

UNIVERSIDAD SURCOLOMBIANA

GESTIÓN SERVICIOS BIBLIOTECARIOS

 CARTA DE AUTORIZACIÓN

CÓDIGO AP-BIB-FO-06 VERSIÓN 1 VIGENCIA 2014 PÁGINA 1 de 1

Vigilada Mineducación
La versión vigente y controlada de este documento, solo podrá ser consultada a través del sitio web Institucional www.usco.edu.co, link

Sistema Gestión de Calidad. La copia o impresión diferente a la publicada, será considerada como documento no controlado y su uso
indebido no es de responsabilidad de la Universidad Surcolombiana.

Neiva, 08/05/2023

Señores

CENTRO DE INFORMACIÓN Y DOCUMENTACIÓN

UNIVERSIDAD SURCOLOMBIANA

Ciudad Neiva

El (Los) suscrito(s):

Andrés Felipe Vega Tique, con C.C. No.1003815365,

Autor(es) de la tesis y/o trabajo de grado o Pasantía

Titulado “DESARROLLO DE MÓDULO DIDÁCTICO DE INTEGRACIÓN DE ROS CON ROBOT OPENBOTV V1 PARA
FINES ACADÉMICOS E INVESTIGACIÓN” presentado y aprobado en el año 2023 como requisito para optar al

título de Ingeniero Electrónico;

Autorizo (amos) al CENTRO DE INFORMACIÓN Y DOCUMENTACIÓN de la Universidad Surcolombiana para
que, con fines académicos, muestre al país y el exterior la producción intelectual de la Universidad
Surcolombiana, a través de la visibilidad de su contenido de la siguiente manera:

 Los usuarios puedan consultar el contenido de este trabajo de grado en los sitios web que administra la
Universidad, en bases de datos, repositorio digital, catálogos y en otros sitios web, redes y sistemas de
información nacionales e internacionales “open access” y en las redes de información con las cuales tenga
convenio la Institución.

 Permita la consulta, la reproducción y préstamo a los usuarios interesados en el contenido de este trabajo,
para todos los usos que tengan finalidad académica, ya sea en formato Cd-Rom o digital desde internet,
intranet, etc., y en general para cualquier formato conocido o por conocer, dentro de los términos
establecidos en la Ley 23 de 1982, Ley 44 de 1993, Decisión Andina 351 de 1993, Decreto 460 de 1995 y
demás normas generales sobre la materia.

 Continúo conservando los correspondientes derechos sin modificación o restricción alguna; puesto que, de
acuerdo con la legislación colombiana aplicable, el presente es un acuerdo jurídico que en ningún caso
conlleva la enajenación del derecho de autor y sus conexos.

De conformidad con lo establecido en el artículo 30 de la Ley 23 de 1982 y el artículo 11 de la Decisión Andina
351 de 1993, “Los derechos morales sobre el trabajo son propiedad de los autores”, los cuales son irrenunciables,
imprescriptibles, inembargables e inalienables.

EL AUTOR/ESTUDIANTE:

Firma: ___________________________

http://www.usco.edu.co/

 UNIVERSIDAD SURCOLOMBIANA
GESTIÓN SERVICIOS BIBLIOTECARIOS

DESCRIPCIÓN DE LA TESIS Y/O TRABAJOS DE GRADO

CÓDIGO AP-BIB-FO-07 VERSIÓN 1 VIGENCIA 2014 PÁGINA 1 de 3

Vigilada Mineducación
La versión vigente y controlada de este documento, solo podrá ser consultada a través del sitio web Institucional www.usco.edu.co, link

Sistema Gestión de Calidad. La copia o impresión diferente a la publicada, será considerada como documento no controlado y su uso
indebido no es de responsabilidad de la Universidad Surcolombiana.

TÍTULO COMPLETO DEL TRABAJO: “DESARROLLO DE MÓDULO DIDÁCTICO DE INTEGRACIÓN DE ROS CON
ROBOT OPENBOTV V1 PARA FINES ACADÉMICOS E INVESTIGACIÓN”.

AUTOR O AUTORES:

Primero y Segundo Apellido Primero y Segundo Nombre

Vega Tique

Andrés Felipe

DIRECTOR Y CODIRECTOR TESIS:

Primero y Segundo Apellido Primero y Segundo Nombre

Sendoya Losada Diego Fernando

ASESOR (ES):

Primero y Segundo Apellido Primero y Segundo Nombre

X

X

PARA OPTAR AL TÍTULO DE: Ingeniero Electrónico

FACULTAD: Ingeniería

PROGRAMA O POSGRADO: Electrónica

CIUDAD: Neiva AÑO DE PRESENTACIÓN:2023 NÚMERO DE PÁGINAS: 75

TIPO DE ILUSTRACIONES (Marcar con una X):

Diagramas___ Fotografías___ Grabaciones en discos___ Ilustraciones en general___ Grabados___
Láminas___ Litografías___ Mapas___ Música impresa___ Planos___ Retratos___ Sin ilustraciones___ Tablas
o Cuadros__

x

x

http://www.usco.edu.co/

 UNIVERSIDAD SURCOLOMBIANA
GESTIÓN SERVICIOS BIBLIOTECARIOS

DESCRIPCIÓN DE LA TESIS Y/O TRABAJOS DE GRADO

CÓDIGO AP-BIB-FO-07 VERSIÓN 1 VIGENCIA 2014 PÁGINA 2 de 3

Vigilada Mineducación
La versión vigente y controlada de este documento, solo podrá ser consultada a través del sitio web Institucional www.usco.edu.co, link

Sistema Gestión de Calidad. La copia o impresión diferente a la publicada, será considerada como documento no controlado y su uso
indebido no es de responsabilidad de la Universidad Surcolombiana.

SOFTWARE requerido y/o especializado para la lectura del documento: Ninguno

MATERIAL ANEXO: Ninguno

PREMIO O DISTINCIÓN (En caso de ser LAUREADAS o Meritoria): Ninguno

PALABRAS CLAVES EN ESPAÑOL E INGLÉS:

Español Inglés Español Inglés

1. ____________ ____________ 6. ____________ ____________

 2. ____________ ____________ 7. ____________ ____________

3. ____________ ____________ 8. ____________ ____________

4. ____________ ____________ 9. ____________ ____________

5. ____________ ____________ 10. ____________ ____________

RESUMEN DEL CONTENIDO: (Máximo 250 palabras)

En este trabajo de grado en modalidad de pasantía se presentan los resultados obtenidos del proyecto
“Desarrollo de módulo didáctico de integración de ROS con robot OpenBotv v1 para fines académicos e
investigación”, el cual se plantea con el objetivo de desarrollar un módulo didáctico para la empresa Robotics
4.0 S.A.S, para que entusiastas en temáticas de robótica hispano hablantes cuenten con una mayor oferta en
el mercado local y nacional, en lo que respecta a formas de instruirse en el manejo de softwares especializados
en robótica como lo es ROS y robots académicos compatibles con el software como OpenBotv v1.

El pasante que llevó a cabo la construcción del módulo didáctico lo realizó en distintas fases. Inicialmente, se
centró en realizar el proceso de programación, simulación y manejo del robot académico “OpenBotv v1” desde
el software ROS. Posteriormente, teniendo un control total sobre el robot se aplicaron modelos cinemáticos
mediante el uso del software y, por último, se documentó el proceso realizado en forma de guías y videos para
formar el material que conformaría el módulo didáctico.

Actualmente, el material desarrollado por el pasante se encuentra publicado por Robotics 4.0 S.A.S en la
plataforma de Udemy en forma del curso “Robótica Antropomórfica Básica en ROS”.

ROS ROS

 Cinemática Kinematics

 Python Python

 Robótica Robotics

 OpenBotV v1 OpenBotV v1

 Dynamixel Dynamixel

 Brazo Arm

http://www.usco.edu.co/

 UNIVERSIDAD SURCOLOMBIANA
GESTIÓN SERVICIOS BIBLIOTECARIOS

DESCRIPCIÓN DE LA TESIS Y/O TRABAJOS DE GRADO

CÓDIGO AP-BIB-FO-07 VERSIÓN 1 VIGENCIA 2014 PÁGINA 3 de 3

Vigilada Mineducación
La versión vigente y controlada de este documento, solo podrá ser consultada a través del sitio web Institucional www.usco.edu.co, link

Sistema Gestión de Calidad. La copia o impresión diferente a la publicada, será considerada como documento no controlado y su uso
indebido no es de responsabilidad de la Universidad Surcolombiana.

ABSTRACT: (Máximo 250 palabras)

This degree work in internship form presents the results obtained from the project "Development of a didactic
module for the integration of ROS with OpenBotv v1 robot for academic and research purposes", which aims
to develop a didactic module for the company Robotics 4. 0 S.A.S., so that Spanish-speaking robotics
enthusiasts have a greater offer in the local and national market on ways to be instructed in the management
of specialized robotics software such as ROS and academic robots compatible with the software as OpenBotv
v1.

The intern who built the didactic module did it in different phases. Initially, he focused on the process of
programming, simulation and management of the academic robot "OpenBotv v1" using ROS software.
Subsequently, having full control over the robot, kinematic models were applied using the software and, finally,
the process was documented in the form of guides and videos to form the material that would conform the
didactic module.

Currently, the material developed by the intern is published by Robotics 4.0 S.A.S. on the Udemy platform in
the form of the course "Basic Anthropomorphic Robotics in ROS".

APROBACION DE LA TESIS

Nombre director: Diego Fernando Sendoya Losada

Firma:

Nombre Jurado: José de Jesús Salgado Patrón

Firma:

Nombre Jurado: German Eduardo Martínez Barreto

Firma:

http://www.usco.edu.co/

UNIVERSIDAD SURCOLOMBIANA
FACULTAD DE INGENIERÍA

PROGRAMA DE INGENIERÍA ELECTRÓNICA
NEIVA – HUILA

2023

DESARROLLO DE MÓDULO DIDÁCTICO DE

INTEGRACIÓN DE ROS CON ROBOT OPENBOTV V1 PARA FINES
ACADÉMICOS E INVESTIGACIÓN

ANDRÉS FELIPE VEGA TIQUE
CÓDIGO: 20181164490

UNIVERSIDAD SURCOLOMBIANA
FACULTAD DE INGENIERÍA

PROGRAMA DE INGENIERÍA ELECTRÓNICA
NEIVA – HUILA

2023

DESARROLLO DE MÓDULO DIDÁCTICO DE

 INTEGRACIÓN DE ROS CON ROBOT OPENBOTV V1 PARA FINES
ACADÉMICOS E INVESTIGACIÓN

Andrés Felipe Vega Tique

Código: 20181164490

Línea de la propuesta:

Robótica

Director:

Ing. Diego Fernando Sendoya Losada

3

AGRADECIMIENTOS

Agradezco a mis padres Robert Vega y Norha Tique por permitir formarme como
ingeniero electrónico en la universidad Surcolombiana y por el apoyo incondicional,
tanto emocional y financiero, que me brindaron durante mi proceso de aprendizaje.

Agradezco al ingeniero Mario Arbulú, por la gran oportunidad que me brindó al
realizar un proceso de pasantía en la empresa Robotics 4.0 S.A.S. Debido a que no
existen ofertas similares en la región que permitan ganar experiencia y familiarizarse
con el área de la robótica.

Agradezco a mis docentes por guiarme y los conocimientos compartidos durante mi
trayectoria universitaria, en especial, al ingeniero Diego Sendoya por asesorarme
en la construcción de este trabajo de grado en modalidad de pasantía.

