

UNIVERSIDAD SURCOLOMBIANA

GESTIÓN DE BIBLIOTECAS

 CARTA DE AUTORIZACIÓN

CÓDIGO AP-BIB-FO-06 VERSIÓN 1 VIGENCIA 2014 PÁGINA 1 de 1

Vigilada Mineducación
La versión vigente y controlada de este documento, solo podrá ser consultada a través del sitio web Institucional www.usco.edu.co, link
Sistema Gestión de Calidad. La copia o impresión diferente a la publicada, será considerada como documento no controlado y su uso

indebido no es de responsabilidad de la Universidad Surcolombiana.

Neiva, 29 de agosto de 2022

Señores

CENTRO DE INFORMACIÓN Y DOCUMENTACIÓN

UNIVERSIDAD SURCOLOMBIANA

Ciudad

El (Los) suscrito(s):

César Augusto Cerón Manrique, con C.C. No. 1003806733, Tannia Lucía Hernández Rojas, con C.C. No.
1010112732 , Autor(es) de la tesis y/o trabajo de grado titulado Interfaz gráfica para traducción de Lengua de
Señas Colombiano (LSC) usando Python presentado y aprobado en el año 2022 como requisito para optar al
título de Ingeniero electrónico; Autorizo (amos) al CENTRO DE INFORMACIÓN Y DOCUMENTACIÓN de la
Universidad Surcolombiana para que, con fines académicos, muestre al país y el exterior la producción
intelectual de la Universidad Surcolombiana, a través de la visibilidad de su contenido de la siguiente manera:

 Los usuarios puedan consultar el contenido de este trabajo de grado en los sitios web que administra la
Universidad, en bases de datos, repositorio digital, catálogos y en otros sitios web, redes y sistemas de
información nacionales e internacionales “open access” y en las redes de información con las cuales tenga
convenio la Institución.

 Permita la consulta, la reproducción y préstamo a los usuarios interesados en el contenido de este trabajo,
para todos los usos que tengan finalidad académica, ya sea en formato Cd-Rom o digital desde internet,
intranet, etc., y en general para cualquier formato conocido o por conocer, dentro de los términos
establecidos en la Ley 23 de 1982, Ley 44 de 1993, Decisión Andina 351 de 1993, Decreto 460 de 1995 y
demás normas generales sobre la materia.

 Continúo conservando los correspondientes derechos sin modificación o restricción alguna; puesto que, de
acuerdo con la legislación colombiana aplicable, el presente es un acuerdo jurídico que en ningún caso
conlleva la enajenación del derecho de autor y sus conexos.

De conformidad con lo establecido en el artículo 30 de la Ley 23 de 1982 y el artículo 11 de la Decisión Andina
351 de 1993, “Los derechos morales sobre el trabajo son propiedad de los autores” , los cuales son
irrenunciables, imprescriptibles, inembargables e inalienables.

EL AUTOR/ESTUDIANTE: EL AUTOR/ESTUDIANTE:

Firma: ___________________________ Firma: ___________________________

http://www.usco.edu.co/

 UNIVERSIDAD SURCOLOMBIANA
GESTIÓN DE BIBLIOTECAS

DESCRIPCIÓN DE LA TESIS Y/O TRABAJOS DE GRADO

CÓDIGO AP-BIB-FO-07 VERSIÓN 1 VIGENCIA 2014 PÁGINA 1 de 3

Vigilada Mineducación
La versión vigente y controlada de este documento, solo podrá ser consultada a través del sitio web Institucional www.usco.edu.co, link
Sistema Gestión de Calidad. La copia o impresión diferente a la publicada, será considerada como documento no controlado y su uso

indebido no es de responsabilidad de la Universidad Surcolombiana.

TÍTULO COMPLETO DEL TRABAJO: Interfaz gráfica para traducción de Lengua de Señas Colombiano (LSC)
usando Python

AUTOR O AUTORES:

Primero y Segundo Apellido Primero y Segundo Nombre

Cerón Manrique

Hernández Rojas

César Augusto

Tannia Lucía

DIRECTOR Y CODIRECTOR TESIS:

Primero y Segundo Apellido Primero y Segundo Nombre

Robayo Betancourt

Faiber Ignacio

ASESOR (ES):

Primero y Segundo Apellido Primero y Segundo Nombre

PARA OPTAR AL TÍTULO DE: Ingeniero electrónico

FACULTAD: Ingeniería

PROGRAMA O POSGRADO: Ingeniería electrónica

CIUDAD: Neiva AÑO DE PRESENTACIÓN: 2022 NÚMERO DE PÁGINAS: 63

TIPO DE ILUSTRACIONES (Marcar con una X):

Diagramas___ Fotografías___ Grabaciones en discos___ Ilustraciones en general_x_ Grabados___
Láminas___ Litografías___ Mapas___ Música impresa___ Planos___ Retratos___ Sin ilustraciones___ Tablas
o Cuadros_x_

http://www.usco.edu.co/

 UNIVERSIDAD SURCOLOMBIANA
GESTIÓN DE BIBLIOTECAS

DESCRIPCIÓN DE LA TESIS Y/O TRABAJOS DE GRADO

CÓDIGO AP-BIB-FO-07 VERSIÓN 1 VIGENCIA 2014 PÁGINA 2 de 3

Vigilada Mineducación
La versión vigente y controlada de este documento, solo podrá ser consultada a través del sitio web Institucional www.usco.edu.co, link
Sistema Gestión de Calidad. La copia o impresión diferente a la publicada, será considerada como documento no controlado y su uso

indebido no es de responsabilidad de la Universidad Surcolombiana.

SOFTWARE requerido y/o especializado para la lectura del documento: Microsoft Word

MATERIAL ANEXO:

PREMIO O DISTINCIÓN (En caso de ser LAUREADAS o Meritoria):

PALABRAS CLAVES EN ESPAÑOL E INGLÉS:

Español Inglés Español Inglés

1. Aprendizaje profundo Deep learning 6. Matriz de confusión Confusion matrix

2. Visión por computador Computer Vision 7. Tkinter Tkinter

3. Redes neuronales
convolucionales

Convolutional neural
network

4. Inteligencia artificial Python

5. Python Python

RESUMEN DEL CONTENIDO: (Máximo 250 palabras)

El objetivo de este proyecto es crear una interfaz gráfica que realice la traducción del lenguaje de señas

colombiano mediante el uso del lenguaje de programación Python aplicado al desarrollo de redes

neuronales convolucionales.

Este trabajo se realiza con el fin de mitigar las dificultades que se presentan en una comunicación entre

personas con y sin dificultades auditivas. Para cumplir este propósito se crea un amplio conjunto de datos

capturando alrededor de 5000 imágenes por seña. Con este conjunto se diseña una red neuronal

convolucional de 13 capas que permite entrenar el modelo el cual realiza la predicción de la seña.

La interfaz se ejecuta en tiempo real con un botón de encendido y apagado de la cámara para iniciar y

finalizar la predicción y cuenta con diferentes botones interactivos que permiten al usuario conocer el uso y

funcionamiento de la interfaz, además de permitir mediante botones conocer cuál es la representación de

cada letra del alfabeto en lengua de señas, haciendo la aclaración que solo se trabaja con 21 de las 27 letras

del alfabeto, debido a que su traducción es una seña estática.

Este proyecto representa una contribución en la inclusión de personas con discapacidad auditiva, generando

http://www.usco.edu.co/

 UNIVERSIDAD SURCOLOMBIANA
GESTIÓN DE BIBLIOTECAS

DESCRIPCIÓN DE LA TESIS Y/O TRABAJOS DE GRADO

CÓDIGO AP-BIB-FO-07 VERSIÓN 1 VIGENCIA 2014 PÁGINA 3 de 3

Vigilada Mineducación
La versión vigente y controlada de este documento, solo podrá ser consultada a través del sitio web Institucional www.usco.edu.co, link
Sistema Gestión de Calidad. La copia o impresión diferente a la publicada, será considerada como documento no controlado y su uso

indebido no es de responsabilidad de la Universidad Surcolombiana.

una reducción a la brecha social presente en esta minoría. Además, de su contribución al campo tecnológico,

en especial en el proceso de innovación e inmersión a la inteligencia artificial en la región del Huila.

ABSTRACT: (Máximo 250 palabras)

The aim of this project is to create a graphical interface that performs the translation of Colombian sign

language using Python programming language applied to the development of convolutional neural networks.

This project is done in order to mitigate the difficulties that arise in communication between people with

and without hearing difficulties.

To fulfill this purpose, a large dataset is created by capturing about 5000 images per sign. With this set, a 13-

layer convolutional neural network is designed to train the model that performs the signal prediction. The

interface is executed in real time with an on and off button of the camera to start and end the prediction.

Also, has different interactive buttons that allow the user to know the use and operation of the interface, in

addition to allowing through buttons to know what is the representation of each letter of the alphabet in

sign language, making the clarification that only works with 21 of the 27 letters of the alphabet, because its

translation is a static sign.

This project represents a contribution to the inclusion of people with hearing disabilities, generating a

reduction of the social gap present in this minority. In addition, it is contribution to the technological field,

especially in the process of innovation and immersion in artificial intelligence in the region of Huila.

APROBACION DE LA TESIS

Nombre Jurado: Martin Diomedes Bravo Obando

Firma:

Nombre Jurado: José de Jesús Salgado Patrón

Firma:

http://www.usco.edu.co/

INTERFAZ GRÁFICA PARA TRADUCCIÓN DE LENGUA DE SEÑAS COLOMBIANO
(LSC) USANDO PYTHON

CÉSAR AUGUSTO CERÓN MANRIQUE
TANNIA LUCÍA HERNÁNDEZ ROJAS

UNIVERSIDAD SURCOLOMBIANA
FACULTAD DE INGENIERÍA

 PROGRAMA DE INGENIERÍA ELECTRÓNICA
NEIVA, COLOMBIA

2022

INTERFAZ GRÁFICA PARA TRADUCCIÓN DE LENGUAJE DE SEÑAS
COLOMBIANO (LSC) USANDO PYTHON

CÉSAR AUGUSTO CERÓN MANRIQUE Cod. 20171154848
TANNIA LUCÍA HERNÁNDEZ ROJAS Cod. 20171154840

Trabajo de grado para aplicar
al título de ingeniero electrónico

Director:
Mag. Faiber Robayo Betancourt

UNIVERSIDAD SURCOLOMBIANA
FACULTAD DE INGENIERÍA

PROGRAMA DE INGENIERÍA ELECTRÓNICA
NEIVA, COLOMBIA

2022

Notas de aceptación

__
__
__
__
__
__

Firma del director de Tesis

Firma del Jurado

Firma del Jurado

Neiva, 29 de julio de 2022.

En primer lugar, dar gracias a Dios por guiarme

en esta etapa de mi vida, ofreciendo lo mejor para

lograr esta meta y que sin importar lo difícil que sea

el camino siempre se puede llegar a su fin.

A mis padres por enseñarme la importancia de la educación

en nuestras vidas, por sus sacrificios y esfuerzos para

brindarme un buen futuro y por su acompañamiento

en mi desarrollo personal. A mi hermana por todo su apoyo

durante este proceso siendo mi mayor ejemplo para seguir,

resaltando sus consejos para superarme y construir mi vida profesional.

A Tannia, que aparte de ser mi compañera de tesis fue mi

acompañamiento durante todo mi proceso formativo sin

importar los obstáculos que se presentaron.

A mis amigos, en especial a Pedro, Paola, Esteban y Joseph

que sin importar las buenas o malas ocasiones siempre estaban

presentes.

