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RESUMEN DEL CONTENIDO: (Máximo 250 palabras) 

En este trabajo se implementó una red LPWAN basada en tecnología LoRa en un conjunto 
residencial del corregimiento La Ulloa en el municipio de Rivera, este fue dividido en zonas 
para realizar envío de mensajes y adquirir niveles de intensidad de señal en cada zona 
para ser utilizados posteriormente con el fin de estimar la ubicación de un nodo LoRa 
dentro de la zona cubierta por la red mediante el uso de un algoritmo de “Machine 
Learning” entrenado con estos niveles. 

Una finalidad importante en este trabajo es la estimación de localización a partir del nivel 
de intensidad de señal recibida (RSSI) en las puertas de enlace LoRa, con el objetivo de 
discriminar la zona dentro de la red a la cual corresponde los niveles de intensidad 
obtenidos mediante el uso de algoritmos de clasificación, estos basan la estimación a partir 
de análisis probabilístico, se implementaron los algoritmos de Machine Learning para 
multiclasificación de máquina de soporte vectorial, los k-vecinos más cercanos, arboles de 
decisión red neuronal, se comparan los resultados de las predicciones obtenidas, 
determinando la red neuronal como el algoritmo más eficiente para esta localización 
basada en RSSI. Finalmente se evalúa el rendimiento del modelo de red neuronal con más 
detalle mediante la matriz de confusión, analizando las posibles fuentes de error, 
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finalmente se proponen mejoras a este tipo de implementaciones para trabajos futuros. 

 

ABSTRACT: (Máximo 250 palabras) 

In this work, an LPWAN network based on LoRa technology was implemented in a 
residential complex in La Ulloa district in the municipality of Rivera, this was divided into 
zones to send messages and acquire signal intensity levels in each zone to be used later. 
in order to estimate the location of a LoRa node within the area covered by the network by 
using a “Machine Learning” algorithm trained with these levels. 

 

An important purpose in this work is the estimation of location from the received signal 
intensity level (RSSI) in the LoRa gateways, with the aim of discriminating the area within 
the network to which the intensity levels obtained correspond. through the use of 
classification algorithms, these base the estimation from probabilistic analysis, replicating 
the RSSI fingerprint estimation technique, algorithms of Machine Learning for support 
vector machine multiclassification, k-nearest neighbors, neural network decision trees, the 
results of the predictions obtained are compared, determining the neural network as the 
most efficient algorithm for this location based on RSSI. Finally, the performance of the 
neural network model is evaluated in more detail through the confusion matrix, analyzing 
the possible sources of error, finally improvements to this type of implementations are 
proposed for future work. 
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RESUMEN 
 
 

TÍTULO 
 
ESTUDIO DE VIABILIDAD DE UN SISTEMA DE LOCALIZACIÓN EN ZONA 
RURAL DEL DEPARTAMENTO DEL HUILA BASADO EN LA INTENSIDAD DE LA 
SEÑAL RECIBIDA EN UNA RED LPWAN. 
 
AUTORES: 
 
JUAN SEBASTIÁN PASTRANA ARDILA 
LUIS DANIEL VALENCIA GARCÍA 
 
PALABRAS CLAVES: 
 
Intensidad de señal recibida, LoRa, LPWAN, sistemas de comunicación, 

aprendizaje de máquina, modelamiento, algoritmos, predicciones. 
 

DESCRIPCIÓN: 
 
En este trabajo se implementó una red LPWAN basada en tecnología LoRa en un 

conjunto residencial del corregimiento La Ulloa en el municipio de Rivera, este fue 
dividido en zonas para realizar envío de mensajes y adquirir niveles de intensidad 
de señal en cada zona para ser utilizados posteriormente con el fin de estimar la 

ubicación de un nodo LoRa dentro de la zona cubierta por la red mediante el uso de 
un algoritmo de “Machine Learning” entrenado con estos niveles. 

 
Una finalidad importante en este trabajo es la estimación de localización a partir del 
nivel de intensidad de señal recibida (RSSI) en las puertas de enlace LoRa, con el 

objetivo de discriminar la zona dentro de la red a la cual corresponde los niveles de 
intensidad obtenidos mediante el uso de algoritmos de clasificación, estos basan la 

estimación a partir de análisis probabilístico, a diferencia de trabajos previos donde 
se implementan algoritmos de regresión basados en análisis estadístico, replicando 
la técnica de estimación de huella digital del RSSI, se implementaron los algoritmos 

de Machine Learning para multiclasificación de máquina de soporte vectorial, los k-
vecinos más cercanos, arboles de decisión red neuronal, se comparan los 

resultados de las predicciones obtenidas, determinando la red neuronal como el 
algoritmo más eficiente para esta localización basada en RSSI. Finalmente se 
evalúa el rendimiento del modelo de red neuronal con más detalle mediante la matriz 

de confusión, analizando las posibles fuentes de error, finalmente se proponen 
mejoras a este tipo de implementaciones para trabajos futuros.  
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ABSTRACT 
 
 

TITLE 
 
VIABILITY STUDY OF A LOCATION SYSTEM IN RURAL ZONE OF THE 
DEPARTMENT OF HUILA BASED ON THE INTENSITY OF THE RECEIVED 
SIGNAL IN A LPWAN NETWORK. 
 
 
AUTHORS: 
 
JUAN SEBASTIÁN PASTRANA ARDILA 
LUIS DANIEL VALENCIA GARCÍA 
 
KEYWORDS: 
 
Received signal strength, LoRa, LPWAN, communication systems, machine 
learning, modeling, algorithms, predictions. 
 