4

TABLA DE CONTENIDO

INTRODUCCIÓN ... 12

1. PLANTEAMIENTO DEL PROBLEMA ... 13

2. JUSTIFICACIÓN ... 14

3. ANTECEDENTES .. 15

4. OBJETIVOS .. 16

4.1 OBJETIVO GENERAL ... 16

4.2 OBJETIVOS ESPECÍFICOS .. 16

5. MARCO TEÓRICO ... 17

5.1 ¿QUÉ ES ROS? .. 17

5.2 ¿CÓMO FUNCIONA ROS? .. 17

5.2.1 Workspace .. 17

5.2.2 Paquete ... 18

5.2.3 Nodos .. 18

5.2.4 Nodo Publisher y Subscriber ... 18

5.2.5 ROS control ... 19

5.2.6 Herramientas de simulación de ROS .. 19

5.2.7 Componentes de una Simulación de ROS .. 21

5.3 OPENBOTV V1 ... 23

5.3.1 Definición .. 23

5.3.2 Motores .. 24

5.4 ELEMENTOS USADOS EN EL MONTAJE ... 24

5.4.1 Convertidor U2D2 ... 24

5.4.2 SMPS2Dynamixel .. 25

5.5 DESARROLLO TEÓRICO DE LOS MODELOS CINEMÁTICOS .. 25

5.5.1 Aclaraciones .. 25

5.5.2 Cinemática inversa .. 27

5.5.3 Cinemática directa .. 33

pág.

5

5.5.4 Espacio de trabajo .. 37

5.5.5 Trayectorias .. 41

6. METODOLOGÍA .. 44

7. DESARROLLO DE LA PASANTÍA Y ANÁLISIS DE RESULTADOS ... 46

7.1 AJUSTES REALIZADOS PARA EL ACOPLE DEL HARDWARE (OPENBOTV V1) Y EL SOFTWARE

(ROS) ... 47

7.2 DEMOSTRACIONES DE LOS MODELOS CINEMÁTICOS APLICADOS EN ROS 55

7.3 ESTADO ACTUAL DEL MÓDULO DIDÁCTICO ... 69

8. CONCLUSIONES .. 71

9. TRABAJO FUTURO .. 72

10. BIBILIOGRAFÍA.. 73

11. ANEXOS .. 75

6

LISTA DE FIGURAS

Figura 1. Logotipo de Robot Operating System .. 17

Figura 2. Estructura de espacio de trabajo en ROS ... 17

Figura 3. Estructura de un paquete en ROS .. 18

Figura 4. Forma de comunicación entre nodos .. 18

Figura 5. Comunicación entre nodo Publisher y Subscriber ... 19

Figura 6. Diagrama de funcionamiento ROS Control .. 19

Figura 7. Logotipo de software de simulación Gazebo ... 20

Figura 8. Logotipo de software de simulación RVIZ .. 20

Figura 9. Ejemplo de estructura de archivo URDF .. 21

Figura 10. Estructura de archivo Xacro de OpenBotv v1 .. 21

Figura 11. Ejemplo de estructura de archivo .launch ... 22

Figura 12. Ejemplo de interfaz empleando rqt_configure .. 22

Figura 13. Ejemplo de estructura de archivo .cfg ... 23

Figura 14. Robot académico OpenBotv v1 .. 23

Figura 15. Rango de posiciones de motor Dynamixel AX-12A .. 24

Figura 16. Convertidor U2D2 .. 24

Figura 17. SMPS2 Dynamixel... 25

Figura 18. Diagrama de modelo cinemático de 2GDL y 3GDL .. 25

Figura 19. Cuadrantes del plano (x, z) empleados en el modelo .. 26

Figura 20. Orientaciones de codo abajo y arriba .. 26

Figura 21. Diagrama de cinemática inversa 2GDL Codo abajo ... 27

Figura 22. Diagrama de cinemática inversa 2GDL Codo arriba ... 27

file:///C:/Users/Tier%20One/Desktop/Propuesta%20Pasantia/Anteproyecto%20final/Informe%20Final%20Pasantía/Informe%20Final%20corregido%20Andrés%20Felipe%20Vega_version2.docx%23_Toc131783904

7

Figura 23. Análisis triángulo azul C. inversa 2GDL ... 28

Figura 24. Análisis naranja C. inversa 2GDL .. 28

Figura 25. Ecuaciones para hallar q1 y q2 con a, b y c .. 29

Figura 26. Diagrama de cinemática inversa 3GDL Codo abajo ... 30

Figura 27. Diagrama de cinemática inversa 3GDL Codo arriba ... 30

Figura 28. Análisis triángulo verde C. inversa 3GDL .. 31

Figura 29. Análisis triángulo azul C. inversa 3GDL .. 31

Figura 30. Análisis triángulo naranja C. inversa 3GDL ... 32

Figura 31. Ecuaciones para hallar q1 y q2 con a, b y c .. 32

Figura 32. Relación de qy con los ángulos de las articulaciones del sistema (q1, q2 y q3) 33

Figura 33. Diagrama de cinemática directa 2GDL Codo abajo .. 33

Figura 34. Diagrama de cinemática directa 2GDL Codo arriba ... 34

Figura 35. Análisis triángulo azul C. directa 2GDL ... 34

Figura 36. Análisis triángulo naranjal C. directa 2GDL .. 34

Figura 37. Diagrama de cinemática directa 3GDL Codo abajo .. 35

Figura 38. Diagrama de cinemática directa 3GDL Codo arriba ... 36

Figura 39. Análisis triángulo verde C. directa 3GDL .. 36

Figura 40. Análisis para calcular ultimo límite de Espacio de trabajo 2GDL 38

Figura 41. Gráfica de Espacio de trabajo 2GDL ... 39

Figura 42. Análisis para calcular ultimo límite de Espacio de trabajo 3GDL 40

Figura 43. Gráfica de Espacio de trabajo 3GDL ... 41

Figura 44. Gráfica de Espacio de trabajo 3GDL respecto a un valor de qy 41

Figura 45. Gráficas de posición, velocidad y aceleración para un movimiento lineal 42

8

Figura 46. Gráficas de posición, velocidad y aceleración para un movimiento empleando un Spline

cúbico .. 43

Figura 47. Workspace de ROS suministrado por Robotics 4.0 S.A.S ... 46

Figura 48. Ejemplo de simulación suministrado por Robotics 4.0 S.A.S ... 47

Figura 49. Estructura del paquete openbot_control .. 47

Figura 50. Estructura de archivo controller.yaml ... 48

Figura 51. Definición de transmisores en Openbot_v1.xacro .. 49

Figura 52. OpenBotv v1 manipulado a través de comandos en terminal ... 49

Figura 53. OpenBotv v1 manipulado desde script en Python empleando Rospy 50

Figura 54. Montaje para manipular OpenBotv v1 .. 51

Figura 55. OpenBotv v1 físico manipulado a través de comandos en terminal 51

Figura 56. Script empleado para manipular OpenBotv v1 desde Python ... 52

Figura 57. Función desarrollada para aplicar método de Spline cúbico ... 53

Figura 58. Uso de la función Splinecub en código de control de Dynamixel 53

Figura 59. Movimiento en OpenBotv v1 aplicando el método de Spline Cúbico 54

Figura 60. Ecuaciones para convertir de ángulos a posiciones (0 a 1023) 54

Figura 61. Estructura de Workspace en ROS desarrollado por el pasante 54

Figura 62. Estructura de package modelos_cinematicos ... 55

Figura 63. Archivos .launch desarrollados por el pasante .. 55

Figura 64. Archivos .cfg desarrollados por el pasante .. 56

Figura 65. Ejemplo de demostración desarrollada en ROS ... 56

Figura 66. Script desarrollado para cálculos de cinemática inversa ... 57

Figura 67. Aplicación de función en Python cálculos_cinematica_inversa 57

Figura 68. Script para mover robot simulado y real en base a los cálculos de cinemática inversa .. 58

file:///C:/Users/Tier%20One/Desktop/Propuesta%20Pasantia/Anteproyecto%20final/Informe%20Final%20Pasantía/Informe%20Final%20corregido%20Andrés%20Felipe%20Vega_version2.docx%23_Toc131783955

9

Figura 69. Demo de cinemática inversa para 2GDL .. 58

Figura 70. Demo de cinemática inversa para 3GDL .. 59

Figura 71. Plano cartesiano en madera (35 cm X 35 cm).. 59

Figura 72. Script desarrollado para cálculos de cinemática directa ... 61

Figura 73. Script desarrollado para cálculos de Espacio de trabajo ... 62

Figura 74. Función desarrollada para trazar el Espacio de trabajo en Rviz 63

Figura 75. Función desarrollada para mover OpenBotv v1 según los límites del Espacio de trabajo

 .. 63

Figura 76. OpenBotv v1 simulado recorriendo el Espacio de trabajo trazado. 64

Figura 77. Demo desarrollada para Espacio de trabajo 2GDL .. 64

Figura 78. Demo desarrollada para Espacio de trabajo 3GDL .. 64

Figura 79. Demo desarrollada para 3GDL respecto a una orientación especifica. 65

Figura 80. Ejemplo de trazo de figuras geométricas dentro del espacio de trabajo 65

Figura 81. Uso de la función Splinecub para cada figura geométrica. .. 66

Figura 82. Función empleada para dibujar la posición del efector final en Rviz 66

Figura 83. OpenBotv v1 trazando figuras dentro del espacio de trabajo trazado en Rviz. 67

Figura 84. Trazo de figuras con OpenBotv v1 respecto a 2GDL. ... 67

Figura 85. Trazo de figuras con OpenBotv v1 respecto a 3GDL. ... 68

Figura 86. Demo desarrollada para trazo de figuras respecto 2GDL. ... 68

Figura 87. Demo desarrollada para trazo de figuras respecto 3GDL. ... 69

Figura 88. Curso de “Robótica Antropomórfica Básica en ROS” en la plataforma de Udemy 69

Figura 89. Contenido del curso publicado en Udemy ... 70

Figura 90. Interfaz de Usuario OpenBotv V1 en Matlab ... 72

10

LISTA DE TABLAS

Tabla 1. Límites para trazar el espacio de trabajo 2GDL ... 37

Tabla 2. Límites para trazar el espacio de trabajo 3GDL ... 39

Tabla 3. Prueba de exactitud para 2GDL ... 60

Tabla 4. Prueba de exactitud para 3GDL ... 60

11

RESUMEN

En este trabajo de grado en modalidad de pasantía se presentan los resultados
obtenidos del proyecto “Desarrollo de módulo didáctico de integración de ROS con
robot OpenBotv v1 para fines académicos e investigación”, el cual se plantea con el
objetivo de desarrollar un módulo didáctico para la empresa Robotics 4.0 S.A.S,
para que entusiastas en temáticas de robótica hispano hablantes cuenten con una
mayor oferta en el mercado local y nacional, en lo que respecta a formas de
instruirse en el manejo de softwares especializados en robótica como lo es ROS y
robots académicos compatibles con el software como OpenBotv v1.

El pasante que llevó a cabo la construcción del módulo didáctico lo realizó en
distintas fases. Inicialmente, se centró en realizar el proceso de programación,
simulación y manejo del robot académico “OpenBotv v1” desde el software ROS.
Posteriormente, teniendo un control total sobre el robot se aplicaron modelos
cinemáticos mediante el uso del software y, por último, se documentó el proceso
realizado en forma de guías y videos para formar el material que conformaría el
módulo didáctico.

Actualmente, el material desarrollado por el pasante se encuentra publicado por
Robotics 4.0 S.A.S en la plataforma de Udemy en forma del curso “Robótica
Antropomórfica Básica en ROS”1.

1 Robotics 4.0. (16 de febrero de 2023). Udemy. Obtenido de Robótica Antropomórfica Básica en ROS:
https://www.udemy.com/course/robotica-antropomorfica-basica-en-
ros/?src=sac&kw=robotica%2Bantropomorf

12

INTRODUCCIÓN

El campo de la robótica es una rama fascinante que combina tanto los campos de
hardware y software para diseñar robots que han sido programados para facilitar la
ejecución de una tarea específica. Un detalle que no debe omitirse es que entre más
difícil o compleja sea la tarea a realizar del robot, más arduo es el proceso de
codificación.