César

Doy comienzo dando gracias a Dios, que ha obrado en mí, con cada uno de los

dones y regalos con los que me ha bendecido, en especial mi familia, que es el

obsequio más preciado. Agradezco a mi padre José Alonso Hernández que, con

dedicación, responsabilidad y absoluta entrega, me ha enseñado el valor de la

resiliencia, firme para enfrentar con fortaleza cada adversidad. A mi madre

Amparo Rojas, que con su amor, devoción y cuidado me ha permitido reposar y

encontrar aliento, me protege y me orienta siempre a actuar con la mejor intención

y de la mejor manera. Mi hermana, Karen Sofía que ha sido mi guía, mi

compañera, mi mejor amiga, soy fiel admiradora de su complicidad, su bondad y

generosidad gracias por caminar conmigo siempre. A mi novio Marlon Alejandro

Rojas, mi compañero, que me abraza con su nobleza y paciencia, que me

acompaña y me sostiene en cada paso, gracias por su fidelidad y compromiso. A

los amigos que me regalo la Universidad, Julián Zúñiga, Juan Pablo Monje, Paola

Hernández, Joseph Caicedo, Nicolas Sánchez, Pedro Contreras, Juan Esteban

Narváez, a todos y cada uno de ellos y a los que me hace falta nombrar infinitas

gracias, sin ellos este proceso no hubiera sido tan divertido y enriquecedor, no

solo he ganado un título, sino algo mucho más valioso que es una lista de

experiencias inolvidables y una verdadera amistad. Exaltando principalmente a mi

amigo y compañero de tesis Cesar Augusto Cerón, ha sido un verdadero honor

recorrer a tu lado este proceso, confío en que nos augura una carrera exitosa y si

es juntos estaría encantada. Finalmente, a mis docentes, gracias por su

generosidad y loable labor al compartir sus conocimientos y formar a los futuros

ingenieros, especialmente al Ingeniero Faiber Robayo que ha sido un tutor del cuál

he aprendido incontables conocimientos y espero seguir haciéndolo. Gracias a la

ciudad de Neiva, por adoptarme como opita y por permitirme formarme en esta

maravillosa Universidad.

Tannia

AGRADECIMIENTOS

Agradecemos a Dios por permitirnos terminar una etapa en nuestras vidas por
medio de este proyecto representando un aporte a la sociedad, por brindarnos la
sabiduría para afrontar todas las circunstancias adversas que se presentaron
durante nuestra formación académica y por poner en nuestro camino a las personas
indicadas que nos acompañaron en todos los momentos.

Agradecemos a nuestros compañeros y amigos que han sido un pilar indispensable
para cumplir nuestro objetivo, haciendo más agradable y memorable este recorrido.

Agradecemos a todos los docentes del programa de ingeniería electrónica por
contribuir en nuestro desarrollo como profesionales al servicio de la sociedad,
principalmente al ingeniero Faiber Robayo por su acompañamiento y compromiso
en su labor como docente y tutor de nuestro proyecto de grado.

CONTENIDO

Pág.

1. OBJETIVOS .. 17

1.1 OBJETIVO GENERAL ... 17

1.2 OBJETIVOS ESPECÍFICOS .. 17

2. FUNDAMENTOS BÁSICOS .. 18

2.1 LENGUA DE SEÑAS COLOMBIANA .. 18

2.2 VISIÓN POR COMPUTADOR .. 19

2.3 INTELIGENCIA ARTIFICIAL .. 20

2.3.1 APRENDIZAJE PROFUNDO .. 21

2.4 PYTHON ... 22

2.5 OPENCV ... 22

2.6 TKINTER ... 23

3. ADQUISICIÓN DE DATOS ... 24

4. DISEÑO DE LA RED NEURONAL CONVOLUCIONAL 28

5. RECONOCIMIENTO DE LA MANO .. 36

5.1 MEDIAPIPE .. 36

5.2 DETECCIÓN DE LA MANO .. 36

5.3 EXTRACCIÓN DE COORDENADAS .. 38

5.4 REGIÓN DE LA MANO .. 38

6. INTERFAZ (GUÍA DE USO) .. 43

7. RESULTADOS .. 47

8. CONCLUSIONES .. 52

9. DISCUSIONES Y TRABAJOS FUTUROS .. 54

BIBLIOGRAFÍA .. 55

LISTA DE FIGURAS

Pág.

Figura 1. Alfabeto del lenguaje de señas colombiano .. 19

Figura 2. Inteligencia artificial, aprendizaje automático y aprendizaje profundo20 .. 21

Figura 3. Información disponible al aumento del muestreo 24

Figura 4. Representación del cubo unitario para el espacio de color RGB25 25

Figura 5. Estructura del conjunto de datos .. 26

Figura 6. Cantidad de imágenes por clase en cada subconjunto 26

Figura 7. Diagrama de flujo del archivo generar de datos 27

Figura 8. Diagrama del perceptrón29 .. 28

Figura 9. s(1,1) para convolución de imagen con kernel 29

Figura 10. Resultado de convolución entre imagen y kernel 29

Figura 11. Generador de aumento de datos .. 30

Figura 12. Accuracy ... 34

Figura 13. Loss .. 34

Figura 14. Composición de la red neuronal ... 35

Figura 15. Puntos de referencia de la mano37 ... 36

Figura 16. Puntos de referencia de la mano (Imagen real) 37

Figura 17. Recuadro generado en extracción de coordenadas 38

Figura 18. Diagrama de flujo para el reconocimiento de la mano 39

Figura 19. De arriba a abajo, Interfaz con cámara apagada (a) - Interfaz con cámara
encendida (b) ... 44

Figura 20. Diagrama de flujo de la interfaz .. 45

Figura 21. Diagrama de flujo para los métodos de la clase Aplicación 46

Figura 22. Diagrama de flujo para las funciones de la clase Aplicación 46

Figura 23. Representación de la matriz de confusión38 ... 47

Figura 24. Matriz de confusión ... 48

Figura 25. Consumo computacional con interfaz ... 51

Figura 26. Consumo computacional sin interfaz .. 51

LISTA DE TABLAS

Tabla 1: Hiperparámetros .. 32

Tabla 2: Métricas generadas por el compilador ... 33

Tabla 3: Reporte de clasificación ... 50

LISTA DE ANEXOS

Anexo A. Código del desarrollo de la red neuronal convolucional 59

Anexo B. Código de obtención de métricas del rendimiento del clasificador 62

GLOSARIO

CNN: (Convolutional Neural Networks) Red Neuronal Convolucional, tipo de red
neuronal artificial usada para identificar características (líneas, curvas, formas, etc.)
mediante campos receptivos similares a la corteza visual del ojo humano. Son
efectivas en tareas de visión artificial como la clasificación y segmentación de
imágenes1.

IA: (Inteligencia Artificial) Todo sistema o máquina que imitan la inteligencia humana
para realizar tareas y que pueden mejorar iterativamente mediante la información
que recopilan2.

LSC: Lenguaje de Señas Colombiano3.

MAX POOLING: Proceso encargado de reducir el tamaño de la imagen mediante
un filtro que recorre toda la imagen en bloques de píxeles para agruparlos y extraer
el mayor valor dicho bloque de imagen. Este proceso es usado para reducir la carga
computacional de la capa posterior al generar como salida una imagen de menor
tamaño4.

ML: (Machine Learning) Una forma de inteligencia artificial que aprende de los
datos, no por programación directa5.

OPENCV: (Open Computer Vision) Biblioteca líder y de código abierto que es usada
en visión por computador, procesamiento de imágenes y aprendizaje automático6.

RGB: (Red-Green-Blue) Modelo cromático que permite representar distintos colores
mediante la mezcla de estos 3 colores primarios7.

1 BAGNATO, Juan Ignacio. ¿Cómo funcionan las Convolutional Neural Networks? Visión por
Ordenador [blog]. Aprende Machine Learning en español. Coruña, España. 29 de noviembre de
2018. Disponible en: https://www.aprendemachinelearning.com/como-funcionan-las-convolutional-
neural-networks-vision-por-ordenador/.
2 ORACLE COLOMBIA. ¿Qué es la Inteligencia Artificial-IA? [En línea.]. Oracle Colombia web site.
Disponible en: https://www.oracle.com/co/artificial-intelligence/what-is-ai.
3 MINISTERIO DE EDUCACIÓN NACIONAL, INSTITUTO NACIONAL PARA SORDOS, INSOR.
Diccionario Básico de la Lengua de Señas Colombiana por Instituto Nacional para Sordos INSOR
[En línea.]. INSOR web site. Disponible en:
http://www.insor.gov.co/descargar/diccionario_basico_completo.pdf.
4 CIENCIACINÉTICA. Redes Neuronales Convolucionales en Inteligencia Artificial (CNN) [blog].
INTELIGENC[IA]. 6 de junio de 2018. Disponible en: https://inteligencia.tech/2018/06/06/redes-
convolutivas-en-inteligencia-artificial/.
5 IBM. ¿Qué es Machine Learning? [En línea.]. IBM Analítica web site. Disponible en:
https://www.ibm.com/co-es/analytics/machine-learning.
6 NVIDIA DEVELOPER. What is OpenCV? [En línea.]. NVIDIA Corporation web site. Disponible en:
https://developer.nvidia.com/opencv.
7 CASTILLO, José Antonio. RGB qué es esto y para qué se utiliza en Informática [blog]. Profesional
Review. 20 de enero de 2019. Disponible en: https://www.profesionalreview.com/2019/01/20/rgb-
que-es/.

RESUMEN

El objetivo de este proyecto es crear una interfaz gráfica que realice la traducción
del lenguaje de señas colombiano mediante el uso del lenguaje de programación
Python aplicado al desarrollo de redes neuronales convolucionales. Este trabajo se
realiza con el fin de mitigar las dificultades que se presentan en una comunicación
entre personas con y sin dificultades auditivas.

Para cumplir este propósito se crea un amplio conjunto de datos capturando
alrededor de 5000 imágenes por seña. Con este conjunto se diseña una red
neuronal convolucional de 13 capas que permite entrenar el modelo el cual realiza
la predicción de la seña.

La interfaz se ejecuta en tiempo real con un botón de encendido y apagado de la
cámara para iniciar y finalizar la predicción y cuenta con diferentes botones
interactivos que permiten al usuario conocer el uso y funcionamiento de la interfaz,
además de permitir mediante botones conocer cuál es la representación de cada
letra del alfabeto en lengua de señas, haciendo la aclaración que solo se trabaja
con 21 de las 27 letras del alfabeto, debido a que su traducción es una seña estática.

Este proyecto representa una contribución en la inclusión de personas con
discapacidad auditiva, generando una reducción a la brecha social presente en esta
minoría. Además, de su contribución al campo tecnológico, en especial en el
proceso de innovación e inmersión a la inteligencia artificial en la región del Huila.

ABSTRACT

The aim of this project is to create a graphical interface that performs the translation
of Colombian sign language using Python programming language applied to the
development of convolutional neural networks. This project is done in order to
mitigate the difficulties that arise in communication between people with and without
hearing difficulties.

To fulfill this purpose, a large dataset is created by capturing about 5000 images per
sign. With this set, a 13-layer convolutional neural network is designed to train the
model that performs the signal prediction.

The interface is executed in real time with an on and off button of the camera to start
and end the prediction. Also, has different interactive buttons that allow the user to
know the use and operation of the interface, in addition to allowing through buttons
to know what is the representation of each letter of the alphabet in sign language,
making the clarification that only works with 21 of the 27 letters of the alphabet,
because its translation is a static sign.

This project represents a contribution to the inclusion of people with hearing
disabilities, generating a reduction of the social gap present in this minority. In
addition, it is contribution to the technological field, especially in the process of
innovation and immersion in artificial intelligence in the region of Huila.

INTRODUCCIÓN

La comunicación es el medio que poseen los seres humanos para convivir como
sociedad. “El hombre es un ser naturalmente sociable”8 y, por ende, nace con la
necesidad de caracterización social y relación humana. Esta habilidad permite el
avance en sociedad y cualquier alteración de este proceso, afecta
considerablemente la calidad de vida del individuo y de la comunidad que lo rodea.

