia 

Explicación de las demos desarrolladas: 

Trazo de Figuras dentro de espacio de trabajo 2GDL:  Para las configuraciones 
de codo abajo y arriba, considerando su espacio de trabajo equivalente, se planea 
el trazo 3 figuras geométricas dentro de este. 

 
Figura 86. Demo desarrollada para trazo de figuras respecto 2GDL. 

 
Fuente: Propia 

 

Trazo de Figuras dentro de espacio de trabajo 3GDL: Considerando un ángulo 
de orientación del efector final de 10 grados, se realiza un recorrido de puntos 
manteniendo la configuración para trazar 3 figuras geométricas planeadas dentro 
del espacio de trabajo equivalente. 
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Figura 87. Demo desarrollada para trazo de figuras respecto 3GDL. 

 
Fuente: Propia 

 

7.3 ESTADO ACTUAL DEL MÓDULO DIDÁCTICO 

Tras terminar la implementación de los modelos cinemáticos, el pasante documentó 
lo aprendido durante su proceso de pasantía en forma de guías y videos. El material 
desarrollado fue condensado y publicado por Robotics 4.0 S.A.S en la plataforma 
de Udemy en forma del curso de “Robótica Antropomórfica Básica en ROS”8. 
Contando a la fecha con un alcance de 60 estudiantes (Anexo1). 

Figura 88. Curso de “Robótica Antropomórfica Básica en ROS” en la plataforma de Udemy  

 
Fuente: Robotics 4.0. (16 de febrero de 2023). Udemy. Obtenido de Robótica Antropomórfica Básica en ROS: 

https://www.udemy.com/course/robotica-antropomorfica-basica-en-ros/?src=sac&amp;kw=robotica%2Bantropomorf 

 

 
8 Robotics 4.0. (Open Robotics, 2023) (16 de febrero de 2023). Udemy. Obtenido de Robótica 
Antropomórfica Básica en ROS: https://www.udemy.com/course/robotica-antropomorfica-basica-en-
ros/?src=sac&amp;kw=robotica%2Bantropomorf 
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El curso consta de 8 unidades, en las cuales se explica el proceso detallado que 
realizó el pasante para la integración de OpenBotv v1 con ROS y la implementación 
de los modelos cinemáticos. 

 

Figura 89. Contenido del curso publicado en Udemy  

 
Fuente: Robotics 4.0. (16 de febrero de 2023). Udemy. Obtenido de Robótica Antropomórfica Básica en ROS: 

https://www.udemy.com/course/robotica-antropomorfica-basica-en-ros/?src=sac&amp;kw=robotica%2Bantropomorf 
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8. CONCLUSIONES 

Tras haber finalizado el proceso de pasantía para realizar el proyecto “Desarrollo 
de módulo didáctico de integración de ROS con robot OpenBotv v1 para fines 
académicos e investigación” se tienen las siguientes reflexiones: 
 

• Como se ha descrito a lo largo del informe y lo certifica el Anexo A, se alcanzaron 
de forma exitosa los objetivos, tanto general como específico, que se plantearon 
en el anteproyecto de esta pasantía. Permitiendo que satisfactoriamente se 
desarrollara para Robotics 4.0 S.A.S un módulo didáctico sobre las temáticas 
tratadas durante el proceso, estando actualmente publicado en la plataforma de 
Udemy bajo el nombre del curso “Robótica Antropomórfica Básica en ROS”. 

• La integración de OpenBotv v1 con ROS permitió de primera mano verificar las 
fortalezas de este software. Siendo un entorno en el cual puede interactuarse 
con modelos simulados y reales desde lenguajes de programación bastante 
conocidos como Python.  

• El curso publicado por Robotics 4.0, posee un gran impacto social y académico 
para la región. Facilitando a los interesados en temáticas de robótica hispano 
hablantes adquirir conocimientos e instruirse en softwares bastante útiles en el 
área de la robótica como lo es ROS. 

• Para alguien que ve su futura vida profesional en la rama de la robótica, el 
proceso de pasantía desarrollado en conjunto con Robotics 4.0 S.A.S fue una 
gran oportunidad. Permitiendo realizar un proceso de aprendizaje sobre ROS, 
un software que se utiliza a nivel industrial para el desarrollo de proyectos de 
robótica, y haber podido experimentar con un brazo robótico a pequeña escala 
como lo es el OpenBotv v1.  
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9. TRABAJO FUTURO 

Como se observa en la Figura 65, las demostraciones de los modelos cinemáticos 
en ROS se implementaron empleando únicamente elementos nativos del software 
como: rqt_configure (Interfaz de usuario), archivo .cfg (menú) y archivo .launch 
(Ejecutable). Logrando de esta manera crear un método para interactuar con el 
robot real y simulado en tiempo real. 

Si la empresa tuviera interés en ampliar la interfaz de usuario para hacerla más 
compleja y similar a trabajos previos que ha realizado en entornos como Matlab 
(Figura 90), se planteó la propuesta de implementarla nativamente en Python 
mientras los métodos de interacción con el Robot se siguen haciendo desde ROS. 
Esto debido a que herramientas como rqt_configure no están pensadas para ser 
interfaces modificables al gusto del usuario sino para ser entornos de prueba. 

Figura 90. Interfaz de Usuario OpenBotv V1 en Matlab 

 

Fuente: Toro Mendoza, S., & Nieto Solano, J. Desarrollo de una interfaz gráfica interactiva para el robot OpenBotv V1 en 
el entorno de MATLAB. Ingeniería Electrónica. BOGOTA D.C.: Facultad de Ingeniería (2022) 

Adicionalmente, respecto al material académico publicado, por parte de Robotics 
4.0 S.A.S, se espera que tomando como base el material desarrollado por el 
pasante, se continúe actualizando el curso de “Robótica Antropomórfica Básica en 
ROS” con el modelamiento de las mismas temáticas, pero desde una perspectiva 
más compleja como lo puede ser una configuración de 5 grados de libertad. 
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11. ANEXOS 

 

• Anexo: Certificado de finalización de proceso de pasantía en Robotics 4.0 
S.A.S 

 