Esta es una de las razones por la cual la Universidad de Stanford en 2007 desarrolló
el software conocido como Robot Operating System o comúnmente conocido como
ROS (Quigley, Gerkey, & Smart, 2015, p.24). La literatura disponible lo define como
“Un entorno de trabajo flexible, con una amplia variedad de herramientas, librerías
y paquetes que busca la creación de un software complejo para tener robots
robustos y con un comportamiento variado”. Igualmente, posee la ventaja de ser un
software con libertad para uso comercial e investigación, con el apoyo de una
comunidad fuerte.

La principal desventaja de ROS, respecto a entusiastas en temáticas de robótica
hispano hablantes, es que en el mercado local y nacional existe poca oferta de
oportunidades que permitan instruirse fácilmente en el manejo de esta herramienta.
ROBOTICS 4.0 S.A.S una empresa enfocada en diseñar, transferir e integrar
tecnología robótica en el ámbito académico, servicios e industria; en conjunto con
su robot académico OpenBotv v1 se propone a avanzar en la integración de éste
con el software ROS y de manera paralela crear un módulo didáctico que genere un
impacto social y académico para la comunidad interesada en temáticas de robótica.

Basado en lo anterior, en este trabajo de grado en modalidad de pasantía se
describe el proceso que llevó a cabo el pasante para realizar la programación y
manejo del robot académico “OpenBotv v1” desde el software ROS, la
implementación de modelos cinemáticos mediante el uso de esta herramienta y la
posterior condensación de lo aprendido en un módulo didáctico.

13

1. PLANTEAMIENTO DEL PROBLEMA

ROBOTICS 4.0 S.A.S es una empresa que ofrece soluciones robotizadas en el
marco de los estándares de la cuarta revolución industrial para el área de servicios
e industria. De manera paralela la empresa desde sus inicios ha intentado promover
el aprendizaje de la rama de la robótica en la región a través de módulos didácticos
y cursos en este campo para distintos niveles académicos.

A pesar de haber interactuado con el software ROS (Robot Operating System) en
el pasado, la empresa dentro sus contenidos académicos desarrollados y
publicados no posee nada referente al uso de esta herramienta. Con la iniciativa de
suplementar esta carencia, Robotics 4.0 S.A.S se propone a profundizar en el uso
de este software para poder acoplarlo a su robot académico “OpenBotv v1” y aplicar
modelos cinemáticos programados desde éste. Adicionalmente, con el objetivo de
plasmar todo el procedimiento en un módulo didáctico.

Para la anterior tarea se requiere de un recurso humano, cuyo perfil incluye un
estudiante de ingeniería electrónica con experiencia en programación en Python,
dispuesto a adquirir conocimientos básicos de robótica y el software ROS. Además,
que vea en este campo una oportunidad futura de desarrollo profesional.

14

2. JUSTIFICACIÓN

Como se ha mencionado, Robot Operating System es una herramienta usada a
nivel industrial por distintas empresas en el área de la robótica por las distintas
ventajas que ofrece a la hora de desarrollar proyectos. Tal es su popularidad que
según ABI Research2, en su informe de “Proyectos de robótica de código abierto”,
se espera que casi el 55% de los robots de todo el mundo incluyan al menos un
paquete de ROS en 2024. Convirtiendo el uso de esta herramienta en el lenguaje
común de automatización para proyectos de robótica.

Por tal razón, la realización de esta propuesta no solo representa para el pasante
una gran oportunidad de aprendizaje, permitiéndole familiarizarse con herramientas
(software y hardware) relacionadas a la programación y manejo de robots como lo
son ROS y el robot académico OpenBotv v1, sino también, que la construcción de
un contenido académico respecto al proceso que realice el pasante, representa un
gran impacto para la región para aquellas personas que vean un futuro desarrollo
profesional en el campo de la robótica, debido a que contarían con un material de
calidad, escrito en su lengua materna (Español), que les permitiera introducirse en
un elemento tan potente en el área de la robótica como lo es ROS.

2 ABI Research. (19 de febrero de 2023). Obtenido de The rise of ROS: Nearly 55% of total commercial robots
shipped in 2024 will have at least one robot operating system package installed:
https://www.abiresearch.com/press/rise-ros-nearly-55-total-commercial-robots-shipped-2024-will-have-
least-one-robot-operating-system-package-installed/

15

3. ANTECEDENTES

ROBOTICS 4.0 S.A.S es una empresa fundada a finales de 2018 que se dedica a
desarrollar soluciones robotizadas a medida de la cuarta revolución industrial para
el sector de servicios e industria. De manera paralela la empresa desde sus inicios
ha intentado promover el aprendizaje de la rama de Robótica en la región a través de
módulos didácticos y cursos en este campo para distintos niveles académicos.

Todos los módulos académicos que maneja la empresa se complementan con el
uso del robot OpenBotv v1 y sus derivados.

Estos robots se caracterizan por ser reconfigurables y permitirle al estudiante tener
la posibilidad de diseñar y probar distintas configuraciones o tareas. Además, como
su nombre lo indica le brinda la facilidad al usuario de controlarse y programarse en
distintos entornos como lo son Matlab, Labview, C++, Java, Python y ROS. Esta
versatilidad que ofrece al ser una plataforma abierta es lo que motiva también a
usarse en distintas aplicaciones de Robótica industrial.

Desde la fundación de la empresa se pueden resaltar los siguientes proyectos3:

• Teleoperación inalámbrica mio-eléctrica inteligente (2018): Proyecto
desarrollado en colaboración con estudiantes de la Escuela Colombiana de
ingeniería ‘Julio Garavito’.

• Robot para localización Estereotáxica (2018-2020): PMV para FACOSEME SAC
cofinanciado por INNOVATE / Perú.

• Robot para limpieza de paneles solares (2020-2021): PMV implementado para
la empresa SUNNYAPP SAS, cofinanciado por Minciencias y Tecnnova.

3 Robotics 4.0. (16 de febrero de 2023). Youtube. Obtenido de HuilaFEST 4.0: https://youtu.be/iPjFRZ1tPg0

16

4. OBJETIVOS

4.1 OBJETIVO GENERAL

Desarrollar para ROBOTICS 4.0 S.A.S un módulo didáctico sobre la integración de
ROS con el robot OpenBotv v1, para interactuar con hardware real y mediante
modelos de simulación programados en ROS.

4.2 OBJETIVOS ESPECÍFICOS

• Aprender el funcionamiento de la arquitectura ROS para implementar algoritmos
de modelado cinemático en robot OpenBotv v1 mediante el estudio de tutoriales
y aplicación de simulaciones desarrolladas por la empresa.

• Implementar e integrar modelos cinemáticos desarrollados en el robot OpenBotv
v1 a través de ROS.

• Validar la implementación de los modelos cinemáticos mediante simulaciones
en ROS y su desempeño en el robot real.

• Desarrollar material académico (guías de trabajo, videos, etc.) para explicar paso
a paso la integración de ROS con OpenBotv v1 y la aplicación de los modelos
cinemáticos.

17

5. MARCO TEÓRICO

5.1 ¿QUÉ ES ROS?

Robot Operating System, comúnmente llamado como ROS, es un framework de
robótica de carácter gratuito y código abierto con posibilidad de uso para fines
comerciales e investigación. Actualmente, se le considera la plataforma por defecto
para el desarrollo de aplicaciones robotizadas debido a las ventajas que ofrece a
sus usuarios, como:

• Interfaz de paso de mensajes entre procesos (Nodos).

• Funcionalidades similares a las de un sistema operativo (Workspace, Packages).

• Soporte a lenguajes de programación de alto nivel (Python, C++)

• Herramientas de simulación (Gazebo, Rviz)

• Soporte por parte de la comunidad. (Lentin y Aleena, 2018, p.132)

Figura 1. Logotipo de Robot Operating System

Fuente: Open Robotics. (16 de febrero de 2023). ROS: Home. Obtenido de https://www.ros.org

5.2 ¿CÓMO FUNCIONA ROS?

5.2.1 Workspace

Es una carpeta donde se introducen distintos paquetes para ejecutar una aplicación
(Simulaciones, códigos de Python, etc.).

La estructura de un Workspace está conformada por una carpeta src, devel y build.

Figura 2. Estructura de espacio de trabajo en ROS

Fuente: Propia

18

5.2.2 Paquete

Es una subcarpeta que se diseña para que cumpla una funcionalidad especifica al
ser llamada por ROS. Posee una carpeta src donde se colocan los archivos a
emplear durante la ejecución y dos archivos de configuración (CmakeLists.txt y
package.xml) para definir parámetros del paquete.

Figura 3. Estructura de un paquete en ROS

Fuente: Propia

5.2.3 Nodos

Según Fairchild & Harman (2017), básicamente son programas que realizan algún
cálculo o tarea específica. Cada nodo está pensado para poder operar
independientemente ejecutando un script, pero poseen la capacidad de
comunicarse entre ellos mediante la estructura de comunicación de ROS.

Figura 4. Forma de comunicación entre nodos

Fuente: Propia

A los canales de comunicación que existen entre los nodos se les denomina Topics
y la manera como se envía información es por medio de unas estructuras conocidas
como mensajes.

Para el caso específico de Python, Rospy es la librería para la configuración e
inicialización de un nodo mediante un script (Rospy - ROS Wiki, 2017).

5.2.4 Nodo Publisher y Subscriber

Se define como una relación emisor-receptor que existe entre los nodos para el
intercambio de información. Es una de las maneras de intercambio de datos que
ofrece ROS.

19

Figura 5. Comunicación entre nodo Publisher y Subscriber

Fuente: Propia

5.2.5 ROS control

Es una librería de ROS que permite establecer controladores (generalmente PID)
con distintos parámetros de entrada para el control de la articulación de un robot.
Su implementación pide la configuración del propio controlador en un archivo .yaml
y añadir unas estructuras conocidas como transmisores al archivo Xacro o URDF
donde se encuentra descrito el modelo del robot. (ROS control,2023).

Figura 6. Diagrama de funcionamiento ROS Control

Fuente: Apache 2.0. (16 de febrero de 2023). Gazebo : Tutorial : ROS control. Obtenido de
https://classic.gazebosim.org/tutorials?tut=ros_control#Aboutros_control

5.2.6 Herramientas de simulación de ROS

Gazebo: Es un entorno de simulación de robots gratuito y de código abierto
desarrollado por Willow Garage. Como herramienta multifuncional para
desarrolladores de robots en ROS, Gazebo soporta lo siguiente:

20

• Diseño de modelos de robots

• Creación rápida de prototipos y pruebas de algoritmos

• Simulación de ambientes (Interiores y exteriores)

• Simulación de datos de sensores

• Motores de física de alto rendimiento como: Object-Oriented Graphics Rendering
Engine (OGRE), Open Dynamics Engine (ODE), Bullet, Simbody y Dynamic
Animation and Robotics Toolkit (DART).

(Fairchild & Harman, 2017, p.60)

Figura 7. Logotipo de software de simulación Gazebo

Fuente: Apache 2.0. (16 de febrero de 2023). Gazebo : Media. Obtenido de https://classic.gazebosim.org/media

RVIZ: Son las siglas para ROS Visualization. Es un entorno 3D generalmente
empleado para la visualización de robots, sensores y algoritmos. Como la mayoría
de las herramientas de ROS, se puede utilizar para cualquier robot y rápidamente
configurarlo para una aplicación particular (Quigley, Gerkey, & Smart, 2015, p.126).

Figura 8. Logotipo de software de simulación RVIZ

Fuente: ros visualization . GitHub. (16 de febrero de 2023). Obtenido de https://github.com/ros-visualization

21

La principal diferencia con Gazebo, es la manera como cada programa realiza su
proceso de simulación. “RVIZ muestra lo que el robot piensa que está pasando
mientras que Gazebo muestra lo que de verdad está pasando” (Quigley, Gerkey, &
Smart, 2015, p.300).

5.2.7 Componentes de una Simulación de ROS

URDF: Son las siglas de (Unified Robot Description Format). Corresponde a un
formato de lenguaje utilizado para describir robots empleando la gramática XML. A
través de un formato URDF se puede modelar la estructura de un robot, sus
dimensiones, masa, articulaciones, actuadores, etc. (Lentin y Aleena, 2018, p.132).