Entre las limitaciones posibles en la comunicación, se encuentran las personas con
discapacidades auditivas. Esta situación que presenta parte de la comunidad ya sea
por una condición de nacimiento o por un desafortunado evento, afecta el proceso
adecuado de comunicación y excluye a las personas que lo presentan.

Entre las personas con discapacidades que afectan la expresión oral, se ha
adaptado un grupo lingüístico particular, en el cual su medio de comunicación es la
lengua de señas. La lengua de señas está compuesta por códigos desarrollados de
manera visual y gestual, en el que la persona depende de sus manos, rostro y parte
superior del cuerpo para lograr comunicarse9. Aunque dicho lenguaje, es popular
entre esta comunidad, sigue siendo una minoría excluida en un contexto social.

En general la comunicación es imprescindible para el desarrollo de la personalidad,
el consentimiento en las acciones y sobre todo en la coexistencia en el mundo. Es
por lo que, entendiendo la dificultad que presentan algunas personas para lograr
comunicarse y las innumerables opciones que brinda la tecnología en todas las
áreas que involucran al ser humano, se han creado técnicas, procedimientos y/o
herramientas10,11 que son de ayuda para el reconocimiento de gestos
correspondientes al lenguaje de señas con el fin de mitigar los obstáculos que
imposibilitan una fluida comunicación.

El proyecto que se propone en este documento, pretende ser un aporte a los
trabajos referenciados previamente, con la característica adicional y principal del
conveniente uso de la inteligencia artificial, planteando como principal objetivo el
desarrollo de una interfaz para la clasificación del lenguaje de señas colombiano
(LSC) mediante el uso de redes neuronales convolucionales, desarrollando una

8 ARISTOTELES. Política, Libro I. De la Sociedad Civil. De la Esclavitud. De la Propiedad. Del Poder
Doméstico.
9 ROZO MELO, Nancy. La Lengua de Señas Colombiana [En línea.]. Portal De Lenguas de Colombia:
Diversidad y Contacto. Disponible en:
https://lenguasdecolombia.caroycuervo.gov.co/contenido/Lenguas-de-senas-
colombiana/introduccion.
10 BOTINA MONSALVE, et al. Clasificación Automática de las Vocales en el Lenguaje de Señas
Colombiano. Disponible en: https://repositorio.itm.edu.co/handle/20.500.12622/1038.
11 TRIVIÑO LOPEZ, Iván. Sistema para el Aprendizaje del Lenguaje de Señas Colombiano usando
Visión por Computador. Disponible en: https://ciencia.lasalle.edu.co/ing_automatizacion/159/.

interacción en tiempo real, que beneficia significativamente la comunicación entre
una persona oyente y una con discapacidad auditiva.

17

1. OBJETIVOS

1.1 OBJETIVO GENERAL

Desarrollar e implementar una interfaz gráfica para facilitar la comunicación a
personas con discapacidades auditivas, realizando detección y clasificación en
tiempo real del alfabeto de lenguaje de señas colombiano mediante el uso de
Python.

1.2 OBJETIVOS ESPECÍFICOS

• Crear un algoritmo de predicción en tiempo real del alfabeto del lenguaje de
señas colombiano mediante el uso de herramientas de código abierto como
OpenCV y Tensorflow.

• Diseñar una red neuronal convolucional que permita la clasificación de
imágenes (Alfabeto del lenguaje de señas colombiano).

• Proporcionar una herramienta didáctica e intuitiva que mejore el proceso de
comunicación para las personas que hacen uso del alfabeto de lenguaje de
señas colombiano.

18

2. FUNDAMENTOS BÁSICOS

2.1 LENGUA DE SEÑAS COLOMBIANA

La lengua de señas colombiana es la lengua utilizada por la comunidad sorda de
Colombia. Reconocida oficialmente en el año 1996, mediante la Ley 324. Esta
lengua se caracteriza por ser visual y corporal, es decir la comunicación se
establece con el cuerpo en un espacio determinado12.

Su reconocimiento oficial se debe al desarrollo de proyectos que favorecieron la
inclusión de las personas con discapacidades auditivas. Como resultado a
investigaciones y de la labor de enseñanza de la lengua, la Federación Nacional de
Sordos de Colombia (Fenascol) realizó dos cartillas denominadas “Lenguaje Manual
Colombiano” y “Lengua de Señas Colombiana”, publicadas en 1993 y 1996
respectivamente.

En el año 2006 el Ministerio de Educación Nacional, el Instituto Caro y Cuervo y el
Instituto Nacional para Sordos presentó el Diccionario Básico de la Lengua de
Señas Colombiana como un compendio léxico que facilita los procesos
comunicativos y educativos de la comunidad sorda del país, representando una
fundamental contribución al estudio de la lingüística de la lengua de señas en
Colombia13.

De esta manera, se estableció el LSC, en el cual se encuentra el alfabeto
conformado por 27 señas, 21 de las cuales son estáticas y 6 de ellas requieren de
movimiento para su correcta ejecución. Por medio de estas señas es posible
comunicar palabras, frases e ideas completas.

El LSC es el idioma oficial por medio del cual se comunica la comunidad colombiana
con discapacidad auditiva, sin embargo, la población en condiciones auditivas
normales en su mayoría desconoce su dominio. Es claro que el grupo de individuos
que presentan dichas limitaciones auditivas hacen parte de una comunidad de
minoría que no ha sido suficientemente resaltada para equilibrar ese factor
diferencial. A pesar del desarrollo tecnológico y los constantes proyectos de
inclusión en Colombia y el mundo, aún existe una brecha que imposibilita una
comunicación fluida sin limitaciones entre personas con y sin discapacidad. Por esta

12 ROZO MELO, Nancy. La Lengua de Señas Colombiana [En línea.]. Portal De Lenguas de
Colombia: Diversidad y Contacto. Disponible en:
https://lenguasdecolombia.caroycuervo.gov.co/contenido/Lenguas-de-senas-
colombiana/introduccion.
13 MINISTERIO DE EDUCACIÓN NACIONAL, INSTITUTO NACIONAL PARA SORDOS, INSOR.
Diccionario Básico de la Lengua de Señas Colombiana por Instituto Nacional para Sordos INSOR
[En línea.]. INSOR web site. Disponible en:
http://www.insor.gov.co/descargar/diccionario_basico_completo.pdf.

19

razón, es imprescindible la educación de la sociedad en este lenguaje y como
herramienta indispensable un traductor que favorezca y contribuya su uso.

Figura 1. Alfabeto del lenguaje de señas colombiano14

2.2 VISIÓN POR COMPUTADOR

La visión por computador es el campo de estudio enfocado en el proceso de
obtención de información de imágenes y videos digitales por medio de un
computador. Abarca todas las tareas realizadas por los sistemas de visión biológica,
la detección de un estímulo visual, la comprensión de lo que se ve y la extracción
de información compleja en una forma que se pueda usar en otros procesos15.

La visión por computador funciona de manera muy similar a la visión humana,
excepto que los humanos tienen una ventaja inicial. La vista humana tiene la
primacía de toda una vida de contexto para aprender a diferenciar los objetos,

14 MINISTERIO DE EDUCACIÓN NACIONAL, INSTITUTO NACIONAL PARA SORDOS, INSOR.
Diccionario Básico de la Lengua de Señas Colombiana por Instituto Nacional para Sordos INSOR
[En línea.]. INSOR web site. Disponible en:
http://www.insor.gov.co/descargar/diccionario_basico_completo.pdf.
15 DeepAI. Computer Vision: ¿What is Computer Vision? [En línea.]. Disponible en:
https://deepai.org/machine-learning-glossary-and-terms/computer-vision.

20

identificar a que distancia se encuentran, si están en movimiento o si existe error en
una imagen16.

Por otro lado, la visión por computador necesita muchos datos para un óptimo
funcionamiento, debe ejecutar un análisis de datos una y otra vez hasta que pueda
realizar distinciones y reconocer correctamente imágenes.

En este campo de la inteligencia artificial es requerido dos tecnologías esenciales
para lograr su desarrollo: un tipo de aprendizaje automático llamado aprendizaje
profundo y una red neuronal convolucional (CNN), que son las tecnologías en las
que se desarrolla este proyecto.

2.3 INTELIGENCIA ARTIFICIAL

El ser humano constantemente se cuestiona respecto al desarrollo de sus
actividades cotidianas, fenómenos o sistemas que observa en el medio en el que
se desenvuelve, sus relaciones interpersonales y en la forma en cómo se pueden
resolver problemas mediante el razonamiento. Todas estas preguntas siempre
llevan a una situación problema de la cual siempre se buscará encontrar solución,
para casos en los que ya se encuentre una solución se indagará sobre la mejor de
ellas tomando todos los recursos a disposición17.

En la actualidad la sociedad se encuentra inmersa en un proceso orientado al
desarrollo tecnológico a gran escala, resaltando disciplinas encargadas de crear
sistemas que logren simular y/o replicar actividades realizadas por el ser humano
como lo es la inteligencia artificial18. La inteligencia artificial (IA) se presenta como
un campo de la computación encargado del estudio de conocimientos básicos
respecto al funcionamiento de la inteligencia humana, la forma en como los seres
humanos usan el lenguaje, comprensión de fenómenos, procesos de aprendizaje,
formas de percepción y otras acciones para lograr tareas concretas mediante la
adaptación19.

16 IBM. What is Computer Vision?. [En línea.]. IBM ANALÍTICA web site. Disponible en:
https://www.ibm.com/topics/computer-vision.
17 PONCE GALLEGOS, Julio Cesar, et al. Inteligencia Artificial. [s.l.]: Iniciativa Latinoamericana de
Libros de Texto Abiertos (LATIn), 2014. 225 p.
18 DOMÍNGUEZ, Néstor A. Ética y Ecoética para la inteligencia artificial. En: Boletín del Centro Naval
856 [En línea.]. 2021. Disponible en: https://www.centronaval.org.ar/boletin/BCN856/856-
DOMINGUEZ.pdf
19 PORCELLI, Adriana Margarita. La Inteligencia Artificial y la Robótica: sus Dilemas Sociales, Éticos
y Jurídicos. Derecho glob. Estud. Sobre Derecho Justicia [En línea.]. 2020, vol.6, n.16, pp.49-105.
Disponible en: http://www.scielo.org.mx/scielo.php?script=sci_arttext&pid=S2448-
51362020000300049&lng=es&nrm=iso

21

La inteligencia artificial se enfoca en automatizar las tareas intelectuales que
normalmente realizan los seres humanos, pero al ser un campo en general abarca
otros tipos de aprendizaje como lo son20:

• Aprendizaje automático (Machine Learning).

• Aprendizaje profundo (Deep Learning).

2.3.1 APRENDIZAJE PROFUNDO

Como se observa en la Figura 2, el aprendizaje profundo o Deep Learning es un
enfoque del aprendizaje automático. A diferencia de los modelos y/o algoritmos
convencionales del aprendizaje automático, en el aprendizaje profundo los sistemas
son capaces de mejorar su rendimiento al acceder a un volumen mayor de datos.
El aprendizaje profundo es comúnmente usado en las siguientes aplicaciones:

• Reconocimiento de voz.

• Procesamiento de lenguaje natural.

• Tratamiento avanzado de imágenes.

• Reconocimiento facial.

• Clasificación de imágenes.

Figura 2. Inteligencia artificial, aprendizaje automático y aprendizaje profundo20

En el desarrollo de este proyecto se hace uso de las redes neuronales
convolucionales para obtener un clasificador correspondiente a las señas estáticas
del alfabeto de lengua de señas colombiano.

20 CHOLLET, Francois. Deep learning with python. [s.l.]: Manning Publications Co, 2018. 361 p. ISBN
9781617294433.

22

2.4 PYTHON

Python es un lenguaje de programación multiplataforma, multiparadigma y de
código abierto. Fue creado por Guido Van Rossum a principio de los 90 basándose
en el lenguaje de programación ABC que implementó durante los 80. Python
presenta características que destacan:

• Tiene una sintaxis simple.
• Alta legibilidad (Sangrado obligatorio).
• Entorno amigable de desarrollo (intérprete interactivo).
• Abstracciones de más alto nivel (mayor nivel de expresividad).
• Potente librería estándar y gran cantidad de módulos de terceros (actualmente

son más de 100.000).
• Software libre y comunidad entusiasta.

En la actualidad Python es de los lenguajes más usados en el aprendizaje de la
programación, planteado como un lenguaje de propósito general aplicado a
desarrollo de aplicaciones web, ciencias de datos, ciencias de computación,
inteligencia artificial, internet de las cosas, entre otras más21.

2.5 OPENCV

OpenCV es una librería código abierto de visión artificial y machine learning, posee
cerca de 2500 algoritmos que son capaces de:

• Identificar objetos, caras, colores.
• Clasificar acciones.
• Realizar seguimiento de objetos.
• Extraer modelos 3D.
• Encontrar imágenes similares.
• Importar archivos.
• Realizar captura en tiempo real.

La primera versión alfa de OpenCV aparece el mes de enero de 1999 desarrollada
por Intel escrita en lenguaje C y C++, creada para ser multiplataforma (Disponible
en sistemas operativos Linux, Mac OS, Windows). Su adaptación OpenCV-Python
permite hacer uso de todas las características y/o comandos en el lenguaje de
programación Python22.

21 CHALLENGER PÉREZ, Ivet; DÍAZ RICARDO, Yanet y BECERRA GARCÍA, Roberto Antonio. El
lenguaje de programación Python. En: Ciencias Holguín [En línea.] 2014. vol. XX, no. 2. Disponible
en: https://www.redalyc.org/articulo.oa?id=181531232001.
22 ARÉVALO, V. M.; GONZÁLEZ, J. y AMBROSIO, G. La Librería ee Visión Artificial Opencv
Aplicación a la Docencia e Investigación. En: MAPIR Research Group [en línea]. 2017. Disponible
en: http://mapir.isa.uma.es/varevalo/drafts/arevalo2004lva1.pdf.

23

2.6 TKINTER

El paquete Tkinter es una adaptación de la biblioteca Tcl/Tk, es la interfaz por
defecto de Python que corresponde a un conjunto de herramientas robusta e
independiente de la plataforma para administrar ventanas y en general la interfaz
gráfica de usuario.

Este marco de trabajo o framework proporciona a los usuarios de Python una forma
sencilla de crear elementos GUI utilizando los widgets que se encuentran en el kit
de herramientas Tk. Los widgets de Tk se pueden usar para construir botones,
menús, campos de datos, etc. en una aplicación de Python. Una vez creados, estos
elementos gráficos pueden asociarse o interactuar con características, funciones,
métodos, datos o incluso otros widgets23.

Tkinter maneja interfaces orientadas a objetos, es de fácil desarrollo para
programadores que cuenta con experiencia en Python. Se determinó esta librería
como fuente para el desarrollo de la interfaz gráfica debido a su adaptabilidad y la
característica de proporcionar una plataforma de gráficos independiente de la
arquitectura para las aplicaciones.

23 ActiveState. What is Tkinter used for and How to Install this Python Framework? 21 de septiembre
de 2021. Disponible en: https://www.activestate.com/resources/quick-reads/what-is-tkinter-used-for-
and-how-to-install-it/.

24

3. ADQUISICIÓN DE DATOS

En el proceso de formación de una imagen intervienen el objeto, fuente radiante y
el sistema de formación (Sistema óptico, sensor y digitalizador). La imagen digital
se puede representar por una matriz 𝑓 de dimensiones 𝑁 × 𝑀 donde cada elemento
corresponde a un píxel, de esta manera24:

𝑓 = [

𝑓(1,1) ⋯ 𝑓(1,𝑀)

⋮ ⋱ ⋮
𝑓(𝑁,1) ⋯ 𝑓(𝑁,𝑀)

] Ecuación (1)

El muestreo en el que se realiza la imagen digital (Matriz) juega un papel importante
en la resolución que esta presenta y la cantidad de información disponible y a
procesar, en la siguiente figura se ilustra la variación en la calidad de imagen a
diferentes resoluciones:

Figura 3. Información disponible al aumento del muestreo

Para la adquisición de los datos se trabajó el espacio de color RGB, que se
representa con un sistema cartesiano tridimensional y un cubo unitario (Figura 3).
Cada eje corresponde a un color (rojo (R), verde (G), azul (B)), la ausencia de los
colores resulta en negro, la presencia de todos los colores resulta en blanco y al
superponer colores primarios se obtienen los colores secundarios (Cian, Magenta y
Amarillo), este espacio de color presenta utilidad al momento de representar y/o
visualizar imágenes mediante adición de colores25.

24 GONZÁLEZ MARCOS, Ana, et al. Técnicas y algoritmos básicos de visión artificial [en línea]. [s.l.]:
Material didáctico. Ingenierías., 2006. Disponible en:
https://publicaciones.unirioja.es/catalogo/online/VisionArtificial.pdf. ISBN 84-689-9345-X.
25 ALEGRE GUTIÉRREZ, Enrique, et al. Procesamiento Digital de Imagen: Fundamentos y Prácticas
Con Matlab [En línea]. Secretariado de Publicaciones y Medios Audiovisuales, 2003. Disponible en:
https://www.researchgate.net/publication/229828279_Procesamiento_Digital_de_Imagenes_Funda
mentos_y_Practicas_con_Matlab_Digital_image_processing_Fundamentals_and_practices_with_M
atlab.

25

Figura 4. Representación del cubo unitario para el espacio de color RGB25

A partir de la imagen original con sus 3 canales respectivos en el espacio de color
RGB, se puede obtener una imagen en escala de grises mediante la construcción
de señales de luminancia y diferencia de color con el método de promedio
ponderado26:

𝐸´
𝑌 = 0.299𝐸´

𝑅 + 0.587𝐸´
𝐺 + 0.114𝐸´

𝐵 Ecuación (2)

Se consideró para el desarrollo de la red neuronal convolucional imágenes de
entrada con solo 1 canal (imágenes en escala de gris) para reducir tiempos de
compilación de dicha red neuronal. La resolución del recuadro de captura de
imágenes es de 200 × 160 píxeles que posteriormente se reescalan a 50 × 50
píxeles al construir el set de datos. Se optó por este tamaño de imagen debido a
que no presenta pérdida de información a causa de su resolución y el tiempo de
compilación de la red neuronal convolucional disminuye a comparación de
imágenes de 100 × 100 o 200 × 200 píxeles.

El conjunto de datos generado para el proyecto se presenta en 2 etapas, la primera
que corresponde al entrenamiento de la red neuronal convolucional (comprende 2
conjuntos, entrenamiento y validación) y la segunda que corresponde al testeo de
la red neuronal convolucional obtenida. La distribución se puede observar en la
siguiente Figura:

26 UNIÓN INTERNACIONAL DE TELECOMUNICACIONES. RECOMENDACIÓN UIT-R BT.601-7:
Parámetros de Codificación de Televisión Digital para Estudios con Formatos de Imagen Normal 4:3
y de Pantalla Ancha 16:9 [En línea]. Disponible en:
https://web.archive.org/web/20220119174709/https://www.itu.int/dms_pubrec/itu-r/rec/bt/R-REC-
BT.601-7-201103-I!!PDF-S.pdf

26

Figura 5. Estructura del conjunto de datos

Para entrenar el modelo de la red neuronal convolucional se usan los subconjuntos
de entrenamiento y validación, por lo general se aplica una división de un conjunto
general en 80% para entrenamiento y 20% para validación. El subconjunto restante
que corresponde al testeo se usa para obtener predicciones del modelo generado
en la etapa del entrenamiento y de esta manera generar métricas para evaluar el
desempeño de la red neuronal convolucional27.

Se generó un conjunto de datos balanceado en la cantidad de imágenes generadas
por clase en cada uno de los subconjuntos del dataset. La cantidad de imágenes
generadas para la primera etapa del proyecto se muestran a continuación:

Figura 6. Cantidad de imágenes por clase en cada subconjunto

27 BAGNATO, Juan Ignacio. Sets de Entrenamiento, Test y Validación [blog]. Aprende Machine
Learning en español. Coruña, España. 3 de marzo de 2020. Disponible en:
https://www.aprendemachinelearning.com/sets-de-entrenamiento-test-validacion-cruzada/

27

A continuación, se presenta el diagrama de flujo del ejecutable de Python usado
para generar el conjunto de datos:

Figura 7. Diagrama de flujo del archivo generar de datos

28

4. DISEÑO DE LA RED NEURONAL CONVOLUCIONAL

Una red neuronal convolucional es un tipo de red neuronal que es una mejora de un
perceptrón multicapa (una red de propagación directa que consta de 2 o más capas
de neuronas), que incluye el uso de capas convolucionales y submuestreo.28

Las redes neuronales convolucionales operan bajo un proceso de imitación
respecto a la neurona biológica que para este caso se llamará perceptrón, el cual
se puede representar gráficamente29 de la siguiente manera:

Figura 8. Diagrama del perceptrón29

Sumado al perceptrón el uso de la convolución permite la extracción de
características, La convolución es una operación lineal denotada como 𝑠(𝑡) y que en

su forma general es la operación entre 2 funciones:

𝑠(𝑡) = (𝑥 ∗ 𝑤)(𝑡) = ∫ 𝑥(𝑎)𝑤(𝑡−𝑎)𝑑𝑎 Ecuación (3)

La ecuación (3) expresada en la nomenclatura de las redes neuronales
convolucionales corresponde a:

• 𝑥(𝑡) la entrada.

• 𝑤(𝑡) el kernel o filtro.

• 𝑠(𝑡) la salida producida por la convolución.

28 GARCÍA SÁNCHEZ, Eugenio. Introducción a las redes neuronales de convolución. Aplicación a la
visión por ordenador. Trabajo de grado. [s.l.]: Universidad de Zaragoza, 2019.
29 TORRES SOLER, Luis. El Perceptrón Redes Neuronales Artificiales [En línea] 20 de enero de
2020. Repositorio Universidad Nacional. Disponible en:
https://disi.unal.edu.co/~lctorress/RedNeu/LiRna004.pdf

29

El proceso de convolución30 entre una imagen (𝑥(𝑡)) y un filtro (𝑤(𝑡)) de 3 × 3 se

expresa mediante la siguiente manera:

𝑠(𝑡) = ∑ ∑ 𝑤(𝑖,𝑗)

2

𝑗=0

2

𝑖=0

𝑥(𝑎−𝑖,𝑏−𝑗) Ecuación (4)

Aplicando un filtro de 3 × 3 sobre una matriz de 6 × 6 se obtiene en:

𝑠(1,1) = (3 ∗ (−1) + (0 ∗ 0) + (1 ∗ 1) + (1 ∗ (−1)) + (5 ∗ 0) + (8 ∗ 1) + (2 ∗ (−1)) + (7 ∗ 0) + (2 ∗ 1)) = 5

Figura 9. s(1,1) para convolución de imagen con kernel

Realizando el proceso iterativo de convolución se obtiene:

Figura 10. Resultado de convolución entre imagen y kernel

Entendiendo el proceso base que realizan las redes neuronales convolucionales, se
inicia el proceso del desarrollo de la red neuronal convolucional. Para esto se hace
uso de frameworks como TensorFlow y Keras, partiendo de la implementación de
un generador de imágenes para aplicar la técnica de aumento de datos con el fin de
abordar problemáticas como el sobreajuste y escasez de datos31.