Figura 9. Ejemplo de estructura de archivo URDF

Fuente: Model with URDF from Scratch:
http://wiki.ros.org/urdf/Tutorials/Building%20a%20Visual%20Robot%20Model%20with%20URDF%20from%20Scratch

Xacro: Para Fairchild & Harman (2017, p.42), Xacro es un lenguaje de macros XML
creado para hacer los archivos de descripción de robots URDF más fáciles de leer,
reduciendo la duplicación de información dentro del archivo.

Figura 10. Estructura de archivo Xacro de OpenBotv v1

Fuente: Propia

22

Roslaunch: Es una herramienta para arrancar fácilmente varios nodos de ROS e
inicializar parámetros. Los archivos de configuración de Roslaunch se escriben en
XML y utilizan la extensión .launch. (Fairchild & Harman,2017, p.44).

Figura 11. Ejemplo de estructura de archivo .launch

Fuente: Propia

Rqt-configure y archivos .cfg: Las herramientas rqt que forman parte del
framework permiten representaciones gráficas de nodos, temas, mensajes y otro
tipo de información (rqt/Plugins - ROS Wiki). La wiki de ROS enumera muchas de
las posibles herramientas que se pueden usar como complementos, pero la usada
durante el proyecto fue rqt_reconfigure

Esta herramienta permite a nodos que hayan sido programados usando la
rqt_reconfigure API ser visibles dentro la interfaz y que dentro del GUI aparezcan
sus parámetros con los valores actuales y límites. (Fairchild & Harman,2017, p.198).

Figura 12. Ejemplo de interfaz empleando rqt_configure

Fuente: Propia

Estos parámetros se definen empleando un archivo .cfg, en el cual se crean las
variables que se quiere que aparezcan en la interfaz, su rango de trabajo y valor
inicial.

23

Figura 13. Ejemplo de estructura de archivo .cfg

Fuente: Propia

Cmakelist: Este archivo contiene todos los comandos para construir el código
fuente de ROS dentro del paquete y crear el ejecutable. (Lentin y Aleena, 2018,
p.179).

Package.xml: Es un archivo XML que contiene principalmente las dependencias
del paquete, información, etc. (Lentin y Aleena, 2018, p.180).

5.3 OPENBOTV V1

5.3.1 Definición

Es un robot bioinspirado, didáctico y reconfigurable con 6 grados de libertad,
especializado en resolver problemas de desplazamiento de objetos y movimiento
espacial. Mediante un accesorio de intercambio de datos, es capaz de controlarse
y programarse desde un PC, mediante distintos entornos como Matlab, LabView,
C++, Java, Python, ROS. (E-Robotics 4.0, 2023).

Figura 14. Robot académico OpenBotv v1

Fuente: Robotics 4.0. (15 de Marzo de 2023). Robotics 4.0. Obtenido de E-Robotics 4.0 I Robotics 4.0:
https://robotics40.com/wp-content/uploads/2019/04/OpenBotvv1.jpg

24

5.3.2 Motores

El OpenBotv v1 está compuesto por 6 motores de la marca Dynamixel serie AX-12.
Los servomotores de esta referencia operan en un rango de trabajo de 0 a 1023
posiciones. (AX-12A, 2023).

Todos los motores de la marca Dynamixel son manipulables desde distintos
lenguajes de programación y para el caso específico de ROS poseen una librería
denominada Dynamixel_Workbench para hacer más fácil el acople con el software.
(DYNAMIXEL Workbench, 2023).

5.4 ELEMENTOS USADOS EN EL MONTAJE

5.4.1 Convertidor U2D2

“Es un convertidor de comunicación USB de pequeño tamaño que permite controlar
y operar DYNAMIXEL desde un PC” (Robotis e-Manual U2D2,2023).

Figura 16. Convertidor U2D2

Fuente: ROBOTIS. (13 de febrero de 2023). ROBOTIS e-Manual. Obtenido de DYNAMIXEL Workbench:
https://emanual.robotis.com/docs/en/software/dynamixel/dynamixel_workbench/

Figura 15. Rango de posiciones de motor Dynamixel AX-12A

Fuente: ROBOTIS. (15 de febrero de 2023). ROBOTIS e-Manual. Obtenido de AX-12A:
https://emanual.robotis.com/docs/en/dxl/ax/ax-12a/

25

5.4.2 SMPS2Dynamixel

Este dispositivo proporciona energía a un Dynamixel desde un SMPS. Posee
conectores de 3 pines para la serie AX y conectores de 4 pines para la serie
DX/RX/EX. Las líneas de alimentación y comunicación están conectadas, lo que
permite desempeñar el papel de bus de expansión del Dynamixel. (Robotis
SMPS2Dynamixel, 2023).

Figura 17. SMPS2 Dynamixel

Fuente: ROBOTIS. (15 de febrero de 2023). ROBOTIS. Obtenido de SMPS2Dynamixel - ROBOTIS:
https://www.robotis.us/smps2dynamixel/

5.5 DESARROLLO TEÓRICO DE LOS MODELOS CINEMÁTICOS

5.5.1 Aclaraciones

La construcción de los modelos cinemáticos que se aplican sobre el OpenBotv v1
en conjunto con ROS, se implementan según los siguientes aspectos:

• El modelo se define para un movimiento planar respecto al plano XZ

considerando una configuración de 2 y 3 grados de libertad.

 Figura 18. Diagrama de modelo cinemático de 2GDL y 3GDL

Fuente: Propia

26

La diferencia entre ambas configuraciones es como el modelo de 3 grados de
libertad considera la orientación o ángulo del efector final (qy) al realizar el
movimiento planar.

• El desarrollo teórico respecto al plano XZ se realiza exclusivamente para el
primer y segundo cuadrante.

Figura 19. Cuadrantes del plano (x, z) empleados en el modelo

Fuente: Propia

• Adicionalmente, el análisis del modelo 2 y 3 grados de libertad se plantea
respecto a dos orientaciones de codo (arriba y abajo) para representar el
comportamiento de un brazo robótico.

Figura 20. Orientaciones de codo abajo y arriba

Fuente: Propia

27

5.5.2 Cinemática inversa

Es una técnica que permite calcular los giros de las articulaciones del robot para
llevar su efector final a unas coordenadas específicas en el plano.

Para 2GDL, se planteó el modelo a través de un sistema de triángulos que permite
calcular fácilmente los ángulos de interés (𝒒𝟏, 𝒒𝟐) en ambas orientaciones de codo
(arriba y abajo).

Figura 21. Diagrama de cinemática inversa 2GDL Codo abajo

Fuente: Propia

Figura 22. Diagrama de cinemática inversa 2GDL Codo arriba

Fuente: Propia

28

• L1 es la longitud del eslabón 1.

• L2 es la longitud del eslabón 2.

• q1 es el ángulo que se forma entre el eslabón 1 y el eje x.

• q2 es el ángulo que se forma entre la prolongación del eslabón 1 y el eslabón 2.

• q1p es un ángulo auxiliar para relacionar q1 en el segundo cuadrante.

El sistema de triángulos está conformado por un elemento de color azul y uno
naranja. El primero relaciona el ángulo 𝒂 para obtener una distancia 𝒓 y el segundo
a los ángulos internos b y c.

Figura 23. Análisis triángulo azul C. inversa 2GDL

Fuente: Propia

Por trigonometría se tiene que la expresión para 𝒂 es:

𝒂 = 𝐚𝐭𝐚 𝐧 (
𝒛

𝒙
) (𝟏)

Por teorema de Pitágoras se halla la expresión para 𝒓:

𝒓 = √𝐱𝟐 + 𝐳𝟐 (𝟐)

Conociendo el valor de 𝒓, se emplea la ley del coseno como un método que permite
relacionar los valores de b y c.

Figura 24. Análisis naranja C. inversa 2GDL

Fuente: Propia

29

𝐋𝟐𝟐 = 𝐋𝟏𝟐 + 𝐫𝟐 − 𝟐 ∗ 𝐋𝟏 ∗ 𝐫 ∗ 𝐜𝐨𝐬 (𝐛) (𝟑)
Despejando b:

𝒃 = 𝒂𝒄𝒐𝒔(
𝑳𝟏𝟐 + 𝒓𝟐 − 𝑳𝟐𝟐

𝟐 ∗ 𝑳𝟏 ∗ 𝒓
) (𝟒)

Para c se hace el mismo proceso:

𝒄 = 𝒂𝒄𝒐𝒔(
𝑳𝟏𝟐 − 𝒓𝟐 + 𝑳𝟐𝟐

𝟐 ∗ 𝑳𝟏 ∗ 𝑳𝟐
) (𝟓)

Independientemente de la orientación codo y el cuadrante, el sistema de triángulos
siempre se resuelve de la misma manera empleando las ecuaciones (1) al (5). Lo
único que varía al obtener 𝒒𝟏 y 𝒒𝟐 mediante 𝒂, b y c son las relaciones que se
plantean entre estos.

Figura 25. Ecuaciones para hallar q1 y q2 con a, b y c

Fuente: Propia

Para 3GDL, se aplica nuevamente el sistema de triángulos con el añadido de
considerar el ángulo de orientación del efector final (qy). El modelo resultante
permite calcular fácilmente los ángulos de interés 𝒒𝟏, 𝒒𝟐 y 𝒒𝟑 en ambas
configuraciones de codo (arriba y abajo).

30

Figura 26. Diagrama de cinemática inversa 3GDL Codo abajo

Fuente: Propia

Figura 27. Diagrama de cinemática inversa 3GDL Codo arriba

Fuente: Propia

El ángulo de orientación del efector (qy), dependiendo del cuadrante donde se
encuentre varia su forma de obtener las coordenadas (xp, zp) mediante el triángulo
de color verde.

31

Figura 28. Análisis triángulo verde C. inversa 3GDL

Fuente: Propia

Posteriormente, conociendo los valores de (xp, zp), se calculan los ángulos internos
a, b y c para determinar los valores de q1, q2 y q3.

Figura 29. Análisis triángulo azul C. inversa 3GDL

Fuente: Propia

Por trigonometría se tiene que la expresión para 𝒂 es:

𝐚 = 𝐚𝐭𝐚𝐧 (
𝐳𝐩

𝐱𝐩
) (𝟏𝟎)

Por teorema de Pitágoras se halla la expresión para 𝒓:

𝐫 = √𝐱𝐩𝟐 + 𝐳𝐩𝟐 (𝟏𝟏)

Conociendo el valor de 𝒓, se emplea la ley del coseno como un método para

relacionar los valores de b y c.

𝒙𝒑 = 𝒙 − 𝑳𝟑 ∗ 𝒄𝒐𝒔(𝒒𝒚) (𝟔)

𝒛𝒑 = 𝒛 − 𝑳𝟑 ∗ 𝒔𝒆𝒏(𝒒𝒚) (𝟕)

𝒙𝒑 = 𝒙 − 𝑳𝟑 ∗ 𝒄𝒐𝒔(𝟏𝟖𝟎 − 𝒒𝒚) (𝟖)

𝒛𝒑 = 𝒛 − 𝑳𝟑 ∗ 𝒔𝒆𝒏(𝟏𝟖𝟎 − 𝒒𝒚) (𝟗)

32

Figura 30. Análisis triángulo naranja C. inversa 3GDL

Fuente: Propia

𝐋𝟐𝟐 = 𝐋𝟏𝟐 + 𝐫𝟐 − 𝟐 ∗ 𝐋𝟏 ∗ 𝐫 ∗ 𝐜𝐨𝐬 (𝐛)(𝟏𝟐)

Despejando b:

𝒃 = 𝒂𝒄𝒐𝒔 (
𝑳𝟏𝟐 + 𝒓𝟐 − 𝑳𝟐𝟐

𝟐 ∗ 𝑳𝟏 ∗ 𝒓
) (𝟏𝟑)

Para c se hace el mismo proceso:

𝒄 = 𝒂𝒄𝒐𝒔(
𝑳𝟏𝟐 − 𝒓𝟐 + 𝑳𝟐𝟐

𝟐 ∗ 𝑳𝟏 ∗ 𝑳𝟐
) (𝟏𝟒)

Finalmente, 𝒒𝟏 y 𝒒𝟐 se obtienen operando los ángulos a, b y c hallados. Respecto a
𝒒𝟑, mediante una relación que tienen los 3 ángulos de las articulaciones con 𝒒𝐲 es
posible calcularlo. En la Figura 32, se traza una línea paralela al eslabón 1 para
comprobar como 𝒒𝐲 es la suma de estos componentes.