30 SILVA, Sarahí y FREIRE, Estefanía. Intro a las redes neuronales convolucionales. Bootcamp AI.
(23, noviembre, 2019). Disponible en: https://bootcampai.medium.com/redes-neuronales-
convolucionales-5e0ce960caf8.
31 UTRERA BURGAL, Jesús. Tratamiento de imágenes usando ImageDataGenerator en Keras
[blog]. Technical thoughts, stories and ideas. 2 de agosto de 2019. Disponible en:
https://enmilocalfunciona.io/tratamiento-de-imagenes-usando-imagedatagenerator-en-keras/

30

El aumento de datos consiste en incrementar la cantidad de datos (en este caso las
señas con las que se entrenará la red neuronal) a partir de unos datos ya presentes
que serán transformados. El aumento de datos aplicado mediante
ImageDataGenerator se aplicó a los siguientes parámetros32:

• rescale: El reescalado se aplica con la finalidad de disminuir el valor de las
imágenes originales en el rango de 0 − 255 al rango de 0 − 1, aplicando un

factor de reescalado igual a 1/255.

• width_shift_range: Desplazamientos horizontales, este parámetro indica el
porcentaje o la cantidad de pixeles que se desplazará la imagen
horizontalmente. Para el caso de porcentajes, se debe especificar un valor ≤ 1

donde 0 representará 0% de desplazamiento y 1 representará hasta un máximo
de 100% de desplazamiento ya sea hacía la izquierda o derecha. Para el caso
de pixeles, se debe especificar la cantidad máxima de pixeles a desplazar ya
sea hacía la izquierda o derecha.

• height_shift_range: Desplazamientos verticales, este parámetro al igual que
width_shift_range indica el porcentaje o la cantidad de pixeles que se
desplazará la imagen, pero verticalmente. Para el caso de porcentajes, se debe
especificar un valor ≤ 1 donde 0 representará 0% de desplazamiento y 1
representará hasta un máximo de 100% de desplazamiento ya sea hacía arriba
o abajo. Para el caso de pixeles, se debe especificar la cantidad máxima de
pixeles a desplazar ya sea hacía arriba o abajo.

Aplicando individualmente cada parámetro del generador se obtiene:

Figura 11. Generador de aumento de datos

32 TF.KERAS.PREPROCESSING.IMAGE.IMAGEDATAGENERATOR. TensorFlow [página web].
Disponible en:
https://www.tensorflow.org/api_docs/python/tf/keras/preprocessing/image/ImageDataGenerator.

31

Con el generador de aumento de datos para el conjunto de entrenamiento se leen
las imágenes del directorio con un total de 52523 imágenes en 21 clases, el
generador de datos en el conjunto de validación solo presenta el parámetro de
rescale y se poseen en total 10589 imágenes en el directorio.

Con los datos obtenidos por el generador se definen los hiperparámetros que tendrá
la red neuronal convolucional. Los hiperparámetros corresponden a valores y/o
configuraciones establecidas para el proceso de entrenamiento33:

• Número de épocas: Es la cantidad de ciclos o número de veces que se ejecutan
los algoritmos de forwardpropagation y backpropagation. Dependiendo de su
valor, la red neuronal convolucional puede actualizar más o menos veces el
valor de los pesos.

• Tasa de aprendizaje: Es el porcentaje de cambio con el que se actualizan los
pesos en cada iteración realizada por la red neuronal, este se encarga de
regular la velocidad en la que el modelo optimiza la función de pérdida34.

• Optimizador: El optimizador permite ajustar los pesos generados en la red
neuronal mediante los valores obtenidos en la función de pérdida35.

• Función de activación: Las funciones de activación se encargan de retornar un
valor de salida en un rango establecido ((0,1) o (−1,1)) a partir de un valor de
entrada36.
A. Función de activación RELU (Rectified Lineal Unit): Esta función de

activación permite obtener valores positivos a la salida conservando los
valores positivos en la entrada e igualando a cero los valores negativos en
la entrada.

𝑓(𝑥) {
0 → 𝑥 < 0
𝑥 → 𝑥 ≥ 0

 Ecuación (5)

B. Función de activación Softmax (Normalized exponential function): Esta
función de activación permite obtener en la salida una representación de
probabilidades, donde la sumatoria de todas las salidas debe corresponder

33 ANALYTICS LANE. ¿Cuál es la Diferencia entre Parámetro e Hiperparámetro? [En línea] diciembre
16 de 209. Recuperado el 26 de marzo de 2022 de ANALYTICS LANE web site:
https://www.analyticslane.com/2019/12/16/cual-es-la-diferencia-entre-parametro-e-
hiperparametro/#:~:text=Los%20hiperpar%C3%A1metros%20de%20un%20modelo,por%20el%20c
ient%C3%ADfico%20de%20datos.
34 VELO FUENTES, Edward Joseph. Introducción a los métodos Deep Learning basados en Redes
Neuronales [En línea]. Trabajo Fin de Máster. [s.l.]: Universidad de Coruña, 2020. Disponible en:
http://eio.usc.es/pub/mte/descargas/ProyectosFinMaster/Proyecto_1654.pdf.
35 LOPEZ BRIEGA, Raul E. Introducción al Deep Learning [blog]. Matemáticas, análisis de datos y
python. 13 de junio de 2017. Disponible en:
https://relopezbriega.github.io/blog/2017/06/13/introduccion-al-deep-learning/
36 CALVO, Diego. Función de activación – Redes neuronales [blog]. Diego Calvo. 7 de diciembre de
2018. Disponible en: https://www.diegocalvo.es/funcion-de-activacion-redes-neuronales/

32

a 1. Esta función de activación se usa en capas de salida que contienen la
cantidad de neuronas correspondientes a la cantidad de clases.

𝑓(𝑧)𝑗
=

𝑒𝑧𝑗

∑ 𝑒𝑧𝑘𝑘
𝑘=1

 Ecuación (6)

Con los hiperparámetros definidos en la siguiente tabla se entrena la red neuronal
convolucional con el conjunto de datos descritos en el capítulo 3.

Tabla 1 Hiperparámetros

Hiperparámetro Valor

Número de capas convolución 5

Número de capas maxpooling 3

Número de capas flatten 1

Número de capas densas 2

Número de capas de dropout 1

Número de clases 21

Dimensiones de imagen de entrada 50x50

Número de épocas 30

Batch size 32

Tasa de aprendizaje 0.0005

Número de pasos en entrenamiento 1641

Número de pasos en validación 330

Tamaño de filtros de convolución (4,4)-(3,3)-(2,2)

Tamaño de filtros de maxpooling (2,2)

Optimizador Adam

Cantidad de filtros de convolución 32 - 64

33

El entrenamiento se completa en un total de 56 minutos (Entre 95 y 120 segundos
por época), el historial de las métricas obtenidas por iteración se muestra a
continuación:

Tabla 2 Métricas generadas por el compilador

Precisión Precisión de Validación Pérdida Pérdida de Validación

0,74464196 0,88001895 0,798173904 0,382220119

0,952982426 0,973863661 0,149043471 0,078163885

0,973671675 0,962405324 0,083311588 0,170352921

0,979653656 0,978787899 0,062613167 0,091233708

0,984054387 0,980113626 0,049434904 0,067923911

0,986759663 0,991287887 0,040513799 0,032048032

0,988969564 0,98939395 0,033699073 0,049360454

0,990836501 0,977083325 0,029224329 0,070468269

0,99182719 0,965151489 0,025970442 0,104407385

0,993637025 0,984943211 0,021206547 0,054955155

0,99350363 0,987026513 0,021299498 0,037437584

0,994703829 0,974337101 0,017502794 0,082698874

0,994741976 0,996022701 0,016163014 0,012254046

0,995027721 0,988352299 0,015421477 0,037031606

0,995865941 0,971306801 0,013590627 0,080084875

0,995618284 0,993371189 0,014300671 0,022129867

0,996380329 0,992613614 0,011459325 0,030743925

0,996685147 0,997064412 0,011794321 0,010002479

0,996875644 0,971875012 0,00991751 0,117075555

0,99664706 0,992045462 0,010567611 0,030129014

0,997028053 0,990151525 0,009905551 0,040683854

0,996913731 0,988731086 0,010236982 0,036500514

0,997123301 0,993276536 0,009122201 0,020242566

0,997237623 0,981439412 0,008784134 0,0577459

0,997999668 0,992803037 0,006350072 0,030312521

0,996970892 0,9969697 0,009578946 0,011562496

0,997752011 0,991003811 0,006829314 0,032311518

0,997561514 0,971969724 0,007874855 0,148606092

0,997713923 0,996401489 0,007778627 0,012424275

0,997732937 0,990056813 0,008159977 0,044452794

Con el historial de datos obtenidos en el entrenamiento de la red neuronal se grafica
el comportamiento de la precisión y pérdida para el conjunto de entrenamiento y
validación, los resultados se muestran a continuación:

34

Figura 12. Accuracy

Figura 13. Loss

35

La composición de la red neuronal convolucional usada en el entrenamiento se
muestra en la figura (14), donde es posible relacionar los valores de entrada y salida
de cada capa de la red neuronal convolucional.

Figura 14. Composición de la red neuronal

36

5. RECONOCIMIENTO DE LA MANO

5.1 MEDIAPIPE

MediaPipe es una solución de detección de objetos en tiempo real. Permite la
detección de rostros, detección holística, detección y seguimiento de objetos,
reconocimiento de manos, conteo de dedos, entre otras aplicaciones.

Uno de los recursos que ofrece MediaPipe, es MediaPipe Hands, que es una
herramienta para el seguimiento de manos y dedos de alta fidelidad, que favorece
la percepción de la forma y el movimiento de las manos, representando una
significativa contribución al campo de visión por computador.

MediaPipe Hands emplea el aprendizaje automático (ML) para inferir 21 puntos de
referencia 3D de una mano a partir de un solo cuadro en donde se han obtenido
múltiples modelos que trabajan juntos. El sistema está basado en un rastreo de la
palma y los dedos de la mano para luego detectar 21 puntos clave 3D de un solo
fotograma, en una imagen cinematográfica considerada aisladamente. El proceso
se divide en un detector de palmas que recorta la forma de la mano del fotograma,
un modelo que detecta puntos de referencia en 3D de la imagen recortada y un
detector de gestos que clasifica los puntos claves configurados previamente en un
set de gestos37.

MediaPipe se ofrece para trabajar en lenguajes como JavaScript, C++, y Python. En
Python, se encuentra como un paquete preconstruido y se ejecuta con comandos
de rápido entendimiento.

Figura 15. Puntos de referencia de la mano37

5.2 DETECCIÓN DE LA MANO

Por medio de la librería MediaPipe, se hace uso del módulo Hands el cual contiene
la clase Hands que se utiliza para realizar la detección de puntos de referencia de

37 MEDIAPIPE HANDS. Mediapipe [página web]. Disponible en:
https://google.github.io/mediapipe/solutions/hands.html

37

manos en una imagen. La clase Hands se instancia creando un objeto “manos” que
permite procesar la mano. El constructor de la clase recibe diferentes parámetros,
el primer parámetro “STATIC_IMAGE_MODE” se establece en False, ya que trata
las imágenes como una trasmisión de video, reduciendo la latencia y es ideal para
procesar cuadros de video, el segundo parámetro MAX_NUM_HANDS corresponde
al número máximo de manos que pueden ser detectadas, presenta un valor por
defecto igual a 2, el tercer parámetro MODEL_COMPLEXITY es la complejidad del
modelo de puntos de referencia de la mano, entre 0 o 1 con un valor predeterminado
de 1. Los dos parámetros finales MIN_DETECTION_CONFIDENCE y
MIN_TRACKING_CONFIDENCE, ambos por defecto 0.5 entre un rango de 0 a 1
que corresponden al valor mínimo de confianza del modelo de detección manual y
el valor de confianza mínimo del modelo de seguimiento de puntos de referencia.
Se mantiene el valor por defecto del MIN_TRACKING_CONFIDENCE debido a que
al aumentar el valor aumenta la solidez de la solución, pero al mismo tiempo,
aumenta la latencia.

Con fines ilustrativos se incluye el módulo drawing_utils que incluye funciones
auxiliares útiles para dibujar detecciones y los puntos de referencia sobre la imagen.
Este módulo se empleó únicamente en el reconocimiento de la imagen para realizar
el dibujo de los 21 puntos detectados, ya que para la presentación final de la interfaz
no se usó, para evitar mayor carga visual y de procesamiento. Adicionalmente, se
realiza la lectura de la cámara, la corrección de color del Frame, se crea una copia
del Frame para el procesamiento de las manos y se realiza la detección de puntos
de la mano con la llamada del método “process” del objeto “manos” que devuelve
como salida un objeto NamedTuple el cual contiene una colección de puntos de
referencia de las manos que se encuentran en la imagen y una colección de las
manos detectadas. Si se detecta una mano, se realiza una búsqueda de la mano
dentro de la colección de manos detectadas multi_hand_landmarks, en donde cada
mano se representa como una lista de 21 puntos de referencia de la mano.

Figura 16. Puntos de referencia de la mano (Imagen real)

38

5.3 EXTRACCIÓN DE COORDENADAS

Para la extracción de coordenadas de la mano, en donde se representa la señal de
interés a traducir, fue requerido realizar una función que permitiera obtener los
puntos extremos que incluyera toda la mano. La función recibe como parámetro de
entrada una lista de listas, donde cada una de las listas contiene la identificación de
cada uno de los 21 puntos de la mano y su respectiva coordenada en el eje X y Y.
Al principio de la función se definen los puntos iniciales izquierda, derecha, arriba, y
abajo que corresponden a los extremos correspondientes al Frame en donde se
ubica la cámara.

Esta función recorre la lista de listas, realizando comparaciones por medio de
condicionales. El eje X se encuentra en la posición 1 de cada sublista y el eje Y, en
la posición 2, de esta manera, los puntos máximos del eje X hacen la comparación
con los puntos iniciales derecha e izquierda y los puntos del eje Y lo realizan con
los puntos arriba y abajo. Así, se va almacenando el punto más externo con relación
a la ubicación de la mano.

La función retorna 4 puntos los cuales permiten crear un rectángulo que contornea
toda la seña, por medio del método cv2.rectangle el cual recibe como parámetros la
imagen que en este caso es el Frame donde se ubica la cámara, punto de inicio y
punto final, donde el punto de inicio corresponde a izquierda, arriba y el punto final
derecha, abajo. A cada punto se le adiciona 50 pixeles para tener una mejor
cobertura de la mano.

Figura 17. Recuadro generado en extracción de coordenadas

5.4 REGIÓN DE LA MANO

Para obtener la región de la mano, es necesario obtener una copia del Fotograma
de la cámara y una vez dibujado el rectángulo que contiene la mano con la seña,
con dichos puntos se extrae la región que posee la mano. Dicha región corresponde
a una imagen, la cual se ajusta al tamaño de las imágenes con las que fue entrenada
la red neuronal. En este proyecto cada imagen de entrenamiento tiene un tamaño
igual a 50 × 50 pixeles.

39

A continuación, se presenta el diagrama de flujo del ejecutable de Python usado
para la detección de la mano:

Figura 18. Diagrama de flujo para el reconocimiento de la mano

40

Figura 18. Diagrama de flujo para el reconocimiento de la mano

41

Figura 18. Diagrama de flujo para el reconocimiento de la mano

42

Figura 18. Diagrama de flujo para el reconocimiento de la mano

43

6. INTERFAZ (GUÍA DE USO)

La interfaz se desarrolló con la librería Tkinter, haciendo uso de programación
orientada a objetos con el fin de mejorar el entendimiento del código y su
reutilización para futuras mejoras o proyectos relacionados.

Para ello fue requerido la creación de diferentes widgets, en donde cada widget es
representado como un objeto de Python. Los widgets empleados en la Interfaz
correspondieron a Frame, Label y Button.

La interfaz en principio se conforma de dos Frames. El primero concierne a un
Frame correspondiente a la barra de título en donde se encuentran los iconos de
minimizar y cerrar la aplicación. En este espacio se eliminó la barra que ofrece
Tkinter por defecto y se diseñó una bajo los requerimientos considerados como
necesarios y visualmente correctos. Como segundo Frame, se creó un Frame
Principal que abarca los puntos 1,2 y 3 de la figura (19-a) en donde se aborda el
contenido completo de la interfaz, este Frame contiene cuatro columnas y dos filas
en las cuales, se crean tres nuevos Frames.

Dentro del primer Frame, se posiciona en principio la portada del proyecto, en donde
se presenta el título del proyecto, nombre de los autores y la universidad a la que
pertenecen, se puede visualizar en el punto 1 de la figura (19-a). Una vez se
presiona uno de los botones que está ubicado en el segundo Frame, se enciende la
cámara que se posiciona entonces, en el primer Frame ocultando la portada
anteriormente expuesta, lo que se presenta en el punto 1 figura (19-b).

En el segundo Frame, punto 2 figura (19-a), se observan cuatro botones, los tres
primeros son de carácter informativo con el fin de que el usuario tenga acceso al
objetivo del desarrollo de la interfaz, de su funcionamiento y el cómo interactuar
adecuadamente. El último botón es el ya antes mencionado para encender la
cámara.

Cabe resaltar, que al igual que el primer Frame, este Frame también cambia al
momento de encender la cámara, lo cual se puede observar en el punto 2 figura
(19-b). En este Frame, los botones desaparecen y se presenta un espacio en donde
se podrá observar en tamaño grande la letra que se está detectando y debajo de
ella, el correspondiente botón para apagar la cámara si el usuario lo requiere,
retornando así, al estado inicial de la Interfaz.

Finalmente, en la parte inferior, ocupando las cuatro columnas de la segunda fila
del Frame principal, se encuentra el alfabeto, ubicado en la figura (19-a) y (19-b), el
punto 3. Cada una de las letras corresponde a un botón que al ser presionado
muestra su respectiva traducción al lenguaje de señas. Adicionalmente, se dispone
de dos flechas, una en sentido izquierdo y la otra en sentido derecho, que permite
al usuario desplazarse por todo el alfabeto.

44

Sobre la letra seleccionada se puede observar un punto rojo, que es empleado como
indicador sobre cuál es la seña que se está mostrando.

Es de mencionar, que esta última sesión cuenta únicamente con las letras que en
su traducción a lenguaje de señas corresponde a letras estáticas, debido a que son
estas letras las abordadas en este proyecto.

La lógica que se encuentra detrás de esta interfaz refiere una serie de métodos que
son accionados al presionar los botones. Dentro de este código también se
encuentra la lógica correspondiente a la detección de la mano gracias al paquete
MediaPipe que se ejecuta una vez inicializada la cámara, junto con el modelo
entrenado para la predicción de las señas.

Figura 19. De arriba a abajo, Interfaz con cámara apagada (a) - Interfaz con cámara
encendida (b)

45

Figura 20. Diagrama de flujo de la interfaz

46

Figura 21. Diagrama de flujo para los métodos de la clase Aplicación

Figura 22. Diagrama de flujo para las funciones de la clase Aplicación

47

7. RESULTADOS

Para analizar el comportamiento de las predicciones de la red neuronal
convolucional desarrollada, es imperativo el conocimiento de las métricas de
evaluación debido a que nos permite medir el rendimiento que esta posee. En primer
lugar, se tiene la matriz de confusión que permite conocer información relevante del
rendimiento del clasificador y a partir de esta se pueden extraer las demás métricas.

La matriz de confusión corresponde a una tabla que resume el número de
predicciones correctas e incorrectas de un conjunto de datos (Datos de testeo)38.
La matriz de confusión se representa de la siguiente manera:

Figura 23. Representación de la matriz de confusión38

Las predicciones se establecen como se especifica a continuación:

• Verdaderos positivos (TP): Es la cantidad de predicciones verdaderas y
correctas.

• Falsos negativos (FN): Es la cantidad de predicciones falsas incorrectas.

• Falsos positivos (FP): Es la cantidad de predicciones verdaderas incorrectas.

• Verdaderos negativos (TN): Es la cantidad de predicciones falsas incorrectas.

Con los 4 valores obtenidos en la matriz de confusión es posible extraer la exactitud,
la precisión, la sensibilidad, entre otras métricas que facilitan el análisis del
rendimiento del clasificador. Con ayuda de la librería Scikit-learn es posible obtener

38 SHIN, Terence. Comprensión de la Matriz de Confusión y Cómo Implementarla en Python.
DataSource.AI. 20 de mayo de 2020. Disponible en: https://www.datasource.ai/es/data-science-
articles/comprension-de-la-matriz-de-confusion-y-como-implementarla-en-python

48

la matriz de confusión, para esto se hace uso del subconjunto de datos
correspondiente a testeo que posee 40 imágenes de cada clase.

Figura 24. Matriz de confusión

49

A. EXACTITUD: La exactitud representa el número total de predicciones correctas
respecto al número total de muestras clasificadas. Se calcula de la siguiente
manera:

𝑒𝑥𝑎𝑐𝑡𝑖𝑡𝑢𝑑 =
𝑝𝑟𝑒𝑑𝑖𝑐𝑐𝑖𝑜𝑛𝑒𝑠 𝑐𝑜𝑟𝑟𝑒𝑐𝑡𝑎𝑠

𝑡𝑜𝑡𝑎𝑙 𝑑𝑒 𝑝𝑟𝑒𝑑𝑖𝑐𝑐𝑖𝑜𝑛𝑒𝑠
=

𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁
 Ecuación (7)

Esta métrica se usa solo en escenarios donde se presenta una cantidad de datos
balanceados en el entrenamiento para cada clase.

B. PRECISIÓN: La precisión representa el número total de clasificaciones
correctas en cada clase. Se calcula de la siguiente manera:

𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
 Ecuación (8)

C. SENSIBILIDAD: O también llamado recall representa el número de
clasificaciones que corresponde a una clase respecto a las clases evaluadas.
Se calcula de la siguiente manera:

𝑠𝑒𝑛𝑠𝑖𝑏𝑖𝑙𝑖𝑑𝑎𝑑 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
 Ecuación (9)

D. VALOR F1: O también llamado F1-Score representa una relación entre la
precisión y la sensibilidad, por lo general se usa para obtener el rendimiento
general del modelo. Se calcula de la siguiente manera:

𝑣𝑎𝑙𝑜𝑟 𝑓1 = 2 ∗
𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 ∗ 𝑠𝑒𝑛𝑠𝑖𝑏𝑖𝑙𝑖𝑑𝑎𝑑

𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑠𝑒𝑛𝑠𝑖𝑏𝑖𝑙𝑖𝑑𝑎𝑑
 Ecuación (10)

Las métricas nombradas anteriormente toman valores en un rango de 0 a 1, donde
0 representaría una exactitud, precisión, sensibilidad o valor F1 muy bajo y 1
representaría una exactitud, precisión, sensibilidad o valor F1 muy alto39.

39 SITIOBIGDATA. Machine Learning: Seleccion Metricas de clasificacion. sitiobigdata.com [página
web]. Disponible en: https://sitiobigdata.com/2019/01/19/machine-learning-metrica-clasificacion-
parte-3/.