Figura 31. Ecuaciones para hallar q1 y q2 con a, b y c

Fuente: Propia

33

Figura 32. Relación de qy con los ángulos de las articulaciones del sistema (q1, q2 y q3)

Fuente: Propia

5.5.3 Cinemática directa

Es un método para calcular las coordenadas del efector final a partir de los ángulos
de rotación de las articulaciones del robot, es decir, según los ángulos q1, q2 y q3
dependiendo de cuántos grados de libertad tenga el modelo (2GDL o 3GDL).

Para 2GDL, se plantea el modelo a través de un sistema de triángulos que permite
calcular fácilmente la coordenada del efector final (x, z) en ambas configuraciones
de codo (arriba y abajo).

Figura 33. Diagrama de cinemática directa 2GDL Codo abajo

Fuente: Propia

𝒒𝒚 = 𝒒𝟏 + 𝒒𝟐 + 𝒒𝟑 (𝟏𝟓)

34

Figura 34. Diagrama de cinemática directa 2GDL Codo arriba

Fuente: Propia

Como se conoce el valor de q1 y q2, independientemente del cuadrante y orientación
de codo, se hallan las coordenadas de cada triángulo rectángulo por medio de
relaciones trigonométricas y posteriormente, se suman los segmentos de cada eje
para hallar la coordenada (x, z). Por ejemplo, para el primer cuadrante en codo abajo
el procedimiento es el siguiente:

Figura 35. Análisis triángulo azul C. directa 2GDL

Fuente: Propia

Para 𝑥1 y 𝑧1:

𝑥1 = 𝐿1 ∗ cos(𝑞1) (𝟏𝟔)

𝑧1 = 𝐿1 ∗ sen (𝑞1) (𝟏𝟕)

Figura 36. Análisis triángulo naranjal C. directa 2GDL

Fuente: Propia

35

Para 𝑥2 y 𝑧2:

𝑥2 = 𝐿2 ∗ cos(𝑞1 + 𝑞2) (𝟏𝟖)

𝑧2 = 𝐿2 ∗ sen(𝑞1 + 𝑞2) (𝟏𝟗)

Se suman los segmentos de cada eje para obtener 𝒙 y 𝒛:

Para 𝒙:

𝒙 = 𝑥1 + 𝑥2 (𝟐𝟎)

𝑥 = 𝐿1 ∗ cos (𝑞1) + 𝐿2 ∗ cos (𝑞1 + 𝑞2)

Para 𝒛:

𝒛 = 𝑧1 + 𝑧2 (𝟐𝟏)

𝑧 = 𝐿1 ∗ sen (𝑞1) + 𝐿2 ∗ sen (𝑞1 + 𝑞2)

Para 3GDL, se aplica el mismo método, pero considerando que son 3 segmentos
los que deben sumarse para hallar las coordenadas del efector final (x, z).

Figura 37. Diagrama de cinemática directa 3GDL Codo abajo

Fuente: Propia

36

Figura 38. Diagrama de cinemática directa 3GDL Codo arriba

Fuente: Propia

El triángulo de color azul y naranja en el modelo de 3GDL se resuelven de igual
manera que en el de 2GDL, empleando las ecuaciones del (16) al (21). Esto se debe
a que la única variación entre ambos sistemas es el valor de las distancias L1 y L2.

Para el triángulo de color verde, similar a la demostración en la Figura 32, se realiza
un paralelo al eslabón 1 y se dibujan los ángulos q1, q2 y q3 para ver su relación
respecto a qy.

Figura 39. Análisis triángulo verde C. directa 3GDL

Fuente: Propia

𝑥3 = 𝐿3 ∗ 𝐶𝑜𝑠(𝑞1 + 𝑞2 + 𝑞3) (𝟐𝟑)

𝑧3 = 𝐿3 ∗ 𝑆𝑒𝑛(𝑞1 + 𝑞2 + 𝑞3) (𝟐𝟒)

37

Para 𝒙:

𝑥 = 𝑥1 + 𝑥2 + 𝑥3 (𝟐𝟓)

𝑥 = 𝐿1 ∗ cos(𝑞1) + 𝐿2 ∗ cos(𝑞1 + 𝑞2) + 𝐿3 ∗ 𝑐𝑜𝑠(𝑞1 + 𝑞2 + 𝑞3)

Para 𝒛:

𝑧 = 𝑧1 + 𝑧2 + 𝑧3 (𝟐𝟔)

𝑧 = 𝐿1 ∗ sen (𝑞1) + 𝐿2 ∗ sen(𝑞1 + 𝑞2) + 𝐿3 ∗ 𝑠𝑒𝑛(𝑞1 + 𝑞2 + 𝑞3)

Para 𝒒𝒚:

𝑞𝑦 = 𝒒𝟏 + 𝒒𝟐 + 𝒒𝟑 (𝟐𝟕)

5.5.4 Espacio de trabajo

Se define como el conjunto de puntos que puede alcanzar el robot alrededor de sí
mismo considerando su configuración (2GDL-3GDL), el tamaño de sus eslabones y
los límites de sus articulaciones. En otras palabras, el espacio de trabajo es el rango
de movilidad del robot.

Su construcción respecto a 2GDL, se hace asumiendo intervalos de giro para las
articulaciones de interés. Estos rangos de operación que se asumen para (𝒒𝟏, 𝒒𝟐)
a través del método de cinemática directa permiten obtener las coordenadas en el
plano para realizar el trazo del espacio de trabajo.

Tabla 1. Límites para trazar el espacio de trabajo 2GDL

 Limites

Orientación

 codo

Ángulo

de

articulación

Barrido general de

q1 manteniendo

constante q2

q1 constante

 y q2 varía hasta

el valor soportado por

su articulación (120°)

q2 constante y

 q1 varía hasta

un valor

calculado

Abajo

q1 0° a 180 ° 0 ° 0° a 80.73°

q2 0° 0° a 120° 120°

Arriba

q1 180 ° a 0° 180 °

180° a

99.26°

q2 0° 0° a -120° -120°

Para la construcción del tercer límite presente en la Tabla 1, como se desconoce el
valor hasta el que puede girar q1 manteniendo un valor de q2. Se plantea el siguiente
sistema de triángulos:

38

Figura 40. Análisis para calcular ultimo límite de Espacio de trabajo 2GDL

Fuente: Propia

Finalmente, tras calcular los 3 límites, la gráfica equivalente al área de trabajo para

el robot con una configuración de 2 grados de libertad, es la siguiente:

𝐶. 𝐴𝑏𝑎𝑗𝑜 → 𝜃 = 180°+ 𝑞2 (𝟐𝟖)

𝐶. 𝐴𝑟𝑟𝑖𝑏𝑎 → 𝜃 = 180°− 𝑞2 (𝟐𝟗)

A través de la ley del coseno:

𝐿𝑎 = √𝐿12 + 𝐿22 − (2𝐿1 ∗ 𝐿2 ∗ cos(𝜃)) (𝟑𝟎)

A través de la ley del coseno:

𝑞𝑥 = acos (
𝐿𝑎2 + 𝐿12 − 𝐿22

2 ∗ 𝐿1 ∗ 𝐿𝑎
) (𝟑𝟏)

Finalmente, conociendo qx, q1 manteniendo q2
variará hasta:

𝐶. 𝐴𝑏𝑎𝑗𝑜 → 𝒒𝟏 = 180°− qx (𝟑𝟐)

𝐶. 𝐴𝑟𝑟𝑖𝑏𝑎 → 𝒒𝟏 = qx (𝟑𝟑)

39

Figura 41. Gráfica de Espacio de trabajo 2GDL

Nota: Cada color de trazo del espacio de trabajo se corresponde con el límite que lo produce de la Tabla 1

Fuente: Propia

Respecto a 3GDL, se trazan dos espacios de trabajo. Uno general, aplicando la
misma lógica que en 2GDL, asumiendo distintos intervalos de giro considerando los
límites de las articulaciones. Resultando en rangos de operación para (𝒒𝟏, 𝒒𝟐, 𝒒𝟑)
a los cuales se les aplica el método de cinemática directa para obtener las
coordenadas del espacio de trabajo.

Tabla 2. Límites para trazar el espacio de trabajo 3GDL

 Limites

Orientación

 codo

Ángulo

de

articulación

Barrido de q1

manteniendo

constante q2 y

q3

q1 y q2

constante

 y q3 varía hasta

su límite

máximo (120°)

q1 y q3

constante

 y q2 varía

hasta

su límite

máximo (90°)

q2 y q3

constante y

 q1 varía

hasta un valor

calculado

Abajo

q1 0° a 180 ° 0 ° 0 ° 0° a 13.45°

q2 0° 0° 0° a 120° 120°

q3 0° 0° a 90° 90° 90°

Arriba

q1 180 ° a 0° 180° 180 °

180° a

166.54°

q2 0° 0° 0° a -120° -120°

q3 0° 0° a -90° 0° a 120° 90°

Para la construcción del último límite, como se desconoce el valor hasta el que
puede girar q1 para mantener el valor de q2 y q3. Se plantea el siguiente sistema de
triángulos:

40

Figura 42. Análisis para calcular ultimo límite de Espacio de trabajo 3GDL

Fuente: Propia

𝜃 𝑠𝑒 𝑜𝑏𝑡𝑖𝑒𝑛𝑒 𝑒𝑚𝑝𝑙𝑒𝑎𝑛𝑑𝑜 𝑙𝑎 𝑒𝑐𝑢𝑎𝑐𝑖ó𝑛 (𝟐𝟖) 𝑜 (𝟐𝟗) 𝑠𝑒𝑔ú𝑛 𝑙𝑎 𝑜𝑟𝑖𝑒𝑛𝑡𝑎𝑐𝑖ó𝑝𝑛 𝑑𝑒 𝑐𝑜𝑑𝑜.

𝐿𝑎 se obtiene empleando la ecuación (𝟑𝟎)

Se halla q1p a través de la ley del coseno:

𝑞1𝑝 = acos (
𝐿12 + 𝐿𝑎2 − 𝐿22

2 ∗ 𝐿1 ∗ 𝐿𝑎
) (𝟑𝟒)

Finalmente, conociendo q1p:

𝐶. 𝐴𝑏𝑎𝑗𝑜 → 𝜶 = 180°− q3 − 𝛽 (𝟑𝟓)

𝐶. 𝐴𝑟𝑟𝑖𝑏𝑎 → 𝜶 = 180° + q3 − 𝛽 (𝟑𝟔)

𝜷 = 180°− q1p − 𝜃

Se halla q1c a través de la ley del coseno:

𝑞1𝑐 = acos (
𝐿𝑎2 + 𝐿𝑏2 − 𝐿32

2 ∗ 𝐿𝑎 ∗ 𝐿𝑏
) (𝟑𝟕)

Finalmente, conociendo q1p y q1c:

𝐶. 𝐴𝑏𝑎𝑗𝑜 → 𝒒𝟏 = 180°− q1p − q1c (𝟑𝟖)

𝐶. 𝐴𝑟𝑟𝑖𝑏𝑎 → 𝒒𝟏 = q1p + q1c (𝟑𝟗)

41

Figura 43. Gráfica de Espacio de trabajo 3GDL

Nota: Cada color de trazo del espacio de trabajo se corresponde con el límite que lo produce de la Tabla 2

Fuente: Propia

El segundo espacio de trabajo respecto a 3GDL, aplica la misma lógica anterior,
pero considerando que los rangos de operación para (𝒒𝟏, 𝒒𝟐, 𝒒𝟑) deben garantizar
que se mantenga el ángulo de orientación del efector final 𝒒𝐲. Resultando en un
espacio de trabajo exclusivo para ese valor de ángulo.

Figura 44. Gráfica de Espacio de trabajo 3GDL respecto a un valor de qy

Fuente: Propia

5.5.5 Trayectorias

Inicialmente para el trazo de la trayectoria se pensó usar un movimiento lineal
debido a que idealmente la velocidad sería constante y la aceleración nula. Pero
este planteamiento aplicado en la realidad no resulta cierto, debido a que un
movimiento realiza una aceleración al inicio y una desaceleración al final. Esto se

42

vería representado con dos picos respecto a la aceleración (Figura 45), trayendo
consigo un riesgo que puede afectar los dispositivos físicos involucrados.

Figura 45. Gráficas de posición, velocidad y aceleración para un movimiento lineal

Fuente: Propia

Tomando como base teórica lo expuesto sobre interpoladores cúbicos en el libro
“FUNDAMENTOS DE ROBÓTICA” (Barrientos, Penín, Balaguer, & Aracil, 1997), la
alternativa que se planteó para esta problemática fue utilizar un Spline cúbico en
lugar de una línea recta para la construcción de la trayectoria. El polinomio
planteado es el siguiente:

𝒇(𝒕) = 𝒂 ∗ 𝒕𝟑 + 𝒃 ∗ 𝒕𝟐 + 𝒄 ∗ 𝒕 + 𝒅 (𝟒𝟎)

 Válido para posicionamiento espacial y movimiento articular

Este polinomio permite:

• Un movimiento suave y en general, un ajuste a los puntos tabulados.

• La velocidad cumple la función de acelerar (al inicio) y desacelerar (al final).

• Corregir el error de los picos de aceleración.

43

Figura 46. Gráficas de posición, velocidad y aceleración para un movimiento empleando un Spline cúbico

Fuente: Propia

A partir de la ecuación del Spline Cúbico planteada y sus derivadas se obtiene la
ecuación de posición, velocidad y aceleración para trayectorias:

𝒇(𝒕) = 𝒂 ∙ 𝒕𝟑 + 𝒃 ∙ 𝒕𝟐 + 𝒄 ∙ 𝒕 + 𝒅 (𝟒𝟏)

𝒇 ’(𝒕) = 𝒗(𝒕) = 𝟑 ∙ 𝒂 ∙ 𝒕𝟐 + 𝟐 ∙ 𝒃 ∙ 𝒕 + 𝒄 (𝟒𝟐)

𝒇 ’’(𝒕) = 𝒂(𝒕) = 𝟔 ∙ 𝒂 ∙ 𝒕 + 𝟐 ∙ 𝒃 (𝟒𝟑)

44

6. METODOLOGÍA

Para la realización de este proyecto el pasante se encontraba bajo la guía y
dirección del ingeniero Mario Arbulú, supervisor en la empresa ROBOTICS 4.0
S.A.S de este proyecto.

Las actividades se realizaron de manera presencial en las instalaciones de
Tecnoparque SENA en la ciudad de Neiva, cumpliendo con la intensidad horaria
definida por la Universidad Surcolombiana de 20 horas semanales durante un
periodo mínimo de 6 meses.

Con base en los objetivos general y específicos descritos previamente (numeral 4)
la metodología a utilizar durante la pasantía incluye procedimientos y técnicas de
carácter investigativo y/o práctico con el fin de entregar el módulo didáctico
planteado en el objetivo general.

En términos generales, este proyecto de pasantía se divide en 4 fases:

• Fase 1: Aprender el funcionamiento de la arquitectura ROS para
implementar algoritmos de modelado cinemático en robot OpenBotv v1.

Previo a la implementación de los algoritmos de modelado cinemático. Durante esta
fase, el pasante se dedicó a estudiar el funcionamiento de ROS: Su estructura, las
herramientas de simulación que posee (Gazebo y Rviz) y la manera de manipular
tanto el robot en el entorno simulado como real empleando este software.

El aprendizaje se realizó mediante el estudio de tutoriales, material proporcionado
por Robotics 4.0 S.A.S (Simulaciones, Guías, avances previos de la empresa en
ROS, etc.) y asesorías del supervisor a cargo del proyecto.

Por último, la implementación de ROS durante la pasantía se realizó en un equipo
con S.O. Ubuntu y la programación de los códigos se realizó a través de Python 3.

• Fase 2: Implementar e integrar modelos cinemáticos desarrollados en el
robot Openbotv1 a través de ROS.

Durante esta fase, en conjunto con el robot OpenBotv v1, el pasante realizó en el
software ROS la aplicación de distintos conceptos básicos de robótica, como:
cinemática inversa, cinemática directa, espacio de trabajo y trayectorias.

Los resultados de este proceso, se resumen en la creación de códigos en Python y
demostraciones tanto para el robot simulado y real que permiten la verificación de
las temáticas mencionadas anteriormente.

45

• Fase 3: Desarrollar un material académico (guías de trabajo, videos, etc.)
para explicar paso a paso la integración de ROS con Openbotv1 y la
aplicación de los modelos cinemáticos.

Una vez alcanzadas las metas de la fase 2, el pasante basándose en los resultados
obtenidos en el proceso de integración de ROS con OpenBotv v1 y la aplicación de
los modelos cinemáticos, documentó en forma de guías de trabajo y videos el paso
a paso que llevó a cabo. Este material realizado por el pasante será el
contenido para el módulo didáctico que conservará Robotics 4.0 S.A.S.

• Fase 4: Análisis y Documentación de los resultados finales del proceso de
pasantía.

Por último, el documento final de la pasantía contiene un informe detallado de los
cálculos matemáticos, las simulaciones, las pruebas realizadas con el robot real y
los códigos que se utilizaron para la realización de las distintas fases del proyecto.

46

7. DESARROLLO DE LA PASANTÍA Y ANÁLISIS DE RESULTADOS

En esta sección, se mostrarán los resultados obtenidos durante el proceso que llevó
a cabo el pasante para el desarrollo del módulo didáctico sobre la integración de
OpenBotv v1 con el software ROS. Esto se resume en la socialización de:

• Los ajustes que tuvo que realizar el pasante para el acople del hardware
(OpenBotv v1) y el software (ROS).

• Las demostraciones o demos realizadas para comprobar la implementación de
los modelos cinemáticos en ROS.

• El estado actual del módulo didáctico tras la finalización del proceso de pasantía.

Previo a mostrar los resultados, se mostrará el material que fue suministrado al
pasante por Robotics 4.0 S.A.S, para así, comprender el punto de inicio del
proyecto. Inicialmente, el pasante contaba con lo siguiente:

Figura 47. Workspace de ROS suministrado por Robotics 4.0 S.A.S

Fuente: Propia

• Un Workspace en ROS que incluye paquetes que definen las características
(Dimensiones, controladores, articulaciones, etc.) del modelo de OpenBotv v1
en las herramientas de simulación: Gazebo y Rviz (Ver sección 5.26).

• Un ejemplo de una simulación en Gazebo que permitía simplemente visualizar
el robot en un entorno 3D.

47

Figura 48. Ejemplo de simulación suministrado por Robotics 4.0 S.A.S

Fuente: Propia

7.1 AJUSTES REALIZADOS PARA EL ACOPLE DEL HARDWARE (OPENBOTV
V1) Y EL SOFTWARE (ROS)

Inicialmente solo se contaba con una simulación básica en la cual podía visualizarse
el robot en un entorno 3D (Gazebo). Por lo que una de las primeras tareas que
realizó el pasante fue ser capaz de manipular tanto el robot OpenBotv v1 simulado
y real desde ROS. A continuación, se describe el proceso que llevó a cabo para
realizar esta tarea.

• Control sobre una articulación de OpenBotv v1 en entorno simulado:

Para ser capaces de manipular las articulaciones del OpenBotv v1 en el entorno
simulado fue necesario la implementación de la librería ROS Control (Ver sección
5.25) que permite usar Effort_Controllers/Joint_position_controllers. Estos son
controladores PID que permiten introducir un valor deseado en radianes de 0 a 2𝜋
y generar en cada articulación un valor deseado de torque equivalente para llegar a
esa posición. Para la correcta implementación de esta librería en el Workspace, fue
necesario aplicar los siguientes cambios:

Creación de un paquete de Control: Como ROS opera mediante el uso de
paquetes, se crea uno relacionado a la librería ROS Control y se le denomina como
“openbot_control”.

Figura 49. Estructura del paquete openbot_control

Fuente: Propia

48

Creación de un archivo de configuración: En el paquete openbot_control se crea
un archivo llamado controller.yaml. Dentro de este se definen las articulaciones en
las cuales se va a ejercer control, el valor de las constantes PID y el tipo de
controlador a usar, que se decidió que fueran los effort_controllers/
JointPositionController debido a que la configuración es para servomotores.

Figura 50. Estructura de archivo controller.yaml

Fuente: Propia

Modificación de archivo Xacro para introducir transmisores: El uso de los
controladores implica definir dentro del modelo de OpenBotv v1 la relación entre
cada actuador y la articulación. Esto se hace con una estructura llamada transmisor4
que se define para cada una de las articulaciones del OpenBotv v1 y la pinza.

Estos cambios se realizan en el paquete openbot_v1_description, específicamente,
el archivo openbot_v1.xacro, debido a que es el encargado de definir las
características del modelo simulado del robot.

4 Apache 2.0. (16 de febrero de 2023). Gazebo : Tutorial : ROS control. Obtenido de
https://classic.gazebosim.org/tutorials?tut=ros_control#Aboutros_control

49

Figura 51. Definición de transmisores en Openbot_v1.xacro

Fuente: Propia

Posterior a esto, se procedió a comprobar el funcionamiento de las articulaciones
en el OpenBotv v1 simulado enviando ángulos en radianes a distintas articulaciones.
Este proceso de manipulación del robot se realizó desde el terminal mediante
comandos y a través de un script en Python usando la librería Rospy5. Para ambos
casos, se aplican los conceptos de nodo Publisher y Subscriber (Ver sección 5.24),
funcionando el código y el terminal como emisor y la articulación del robot que recibe
el ángulo a mover en radianes como el receptor.

Figura 52. OpenBotv v1 manipulado a través de comandos en terminal

Fuente: Propia

5 ROS Wiki. (12 de febrero de 2023). Obtenido de rospy: http://wiki.ros.org/rospy

50

Figura 53. OpenBotv v1 manipulado desde script en Python empleando Rospy

Fuente: Propia

Tras la sesión de pruebas, se observa que es más fácil manipular el robot desde
Python en conjunto con ROS debido a que pueden definirse y controlarse varios
canales de comunicación (Topics) a la vez, relegando el método por terminal como
una forma de comprobar que existe comunicación con la articulación. Por esta
razón, la manipulación desde Python será la forma por defecto en la que se operará
el robot simulado al implementar los modelos cinemáticos.

• Control sobre una articulación de OpenBotv v1 físico:

Como se mencionó en el literal 6.3.3, el OpenBotv v1 emplea 6 motores de la
referencia Dynamixel Ax-12. Estos cuentan con una librería especializada para su
integración con ROS y que facilita el movimiento de todas las articulaciones del
robot a la vez. Se denomina Dynamixel Workbench6 y es la que se usó para el
desarrollo del proyecto.

Adicionalmente, el montaje empleado para la comunicación con el OpenBotv v1
incluye una convertidor USB U2D2 (Ver sección 5.4.1), un cable USB, un
SMPS2Dynamixel (Ver sección 5.4.2) y una fuente de alimentación para los motores
(12 V DC).