50

Mediante Scikit-learn se obtiene el reporte de clasificación para cada clase, los
resultados se muestran a continuación:

Tabla 3 Reporte de clasificación

 CLASE PRECISION RECALL F1-SCORE SUPPORT

A 0.87 1.00 0.93 40

B 1.00 1.00 1.00 40

C 0.89 1.00 0.94 40

D 0.77 1.00 0.87 40

E 0.93 1.00 0.96 40

F 1.00 0.97 0.99 40

I 0.95 1.00 0.98 40

K 0.89 0.97 0.93 40

L 1.00 1.00 1.00 40

M 0.91 0.72 0.81 40

N 0.72 0.85 0.78 40

O 1.00 0.80 0.89 40

P 1.00 0.82 0.90 40

Q 1.00 0.78 0.87 40

R 0.9 0.93 0.91 40

T 1.00 1.00 1.00 40

U 1.00 0.82 0.90 40

V 0.89 0.80 0.84 40

W 0.72 0.90 0.80 40

X 1.00 0.85 0.92 40

Y 1.00 1.00 1.00 40

Por otro lado, las métricas obtenidas en general en la red neuronal mediante el
reporte de clasificación:

• Exactitud: 0.92.

• Precisión: 0.93.

• Sensibilidad: 0.92.

• Valor F1: 0.92.

El desarrollo e implementación del proyecto se ejecutó en un equipo que presenta
las siguientes especificaciones:

• Procesador Intel® Core™ i5-10300H.

• Memoria RAM instalada de 16Gb.

• Unidad de estado sólido PCIe® NVMe™ M.2 de 256 GB.

51

A continuación, se presenta el administrador de tareas el cual permite realizar la
comparación del consumo computacional del equipo ejecutando la interfaz gráfica
respecto a la ventana de OpenCV:

Figura 25. Consumo computacional con interfaz

Figura 26. Consumo computacional sin interfaz

Como se puede apreciar, la ejecución de la interfaz presenta un alto consumo de
recursos computacionales (CPU y memoria RAM) debido al trabajo que debe
realizar Tkinter en el procesamiento de la imagen en tiempo real capturada por la
cámara.

52

8. CONCLUSIONES

El proyecto de grado expuesto en este documento muestra el proceso para el
desarrollo de una interfaz gráfica de lenguaje de señas colombiano mediante el
lenguaje de programación Python. Este proyecto exhibe el uso de diferentes
tecnologías para lograr su ejecución y presenta toda la investigación y estudio para
obtener un óptimo funcionamiento. Las conclusiones obtenidas del presente trabajo
se indican a continuación.

• Mediante las métricas se puede concluir que el rendimiento obtenido en el
clasificador es óptimo debido a que presenta porcentajes superiores al 90% en
la predicción general del modelo.

• Se logró construir un set de datos completo de 63.112 imágenes, con un 16,78%
perteneciente a los datos de validación y el porcentaje restante a entrenamiento.
Normalmente el conjunto de datos suele ser dividido en un 80% de datos de
entrenamiento y un 20% de datos de validación, se eligió este porcentaje con el
fin de evitar el subajuste o underfitting que ocurre cuando los datos de
entrenamiento son insuficientes. La correcta partición de los datos permitió
generar un modelo eficiente.

• Se encontraron dificultades con respecto a las condiciones ambientales, debido
a que es importante un ambiente controlado que cuente con una incidencia de
luz directa hacia la mano, pero no una sobrexposición de esta. También se debe
evitar la sombra que realiza la mano y el cuerpo del usuario en espacios
oscuros, para que la librería MediaPipe pueda realizar la correcta detección de
los 21 puntos de referencia de la mano.

• Mediapipe dispone de las librerías y acceso a bases de datos requeridos para
la identificación de la mano, lo que facilita el proceso debido a que, de no contar
con esta herramienta, hubiese sido necesario crear un modelo específico para
dicha tarea. Mediapipe en conjunto con OpenCV representan un complemento
ideal para el desarrollo de proyectos que requieren detección en tiempo real y
todo lo correspondiente al área de visión por computador.

• Se creó un algoritmo de predicción en tiempo real mediante el uso de las
librerías de código abierto, Tensorflow y Keras que favorecieron en la
implementación de las redes neuronales y en general, la creación del modelo
de aprendizaje. Estas librerías por excelencia se han definido como idóneas
para el aprendizaje profundo ya que facilitan el proceso y mejoran la rapidez de
los sistemas.

• Se presentaron dificultades con algunas señas debido a la similitud con otras
imágenes en la posición de los dedos. Cuando la red neuronal establece los
pesos lo hace para determinar características como detección de bordes,
formas, inclinación entre otras. Al existir señas en las que dichas características
presentan patrones repetidos o similares, el modelo predice menor probabilidad
como se expone en la matriz de confusión. Este factor se puede solucionar
incrementando el conjunto de datos, mejorando la posición de la mano, creando

53

una red más profunda o ubicando la mano en una posición conveniente con
respecto a la incidencia de luz.

• Se implementó una interfaz dinámica e intuitiva por medio de la librería Tkinter,
que permite interactuar con el alfabeto de señas colombiano y mostrar la
traducción de la seña al usuario en tiempo real, lo que favorece a una
comunicación fluida entre personas con discapacidad auditiva y personas con
condición auditiva normal.

• La interfaz presenta como problemática un alto consumo de recursos
computacionales, debido a la constante transformación que se realiza sobre el
video, capturando la imagen en alta resolución y convirtiéndola en arreglos para
poder ser ubicada sobre el Frame de Tkinter. Por esta razón se recomienda
interactuar con la interfaz con fines informativos y ejecutar el traductor
directamente desde la ventana de OpenCV.

• Este proyecto representa una contribución significativa, desde el sentido social
incluyente y el desarrollo tecnológico. Es una base sólida para futuros proyectos
relacionados a la inteligencia artificial, aplicados principalmente en la región del
Huila que está abordando estas tecnologías de vanguardia.

54

9. DISCUSIONES Y TRABAJOS FUTUROS

Es imprescindible continuar en el avance tecnológico y en especial en esta área de
la inteligencia artificial, por esta razón este proyecto puede continuar en su proceso
de evolución y mejora. A continuación, se plantean posibles mejoras que se pueden
implementar a futuro.

• Permitir el ingreso mediante voz de la letra del alfabeto y que el traductor presente
la respectiva seña.

• Adicionar una salida de audio que favorezca en la interpretación de la seña para
el usuario oyente.

• Implementar las letras dinámicas del alfabeto de señas colombiano, aumentando
la complejidad del proyecto con la detección de video.

• Con el fin de mejorar la efectividad y eficacia de la interfaz, es necesario ejecutar
el proyecto en un equipo con un buen procesador y con un buen espacio de
memoria RAM, debido al alto consumo de recursos que genera la interfaz. En
este sentido, como mejora se plantea trabajar en reducir este gasto
computacional.

• Compilar la red neuronal convolucional haciendo uso de GPU ya sea de manera
local o en la nube, para obtener tiempos de entrenamiento menores o trabajar
con un conjunto de datos de 3 canales.

55

BIBLIOGRAFÍA

ActiveState. What is Tkinter used for and How to Install this Python Framework?. 21
de septiembre de 2021. Disponible en:
https://www.activestate.com/resources/quick-reads/what-is-tkinter-used-for-and-
how-to-install-it/.

ALEGRE GUTIÉRREZ, Enrique, et al. Procesamiento Digital de Imagen:
Fundamentos y Prácticas Con Matlab [En línea]. Secretariado de Publicaciones y
Medios Audiovisuales, 2003. Disponible en:
https://www.researchgate.net/publication/229828279_Procesamiento_Digital_de_I
magenes_Fundamentos_y_Practicas_con_Matlab_Digital_image_processing_Fun
damentals_and_practices_with_Matlab.

ARÉVALO, V. M.; GONZÁLEZ, J. y AMBROSIO, G. La Librería de Visión Artificial
Opencv Aplicación a la Docencia e Investigación. En: MAPIR Research Group [en
línea]. 2017. Disponible en:
http://mapir.isa.uma.es/varevalo/drafts/arevalo2004lva1.pdf.

ARISTOTELES. Política, Libro I. De la Sociedad Civil. De la Esclavitud. De la
Propiedad. Del Poder Doméstico.

BAGNATO, Juan Ignacio. ¿Cómo funcionan las Convolutional Neural Networks?
Visión por Ordenador [blog]. Aprende Machine Learning en español. Coruña,
España. 29 de noviembre de 2018. Disponible en:
https://www.aprendemachinelearning.com/como-funcionan-las-convolutional-
neural-networks-vision-por-ordenador/

BAGNATO, Juan Ignacio. Sets de Entrenamiento, Test y Validación [blog]. Aprende
Machine Learning en español. Coruña, España. 3 de marzo de 2020. Disponible en:
https://www.aprendemachinelearning.com/sets-de-entrenamiento-test-validacion-
cruzada/

BOTINA MONSALVE, et al. Clasificación Automática de las Vocales en el Lenguaje
de Señas Colombiano. Disponible en:
https://repositorio.itm.edu.co/handle/20.500.12622/1038.

CALVO, Diego. Función de activación – Redes neuronales [blog]. Diego Calvo. 7 de
diciembre de 2018. Disponible en: https://www.diegocalvo.es/funcion-de-activacion-
redes-neuronales/

CASTILLO, José Antonio. RGB qué es esto y para qué se utiliza en Informática
[blog]. Profesional Review. 20 de enero de 2019. Disponible en:
https://www.profesionalreview.com/2019/01/20/rgb-que-es/

56

CHALLENGER PÉREZ, Ivet; DÍAZ RICARDO, Yanet y BECERRA GARCÍA,
Roberto Antonio. El lenguaje de programación Python. En: Ciencias Holguín [En
línea.] 2014. vol. XX, no. 2. Disponible en:
https://www.redalyc.org/articulo.oa?id=181531232001.

CHOLLET, Francois. Deep learning with python. [s.l.]: Manning Publications Co,
2018. 361 p. ISBN 9781617294433

CIENCIACINÉTICA. Redes Neuronales Convolucionales en Inteligencia Artificial
(CNN) [blog]. INTELIGENC[IA]. 6 de junio de 2018. Disponible en:
https://inteligencia.tech/2018/06/06/redes-convolutivas-en-inteligencia-artificial/

DeepAI. Computer Vision: What is Computer Vision? [En línea.]. Disponible en:
https://deepai.org/machine-learning-glossary-and-terms/computer-vision.

DOMÍNGUEZ, Néstor A. Ética y Ecoética para la inteligencia artificial. En: Boletín
del Centro Naval 856 [En línea.]. 2021. Disponible en:
https://www.centronaval.org.ar/boletin/BCN856/856-DOMINGUEZ.pdf

GARCÍA SÁNCHEZ, Eugenio. Introducción a las redes neuronales de convolución.
Aplicación a la visión por ordenador. Trabajo de grado. [s.l.]: Universidad de
Zaragoza, 2019.

GONZÁLEZ MARCOS, Ana, et al. Técnicas y algoritmos básicos de visión artificial
[en línea]. [s.l.]: Material didáctico. Ingenierías., 2006. Disponible en:
https://publicaciones.unirioja.es/catalogo/online/VisionArtificial.pdf. ISBN 84-689-
9345-X.

IBM. ¿Qué es Machine Learning? [En línea.]. IBM ANALÍTICA web site. Disponible
en: https://www.ibm.com/co-es/analytics/machine-learning

IBM. What is Computer Vision?. [En línea.]. IBM ANALÍTICA web site. Disponible
en: https://www.ibm.com/topics/computer-vision.

LOPEZ BRIEGA, Raul E. Introducción al Deep Learning [blog]. Matemáticas,
análisis de datos y python. 13 de junio de 2017. Disponible en:
https://relopezbriega.github.io/blog/2017/06/13/introduccion-al-deep-learning/

MEDIAPIPE HANDS. Mediapipe [página web]. Disponible en:
https://google.github.io/mediapipe/solutions/hands.html

MINISTERIO DE EDUCACIÓN NACIONAL, INSTITUTO NACIONAL PARA
SORDOS, INSOR. Diccionario Básico de la Lengua de Señas Colombiana por
Instituto Nacional para Sordos INSOR [En línea.]. INSOR web site. Disponible en:
http://www.insor.gov.co/descargar/diccionario_basico_completo.pdf

57

NVIDIA DEVELOPER. What is OpenCV? [En línea.]. NVIDIA Corporation web site.
Disponible en: https://developer.nvidia.com/opencv

ORACLE COLOMBIA. ¿Qué es la Inteligencia Artificial-IA? [En línea.]. Oracle
Colombia web site. Disponible en: https://www.oracle.com/co/artificial-
intelligence/what-is-ai

PONCE GALLEGOS, Julio Cesar, et al. Inteligencia Artificial. [s.l.]: Iniciativa
Latinoamericana de Libros de Texto Abiertos (LATIn), 2014. 225 p.