6 ROBOTIS. (13 de febrero de 2023). ROBOTIS e-Manual. Obtenido de DYNAMIXEL Workbench:
https://emanual.robotis.com/docs/en/software/dynamixel/dynamixel_workbench/

51

Figura 54. Montaje para manipular OpenBotv v1

Fuente: Propia

Para comprobar el funcionamiento del control de las articulaciones del robot, se
realiza el envío de posiciones de 0 a 1023 (Rango soportado por la referencia de
Dynamixel AX-12) tanto por comandos en el terminal como la manipulación por
medio de un script de Python empleando las librerías de Dynamixel_workbench.

Figura 55. OpenBotv v1 físico manipulado a través de comandos en terminal

Fuente: Propia

52

Figura 56. Script empleado para manipular OpenBotv v1 desde Python

Fuente: Propia

Tras la sesión de pruebas, se observa que es más fácil manipular el robot desde
Python en conjunto con ROS debido a que pueden definirse y controlarse varias ID
de motores a la vez, relegando el método de comunicación por terminal como una
forma rápida de verificar la conexión con el Dynamixel. Por esta razón, esta será la
forma por defecto en la que se manipulará el robot real al implementar los modelos
cinemáticos.

Implementación de un Spline Cúbico: Tras comprobar que era posible el control
de las articulaciones del robot físico empleando la librería, fue necesario el uso de
un método matemático que permitiera planear movimientos que involucran el
recorrido de una serie de puntos de una coordenada espacial a otra.

El método que se decidió usar fue un Spline cúbico por las razones que se
especifican en la sección 5.5.5. Este se encuentra representado mediante la
siguiente función de Python que considera una posición inicial (Po), una posición
final (Pf), el tiempo de muestreo (Tf) y la cantidad de puntos (n).

53

Figura 57. Función desarrollada para aplicar método de Spline cúbico

Fuente: Propia

La función de Splinecub se integra al código previamente mostrado en la Figura 57.
Permitiendo realizar movimientos más complejos (Figura 59) sin poner en riesgo la
estructura del robot.

Figura 58. Uso de la función Splinecub en código de control de Dynamixel

Fuente: Propia

54

Figura 59. Movimiento en OpenBotv v1 aplicando el método de Spline Cúbico

Fuente: Propia

• Conversión de ángulos a posiciones:

Conociendo de antemano que el modelo cinemático planteado entrega sus
resultados en forma de ángulos en radianes, es necesario convertir este resultado
a un valor de posición dentro del rango de operación del Dynamixel AX-12. El
proceso de conversión se realiza mediante el uso de una ecuación definida para
cada articulación y se integran en un script de Python como puede observarse en la
Figura 60.

Figura 60. Ecuaciones para convertir de ángulos a posiciones (0 a 1023)

p1=int(512-q1*1023/(5/3*pi)) #Articulación 1

p2=int(512-q2*1023/(5/3*pi)) #Articulación 2

p3=int(512-q3*1023/(5/3*pi)) #Articulación 3

p4=int(512-q4 *1023/(5/3*pi)) #Articulación 4

p5=int(512+q5*1023/(5/3*pi)) #Articulación 5

p6=int(512-q6*1023/(5/3*pi)) #Articulación 6
Fuente: Propia

• Incorporación de estos cambios en el Workspace:

Tomando como base el Workspace entregado por Robotics 4.0 S.A.S (Figura 49),
los cambios realizados se reflejan en la introducción de nuevos paquetes y cambios
en los existentes.

Figura 61. Estructura de Workspace en ROS desarrollado por el pasante

Fuente: Propia

55

• DynamixelSDK: Contiene los archivos de la librería Dynamixel Workbench.

• package_dynamixel: Contiene los archivos relacionados para manipular el
robot físico.

• Openbot_gazebo, openbot_v1_description, openbot_control: Contiene los
archivos relacionados al control, la definición de los parámetros y la
manipulación del robot simulado.

• Modelos_cinematicos: Contendrá los archivos relacionados a estas temáticas.

7.2 DEMOSTRACIONES DE LOS MODELOS CINEMÁTICOS APLICADOS EN
ROS

Tras tener un control total de las articulaciones simuladas y reales del robot se
procedió a la implementación de los modelos cinemáticos. Para cada una de las
temáticas se creó una subcarpeta dentro del paquete “modelos_cinematicos”.

Figura 62. Estructura de package modelos_cinematicos

Fuente: Propia

Adicionalmente, cada tema que se trató posee una demostración o “Demo” que
permite condensar y comprobar lo aprendido respecto a estas.

Estructura de las demos: La creación de cada demo involucra el uso de un archivo
.launch y un archivo de configuración .cfg para que en conjunto con la herramienta
de ROS “rqt_reconfigure” se tenga una interfaz de usuario. (Ver sección 5.2.7)

Figura 63. Archivos .launch desarrollados por el pasante

Fuente: Propia

56

Figura 64. Archivos .cfg desarrollados por el pasante

Fuente: Propia

Figura 65. Ejemplo de demostración desarrollada en ROS

Fuente: Propia

• Demostración de aplicación de Cinemática inversa en Openbotv1 desde
ROS:

Los cálculos para el método de cinemática inversa se realizaron para una
configuración de 2 y 3 grados de libertad (Ver sección 5.5.2). Estos dentro del
Workspace, se encuentran definidos en una clase en Python denominada
“cálculos_cinematica_inversa” que posee distintas funciones para representar las
configuraciones que se consideran teóricamente. Cada función toma como entrada
las coordenadas del efector final y retorna los ángulos producto del cálculo.

57

Fuente: Propia

En otro script principal, se llama esta clase en Python para obtener el resultado de
los cálculos y aplicar los métodos desarrollados previamente para mover el robot
simulado y real.

Figura 67. Aplicación de función en Python cálculos_cinematica_inversa

Fuente: Propia

Figura 66. Script desarrollado para cálculos de cinemática inversa

58

Figura 68. Script para mover robot simulado y real en base a los cálculos de cinemática inversa

Fuente: Propia

Explicación de las demos desarrolladas:

Demo Cinemática inversa 2GDL: La demo desarrollada para 2GDL permite
ingresar la coordenada deseada del efector final y la orientación de codo (arriba o
abajo). Con estos datos, se realiza el cálculo a través del método de cinemática
inversa y se mueve las articulaciones 2 y 3 del robot para colocarlo en la posición
indicada.

Figura 69. Demo de cinemática inversa para 2GDL

Fuente: Propia

Demo Cinemática inversa 3GDL: La demo desarrollada para 3GDL permite al
usuario ingresar la coordenada deseada del efector final, su orientación (qy) y la
orientación del codo (arriba o abajo). Posteriormente, aplica el método de

59

cinemática inversa y mueve las articulaciones 2, 3 y 5 del robot para colocarlo en la
posición indicada.

Figura 70. Demo de cinemática inversa para 3GDL

Fuente: Propia

Comprobación y exactitud del método de Cinemática inversa: Para comprobar
la exactitud del movimiento del robot real aplicando las demos desarrolladas para
cinemática inversa, se empleó una cuadrícula y un metro para realizar las
mediciones.

Figura 71. Plano cartesiano en madera (35 cm X 35 cm)

Fuente: Propia

60

Tabla 3. Prueba de exactitud para 2GDL

 Valor Teórico (m)
Valor Medido con un

metro(m)
Porcentaje de

error

Coordenada
X

Coordenada
Z Coordenada X Coordenada Z Eje X Eje Z

1 0,2 0,25 0,198 0,263 1,0 -5,200

2 -0,2 0,26 -0,198 0,261 1,0 -0,385

3 0,05 0,25 0,05 0,248 0,0 0,800

4 0,1 0,25 0,1 0,245 0,0 2,000

5 -0,23 0,23 -0,23 0,233 0,0 -1,304

6 0,07 0,32 0,068 0,318 2,9 0,625

7 0,18 0,28 0,17 0,29 5,6 -3,571

8 0,3 0,03 0,295 0,028 1,7 6,667

9 0,24 0,04 0,24 0,038 0,0 5,000

10 0,24 0,2 0,24 0,198 0,0 1,000

 Total 1,2079 2,6552

Tabla 4. Prueba de exactitud para 3GDL

 Valor Teórico (m)
Valor Medido con un

metro(m)
Porcentaje de

error

Coordenada
X

Coordenada
Z Coordenada X Coordenada Z Eje X Eje Z

1 0,2 0,2 0,205 0,190 -2,5 5,000

2 0,22 0,2 0,22 0,198 0,0 1,000

3 0,26 0,2 0,265 0,198 -1,9 1,000

4 0,24 0,18 0,24 0,188 0,0 -4,444

5 0,24 0,15 0,238 0,145 0,8 3,333

6 0,04 0,27 0,035 0,26 12,5 3,704

7 0,04 0,2 0,05 0,18 -25,0 10,000

8 0,14 0,22 0,14 0,217 0,0 1,364

9 0,18 0,22 0,18 0,223 0,0 -1,364

10 0,1 0,24 0,105 0,228 -5,0 5,000

 Total 4,7756 3,6208

61

Tras realizar las mediciones para distintas configuraciones, se obtiene que para
movimientos en 2GDL hay un porcentaje de error promedio de 1.2% en el eje x y
2.65% en el eje z. Para 3GDL, se tiene 4.77% en el eje x y 3.62% para el eje z.

Basado en los datos anteriores, el supervisor del proceso de pasantía decidió que
el desempeño del método de cinemática inversa era aceptable para la aplicación de
trayectorias que se haría posteriormente con este.

• Demostración de trazo de espacio de trabajo en Openbotv1 desde ROS:

Los cálculos desarrollados para cinemática directa (Ver sección 5.5.3) son la base
para la construcción del espacio de trabajo. Estos de manera similar, al método de
cinemática inversa se implementaron en una clase en Python denominada como
“cálculos_cinematica_directa” que posee distintas funciones para representar las
configuraciones que se consideraron teóricamente. Cada función toma como
entrada los ángulos de las articulaciones y retorna la coordenada del efector final.

Figura 72. Script desarrollado para cálculos de cinemática directa

Fuente: Propia

62

Respecto al trazo del espacio de trabajo, los cálculos definidos para este (Ver
sección 5.5.4) se encuentran en un script que contiene el gráfico equivalente para
las configuraciones de 2GDL, 3GDL y 3GDL para una orientación específica del
efector final.

Figura 73. Script desarrollado para cálculos de Espacio de trabajo

Fuente: Propia

Trazo del Espacio de trabajo en Rviz: Esta tarea se realiza en conjunto de la
librería MarkerArray7 que dibuja una serie de marcadores respecto a un punto de
referencia. Para el trazo del espacio de trabajo, se escoge la articulación 2 del
OpenBotv v1 debido a que al realizar los cálculos se asumió este punto como la
coordenada (0,0) en el plano XZ.

Adicionalmente, dentro del mismo script se crea una función en Python (Figura 75)
que toma los intervalos de giro definidos en la Tabla 1 y hace que el robot se mueva
respecto a estos. De esta manera, se puede comprobar que la gráfica de espacio
de trabajo producida es correcta.

7 Open Robotics. (3 de marzo de 2023). ROS Wiki. Obtenido de rviz/DisplayTypes/Marker:
http://wiki.ros.org/rviz/DisplayTypes/Marker

63

Figura 74. Función desarrollada para trazar el Espacio de trabajo en Rviz

Fuente: Propia

Figura 75. Función desarrollada para mover OpenBotv v1 según los límites del Espacio de trabajo

Fuente: Propia

64

Figura 76. OpenBotv v1 simulado recorriendo el Espacio de trabajo trazado.

Fuente: Propia

Explicación de las demos desarrolladas:

Espacio de trabajo 2GDL: La demo desarrollada para 2GDL realiza un barrido de
las articulaciones 2 y 3 para conocer todos los puntos en el plano XZ que puede
alcanzar el efector final del robot.

Figura 77. Demo desarrollada para Espacio de trabajo 2GDL

Fuente: Propia

Espacio de trabajo 3GDL: La demo desarrollada para 3GDL realiza un barrido de
las articulaciones 2, 3 y 5 para conocer todos los puntos en plano XZ que puede
alcanzar el efector final del robot.

Figura 78. Demo desarrollada para Espacio de trabajo 3GDL

Fuente: Propia

65

Espacio de trabajo 3GDL respecto a una orientación específica: La demo
desarrollada para 3GDL realiza un barrido de las articulaciones 2, 3 y 5 pero
considerando que debe mantener una orientación específica del efector durante
todo el recorrido. De esta manera se pueden conocer todos los puntos en el plano
XZ que puede alcanzar el efector final del robot respecto a esa configuración.

Figura 79. Demo desarrollada para 3GDL respecto a una orientación especifica.

Fuente: Propia

• Demostración de trazo de trayectorias en Openbotv1 desde ROS:

La aplicación de trayectorias se realizó mediante el trazo de 3 figuras geométricas
(Un cuadrado, un triángulo y un círculo) dentro de los espacios de trabajo
previamente definidos para las configuraciones de 2GDL Y 3GDL.

Figura 80. Ejemplo de trazo de figuras geométricas dentro del espacio de trabajo

Fuente: Propia

La serie de puntos para trazar la trayectoria de cada una de las figuras geométricas
se genera a través de un script que aplica el método de Spline Cúbico (Ver sección
5.5.5).

66

Figura 81. Uso de la función Splinecub para cada figura geométrica.

Fuente: Propia

Posteriormente, a cada punto se le aplica el método de cinemática inversa y el robot
se mueve por los métodos desarrollados previamente para el modelo simulado y
real.

Trazo de figuras en Rviz: En conjunto con la librería MarkerArray se dibuja un
punto en cada posición que recorre el efector final formando de esta manera la figura
geométrica.

Figura 82. Función empleada para dibujar la posición del efector final en Rviz

Fuente: Propia

67

Figura 83. OpenBotv v1 trazando figuras dentro del espacio de trabajo trazado en Rviz.

Fuente: Propia

Trazo de figuras con robot real: Tomando los ángulos productos del método de
cinemática inversa, el robot real simplemente se mueve siguiendo el recorrido de
puntos de la trayectoria de cada una de las figuras geométricas.

Figura 84. Trazo de figuras con OpenBotv v1 respecto a 2GDL.

Fuente: Propia

68

Figura 85. Trazo de figuras con OpenBotv v1 respecto a 3GDL.

Fuente: Propia

Explicación de las demos desarrolladas:

Trazo de Figuras dentro de espacio de trabajo 2GDL: Para las configuraciones
de codo abajo y arriba, considerando su espacio de trabajo equivalente, se planea
el trazo 3 figuras geométricas dentro de este.

Figura 86. Demo desarrollada para trazo de figuras respecto 2GDL.

Fuente: Propia

Trazo de Figuras dentro de espacio de trabajo 3GDL: Considerando un ángulo
de orientación del efector final de 10 grados, se realiza un recorrido de puntos
manteniendo la configuración para trazar 3 figuras geométricas planeadas dentro
del espacio de trabajo equivalente.

69

Figura 87. Demo desarrollada para trazo de figuras respecto 3GDL.

Fuente: Propia

7.3 ESTADO ACTUAL DEL MÓDULO DIDÁCTICO

Tras terminar la implementación de los modelos cinemáticos, el pasante documentó
lo aprendido durante su proceso de pasantía en forma de guías y videos. El material
desarrollado fue condensado y publicado por Robotics 4.0 S.A.S en la plataforma
de Udemy en forma del curso de “Robótica Antropomórfica Básica en ROS”8.
Contando a la fecha con un alcance de 60 estudiantes (Anexo1).

Figura 88. Curso de “Robótica Antropomórfica Básica en ROS” en la plataforma de Udemy

Fuente: Robotics 4.0. (16 de febrero de 2023). Udemy. Obtenido de Robótica Antropomórfica Básica en ROS:

https://www.udemy.com/course/robotica-antropomorfica-basica-en-ros/?src=sac&kw=robotica%2Bantropomorf

8 Robotics 4.0. (Open Robotics, 2023) (16 de febrero de 2023). Udemy. Obtenido de Robótica
Antropomórfica Básica en ROS: https://www.udemy.com/course/robotica-antropomorfica-basica-en-
ros/?src=sac&kw=robotica%2Bantropomorf

70

El curso consta de 8 unidades, en las cuales se explica el proceso detallado que
realizó el pasante para la integración de OpenBotv v1 con ROS y la implementación
de los modelos cinemáticos.

Figura 89. Contenido del curso publicado en Udemy

Fuente: Robotics 4.0. (16 de febrero de 2023). Udemy. Obtenido de Robótica Antropomórfica Básica en ROS:

https://www.udemy.com/course/robotica-antropomorfica-basica-en-ros/?src=sac&kw=robotica%2Bantropomorf

71

8. CONCLUSIONES

Tras haber finalizado el proceso de pasantía para realizar el proyecto “Desarrollo
de módulo didáctico de integración de ROS con robot OpenBotv v1 para fines
académicos e investigación” se tienen las siguientes reflexiones:

• Como se ha descrito a lo largo del informe y lo certifica el Anexo A, se alcanzaron
de forma exitosa los objetivos, tanto general como específico, que se plantearon
en el anteproyecto de esta pasantía. Permitiendo que satisfactoriamente se
desarrollara para Robotics 4.0 S.A.S un módulo didáctico sobre las temáticas
tratadas durante el proceso, estando actualmente publicado en la plataforma de
Udemy bajo el nombre del curso “Robótica Antropomórfica Básica en ROS”.

• La integración de OpenBotv v1 con ROS permitió de primera mano verificar las
fortalezas de este software. Siendo un entorno en el cual puede interactuarse
con modelos simulados y reales desde lenguajes de programación bastante
conocidos como Python.

• El curso publicado por Robotics 4.0, posee un gran impacto social y académico
para la región. Facilitando a los interesados en temáticas de robótica hispano
hablantes adquirir conocimientos e instruirse en softwares bastante útiles en el
área de la robótica como lo es ROS.

• Para alguien que ve su futura vida profesional en la rama de la robótica, el
proceso de pasantía desarrollado en conjunto con Robotics 4.0 S.A.S fue una
gran oportunidad. Permitiendo realizar un proceso de aprendizaje sobre ROS,
un software que se utiliza a nivel industrial para el desarrollo de proyectos de
robótica, y haber podido experimentar con un brazo robótico a pequeña escala
como lo es el OpenBotv v1.

72

9. TRABAJO FUTURO

Como se observa en la Figura 65, las demostraciones de los modelos cinemáticos
en ROS se implementaron empleando únicamente elementos nativos del software
como: rqt_configure (Interfaz de usuario), archivo .cfg (menú) y archivo .launch
(Ejecutable). Logrando de esta manera crear un método para interactuar con el
robot real y simulado en tiempo real.

Si la empresa tuviera interés en ampliar la interfaz de usuario para hacerla más
compleja y similar a trabajos previos que ha realizado en entornos como Matlab
(Figura 90), se planteó la propuesta de implementarla nativamente en Python
mientras los métodos de interacción con el Robot se siguen haciendo desde ROS.
Esto debido a que herramientas como rqt_configure no están pensadas para ser
interfaces modificables al gusto del usuario sino para ser entornos de prueba.

Figura 90. Interfaz de Usuario OpenBotv V1 en Matlab

Fuente: Toro Mendoza, S., & Nieto Solano, J. Desarrollo de una interfaz gráfica interactiva para el robot OpenBotv V1 en
el entorno de MATLAB. Ingeniería Electrónica. BOGOTA D.C.: Facultad de Ingeniería (2022)

Adicionalmente, respecto al material académico publicado, por parte de Robotics
4.0 S.A.S, se espera que tomando como base el material desarrollado por el
pasante, se continúe actualizando el curso de “Robótica Antropomórfica Básica en
ROS” con el modelamiento de las mismas temáticas, pero desde una perspectiva
más compleja como lo puede ser una configuración de 5 grados de libertad.

73

10. BIBILIOGRAFÍA

ABI Research. (19 de febrero de 2023). Obtenido de The rise of ROS: Nearly 55% of total

commercial robots shipped in 2024 will have at least one robot operating system package

installed: https://www.abiresearch.com/press/rise-ros-nearly-55-total-commercial-robots-

shipped-2024-will-have-least-one-robot-operating-system-package-installed/

Quigley, M., Gerkey, B., & Smart, W. D. (2015). Programming Robots With Ros: A practical

introduction to the robot operating system. Sebastopol: O’Reilly Media.

Toro Mendoza, S., & Nieto Solano, J. (2022). Desarrollo de una interfaz gráfica interactiva para el

robot OpenBotv V1 en el entorno de MATLAB. BOGOTA D.C.

Apache 2.0. (16 de feberero de 2023). Gazebo : Media. Obtenido de

https://classic.gazebosim.org/media

Apache 2.0. (16 de febrero de 2023). Gazebo : Tutorial : ROS control. Obtenido de

https://classic.gazebosim.org/tutorials?tut=ros_control#Aboutros_control

Barrientos, A., Penín, L. F., Balaguer, C., & Aracil, R. (1997). FUNDAMENTOS DE ROBÓTICA. Madrid:

McGRAW-HIILL.

Fairchild, C., & Harman, D. T. (2017). Ros Robotics by example: Learning to control wheeled,

limbed, and flying robots using Ros Kinetic Kame. Birmingham: Packt Publishing Ltd.

GitHub. (16 de febrero de 2023). Obtenido de ros-visualization : https://github.com/ros-

visualization

Lentin , J. (2018). Robot Operating System (Ros) for absolute beginners: Robotics Programming

made easy. apress.

Open Robotics. (16 de febrero de 2023). ROS wiki. Obtenido de urdf/Tutorial/Building a Visual

Robot Model with URDF from Scratch:

http://wiki.ros.org/urdf/Tutorials/Building%20a%20Visual%20Robot%20Model%20with%2

0URDF%20from%20Scratch

Open Robotics. (13 de febrero de 2023). ROS Wiki. Obtenido de rqt/Plugins:

http://wiki.ros.org/rqt/Plugins

Open Robotics. (13 de febrero de 2023). ROS Wiki. Obtenido de rqt/Plugins:

http://wiki.ros.org/rqt/Plugins

Open Robotics. (3 de marzo de 2023). ROS Wiki. Obtenido de rviz/DisplayTypes/Marker:

http://wiki.ros.org/rviz/DisplayTypes/Marker

Open Robotics. (16 de Febrero de 2023). ROS: Home. Obtenido de https://www.ros.org

74

Robotics 4.0. (12 de febrero de 2023). Robotics 4.0. Obtenido de E-Robotics 4.0:

https://robotics40.com/e-robotics-4-0/

Robotics 4.0. (15 de Marzo de 2023). Robotics 4.0. Obtenido de E-Robotics 4.0:

https://robotics40.com/wp-content/uploads/2019/04/OpenBotvv1.jpg

Robotics 4.0. (16 de febrero de 2023). Udemy. Obtenido de Robótica Antropomórfica Básica en

ROS: https://www.udemy.com/course/robotica-antropomorfica-basica-en-

ros/?src=sac&kw=robotica%2Bantropomorf

Robotics 4.0. (16 de febrero de 2023). Youtube. Obtenido de HuilaFEST 4.0:

https://youtu.be/iPjFRZ1tPg0

ROBOTIS. (15 de febrero de 2023). ROBOTIS. Obtenido de SMPS2Dynamixel - ROBOTIS:

https://www.robotis.us/smps2dynamixel/

ROBOTIS. (13 de febrero de 2023). ROBOTIS e-Manual. Obtenido de DYNAMIXEL Workbench:

https://emanual.robotis.com/docs/en/software/dynamixel/dynamixel_workbench/

ROBOTIS. (15 de febrero de 2023). ROBOTIS e-Manual. Obtenido de AX-12A:

https://emanual.robotis.com/docs/en/dxl/ax/ax-12a/

ROS Wiki. (12 de febrero de 2023). Obtenido de rospy: http://wiki.ros.org/rospy

75

11. ANEXOS

• Anexo: Certificado de finalización de proceso de pasantía en Robotics 4.0
S.A.S