PORCELLI, Adriana Margarita. La Inteligencia Artificial y la Robótica: sus Dilemas
Sociales, Éticos y Jurídicos. Derecho glob. Estud. Sobre Derecho Justicia [En
línea.]. 2020, vol.6, n.16, pp.49-105. Disponible en:
http://www.scielo.org.mx/scielo.php?script=sci_arttext&pid=S2448-
51362020000300049&lng=es&nrm=iso

RODRÍGUEZ, Daniel. ¿Cuál es la diferencia entre Parámetro e Hiperparámetro?.
Analytics Lane. 16 de diciembre de 2019. Disponible en:
https://www.analyticslane.com/2019/12/16/cual-es-la-diferencia-entre-parametro-e-
hiperparametro/#:~:text=Los%20hiperpar%C3%A1metros%20de%20un%20model
o,por%20el%20cient%C3%ADfico%20de%20datos

ROZO MELO, Nancy. La Lengua de Señas Colombiana [En línea.]. Portal De
Lenguas de Colombia: Diversidad y Contacto. Disponible en:
https://lenguasdecolombia.caroycuervo.gov.co/contenido/Lenguas-de-senas-
colombiana/introduccion

SHIN, Terence. Comprensión de la Matriz de Confusión y Cómo Implementarla en
Python. DataSource.AI. 20 de mayo de 2020. Disponible en:
https://www.datasource.ai/es/data-science-articles/comprension-de-la-matriz-de-
confusion-y-como-implementarla-en-python

SILVA, Sarahí y FREIRE, Estefanía. Intro a las redes neuronales convolucionales.
Bootcamp AI. 23 de noviembre de 2019. Disponible en:
https://bootcampai.medium.com/redes-neuronales-convolucionales-5e0ce960caf8.

SITIOBIGDATA. Machine Learning: Seleccion Metricas de clasificacion.
sitiobigdata.com [página web]. Disponible en:
https://sitiobigdata.com/2019/01/19/machine-learning-metrica-clasificacion-parte-
3/.

TF.KERAS.PREPROCESSING.IMAGE.IMAGEDATAGENERATOR. TensorFlow
[página web]. Disponible en:
https://www.tensorflow.org/api_docs/python/tf/keras/preprocessing/image/ImageDa
taGenerator.

58

TORRES SOLER, Luis. El Perceptrón Redes Neuronales Artificiales [En línea] 20
de enero de 2020. Repositorio Universidad Nacional. Disponible en:
https://disi.unal.edu.co/~lctorress/RedNeu/LiRna004.pdf

TRIVIÑO LOPEZ, Iván. Sistema para el Aprendizaje del Lenguaje de Señas
Colombiano usando Visión por Computador. Disponible en:
https://ciencia.lasalle.edu.co/ing_automatizacion/159/.

UNIÓN INTERNACIONAL DE TELECOMUNICACIONES. RECOMENDACIÓN UIT-
R BT.601-7: Parámetros de Codificación de Televisión Digital para Estudios con
Formatos de Imagen Normal 4:3 y de Pantalla Ancha 16:9 [En línea]. Disponible en:
https://web.archive.org/web/20220119174709/https://www.itu.int/dms_pubrec/itu-
r/rec/bt/R-REC-BT.601-7-201103-I!!PDF-S.pdf

UTRERA BURGAL, Jesús. Tratamiento de imágenes usando ImageDataGenerator
en Keras [blog]. Technical thoughts, stories and ideas. 2 de agosto de 2019.
Disponible en: https://enmilocalfunciona.io/tratamiento-de-imagenes-usando-
imagedatagenerator-en-keras/

VELO FUENTES, Edward Joseph. Introducción a los métodos Deep Learning
basados en Redes Neuronales [En línea]. Trabajo Fin de Máster. [s.l.]: Universidad
de Coruña, 2020. Disponible en:
http://eio.usc.es/pub/mte/descargas/ProyectosFinMaster/Proyecto_1654.pdf.

59

ANEXO

Anexo A. Código del desarrollo de la red neuronal convolucional

from keras import backend as K
from keras.preprocessing.image import ImageDataGenerator, load_img,
img_to_array
from keras.models import Sequential
from keras.layers import Dropout, Flatten, Dense
from keras.layers import Convolution2D, MaxPooling2D
from keras.preprocessing import image
from tensorflow.keras.optimizers import Adam
from tensorflow.keras.utils import plot_model
import matplotlib.pyplot as plt
import numpy as np
import pandas as pd
import tensorflow

K.clear_session()

datos_entrenamiento = ".\Entrenamiento"
datos_validacion = ".\Validacion"

Generador1 = ImageDataGenerator(
 rescale = 1./255,
 rotation_range = 20,
 width_shift_range = 0.1,
 height_shift_range = 0.1,
 horizontal_flip = True,
)

Generador2 = ImageDataGenerator(
 rescale = 1./255
)

imagen_entrenamiento = Generador1.flow_from_directory(
 datos_entrenamiento,
 target_size = (altura, longitud),
 batch_size = batch_size,
 color_mode = 'grayscale',
 class_mode = "categorical"
)

imagen_validacion = Generador2.flow_from_directory(
 datos_validacion,

60

 target_size = (altura, longitud),
 batch_size = batch_size,
 color_mode = 'grayscale',
 class_mode = "categorical"
)

plt.imshow(next(imagen_entrenamiento)[0][1,...,0])
plt.show()
print(imagen_entrenamiento.class_indices)

epocas = 30
pasos_entrenamiento = imagen_entrenamiento.n//batch_size
pasos_validacion = imagen_validacion.n//batch_size
print("Los pasos en entrenamiento son: " + str(pasos_entrenamiento))
print("Los pasos en validacion son: " + str(pasos_validacion))
filtrosconv0 = 32
filtrosconv1 = 64
filtrosconv2 = 64
tam_filtro0 = (4, 4)
tam_filtro1 = (3, 3)
tam_filtro2 = (2, 2)
tam_pool = (2, 2)
clases = 21
altura, longitud = 50, 50
batch_size = 32

cnn = Sequential()
cnn.add(Convolution2D(filtrosconv0, tam_filtro0, input_shape=(altura, longitud, 1),
activation="relu"))
cnn.add(MaxPooling2D(pool_size=tam_pool))

cnn.add(Convolution2D(filtrosconv1, tam_filtro1, activation="relu"))
cnn.add(Convolution2D(filtrosconv1, tam_filtro1, activation="relu"))
cnn.add(MaxPooling2D(pool_size=tam_pool))

cnn.add(Convolution2D(filtrosconv2, tam_filtro2, activation="relu"))
cnn.add(Convolution2D(filtrosconv2, tam_filtro2, activation="relu"))
cnn.add(MaxPooling2D(pool_size=tam_pool))

cnn.add(Flatten())
cnn.add(Dense(1345, activation="relu"))
cnn.add(Dropout(0.20))
cnn.add(Dense(clases, activation="softmax"))

cnn.summary()

61

plot_model(cnn, to_file="Modelo.png", show_shapes=True)

optimizador = tensorflow.keras.optimizers.Adam(learning_rate = 0.0005)
cnn.compile(loss="categorical_crossentropy", optimizer=optimizador,
metrics=["accuracy"])

clasificador = cnn.fit(imagen_entrenamiento,
 validation_data = imagen_validacion,
 steps_per_epoch = pasos_entrenamiento,
 validation_steps = pasos_validacion,
 batch_size = batch_size,
 epochs = epocas)

cnn.save("Modelo.h5")
cnn.save_weights("Pesos.h5")

plt.figure(figsize=(12,12))
plt.subplot(2,1,1)
plt.plot(clasificador.history['accuracy'], '-')
plt.plot(clasificador.history['val_accuracy'], '-')
plt.xlabel('Épocas')
plt.ylabel('Precisión')
plt.legend(['Entren','Valid'], loc='upper left')
plt.title('Precisión de entrenamiento y validación')
plt.grid()

plt.subplot(2,1,2)
plt.plot(clasificador.history['loss'], '-')
plt.plot(clasificador.history['val_loss'], '-')
plt.title('Pérdida del modelo')
plt.xlabel('Épocas')
plt.ylabel('Pérdida')
plt.legend(['Entren','Valid'], loc='upper left')
plt.title('Pérdida de entrenamiento y validación')
plt.grid()
plt.show()

Lista_Precision = clasificador.history['accuracy']
Lista_Precision.insert(0, 'Precisión')
Lista_Precision_Validacion = clasificador.history['val_accuracy']
Lista_Precision_Validacion.insert(0, 'Precisión de Validación')
Lista_Perdida = clasificador.history['loss']
Lista_Perdida.insert(0, 'Pérdida')
Lista_Perdida_Validacion = clasificador.history['val_loss']

62

Lista_Perdida_Validacion.insert(0, 'Pérdida de Validación')
Lista_Final = [Lista_Precision, Lista_Precision_Validacion, Lista_Perdida,
Lista_Perdida_Validacion]

Dataframe = pd.DataFrame(Lista_Final).transpose()
Dataframe.to_excel('Datos_Red.xlsx', index = False)

Anexo B. Código de obtención de métricas del rendimiento del clasificador

from keras import backend as K
from sklearn.metrics import classification_report, confusion_matrix, accuracy_score,
precision_score, recall_score, f1_score
from mlxtend.plotting import plot_confusion_matrix
from keras.models import load_model
from keras.preprocessing.image import ImageDataGenerator
import numpy as np
import matplotlib.pyplot as plt

K.clear_session()

Nombre_Clases = ['A', 'B', 'C', 'D', 'E', 'F', 'I', 'K', 'L', 'M', 'N', 'O', 'P', 'Q', 'R', 'T', 'U', 'V',
'W', 'X', 'Y']
altura, longitud = 50, 50
batch_size = 32

Directorio_Testeo = './Testeo'
Generador_Testeo = ImageDataGenerator(
 rescale = 1./255
)
Datos_Testeo = Generador_Testeo.flow_from_directory(
 Directorio_Testeo,
 target_size = (longitud, altura),
 batch_size = batch_size,
 color_mode = 'grayscale',
 class_mode = "categorical",
 shuffle = False
)

modelo = 'Modelo.h5'
pesos_modelo = 'Pesos.h5'
cnn = load_model(modelo)
cnn.load_weights(pesos_modelo)

Predicciones = cnn.predict(Datos_Testeo)

63

Datos_Prediccion = np.argmax(Predicciones, axis=1)
Datos_Reales = Datos_Testeo.classes
accuracy_score(Datos_Reales, Datos_Prediccion)

precision_score(Datos_Reales, Datos_Prediccion, average='macro')

recall_score(Datos_Reales, Datos_Prediccion, average='macro')

f1_score(Datos_Reales, Datos_Prediccion, average='macro')

Matriz = confusion_matrix(Datos_Reales, Datos_Prediccion)
plot_confusion_matrix(conf_mat = Matriz, figsize=(15, 15), class_names =
Nombre_Clases, show_normed = True, colorbar = True)
plt.tight_layout()

print(classification_report(Datos_Reales, Datos_Prediccion,
target_names=Nombre_Clases))

Para conocer más acerca del código del sistema, contactar a los autores al correo
u20171154848@usco.edu.co y u20171154840@usco.edu.co.