DESCRIPTION: 

 
In this work, an LPWAN network based on LoRa technology was implemented in a 
residential complex in La Ulloa district in the municipality of Rivera, this was divided 
into zones to send messages and acquire signal intensity levels in each zone to be 

used later. in order to estimate the location of a LoRa node within the area covered 
by the network by using a “Machine Learning” algorithm trained with these levels. 

 
An important purpose in this work is the estimation of location from the received 
signal intensity level (RSSI) in the LoRa gateways, with the aim of discriminating the 

area within the network to which the intensity levels obtained correspond. through 
the use of classification algorithms, these base the estimation from probabilistic 

analysis, unlike previous works where regression algorithms based on statistical 
analysis are implemented, replicating the RSSI fingerprint estimation technique, 
algorithms of Machine Learning for support vector machine multiclassification, k-

nearest neighbors, neural network decision trees, the results of the predictions 
obtained are compared, determining the neural network as the most efficient 

algorithm for this location based on RSSI. Finally, the performance of the neural 
network model is evaluated in more detail through the confusion matrix, analyzing 
the possible sources of error, finally improvements to this type of implementations 

are proposed for future work.  
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GLOSARIO 

 
RSSI: (Received Signal Strength Indicator) Escala de referencia para medir el 

nivel de potencia de las señales recibidas en una red inalámbrica. 
 

IoT: (Internet de las cosas) Red de dispositivos físicos capaz de interactuar con 
datos mediante conexión a internet. 
 

LoS: (Line of Sight) Línea de vista es la referencia al camino sin interrupciones 
entre antenas de emisores y receptores 
 

GPS: (Global Positioning System) Sistema para posicionar elementos sobre la 
Tierra con alta precisión 

 
LPWAN (Low Power Wide Area Network) Tecnología de comunicación 
inalámbrica para conectar dispositivos a larga distancia con poco consumo 

energético 
 

LoRa (Long Range) Protocolo de comunicación inalámbrica que permite conectar 
sensores a larga distancia con poco costo energético para desarrollar aplicaciones 
IoT 

 
CSS: (Chirp Spread Spectrum) Técnica de espectro ensanchado que usa módulos 

de frecuencia lineal en una banda ancha 
 
FTP (File Transfer Protocol) Protocolo para transferir archivos a través de una red 

 
API (Application Program Interface) Conjunto de definiciones y protocolos para 
diseñar software que ofrece alguna biblioteca. 

 
SMOTE (Synthetic Minority Over-sampling Technique) Algoritmo de 

sobremuestreo para tartar conjuntos de datos con clases desequilibradas 
 
KNN (K-Nearest Neighbor) Técnica de aprendizaje de máquina basada en 

distancias euclidianas para realizar predicciones 
 

SVM (Supported Vector Machine) Técnica de aprendizaje de máquina basado en 
muestrear los datos en un nuevo espacio vectorial mediante vectores de soporte 
 

ANN (Artificial Neural Network) Modelo computacional para realizar aprendizaje 
de máquina basado en conjuntos de unidades matemáticas conocidas como 
neuronas que en conjunto aprenden y evolucionan a partir de los datos. 
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INTRODUCCIÓN. 

 
En la actualidad la conexión de dispositivos a internet ha tomado un enorme auge 
en distintos campos, recolectando y almacenando datos en internet, esta es la 

definición  del término usado desde 1999 como "Internet de las cosas" (IoT), la 
posibilidad de conectar distintos dispositivos a internet ha llevado a desarrollar 
nuevas aplicaciones basadas en este paradigma que permitan realizar actividades 

cotidianas y laborales que se llevan a cabo día a día en la sociedad con mayor 
facilidad, lo que ha motivado el desarrollo de tecnologías que facilitan la 

implementación de ecosistemas IoT y puedan explotar al máximo su potencial, tal 
es el caso de las redes de área amplia y baja potencia LPWAN que plantean 
implementar ecosistemas IoT minimizando costos satisfaciendo el tipo de 

requerimientos de comunicación. 
 
La localización de objetos es un tema de investigación frecuente debido al 
incremento de dispositivos que requieren dar a conocer su ubicación1, actualmente 

se pueden encontrar diversos sistemas de localización que utilizan diferentes 
técnicas para encontrar la ubicación global o local de alguna persona u objeto, la 

mayoría de estas técnicas utilizan fenómenos físicos y relaciones matemáticas 
sumadas a una  conjunta operación de dispositivos específicos para determinar la 
ubicación; estas técnicas tienen algo en común, y es el hecho de que todas 

necesitan un parámetro en el cual basarse para estimar la posición, este parámetro 
puede ser de una señal inalámbrica, una dirección IP o incluso una imagen, estas 

tecnologías que permiten dar una solución rápida tienen en contra su costo de 
implementación; a largo plazo no suele ser rentable debido a las limitantes de 
consumo energético o área de cobertura de estas, en este sentido las redes 

LPWAN han demostrado ser eficientes para reducir las limitaciones ya 
mencionadas2. 
 
Aunque ya existen investigaciones sobre sistemas de localización en distintos tipos 

de redes utilizando características de un sistema de comunicación, tal es el caso 
de la intensidad de la señal recibida en un receptor, la cual, apoyada en modelos 
matemáticos basados en triangulación, permite estimar la localización del 

transmisor en un área determinada, independiente de la información transmitida, 
sin embargo esta técnica resulta no ser muy eficiente en términos de precisión 

debido a la linealidad de estos modelos y el comportamiento no lineal de la 
intensidad de la señal en un sistema de comunicación; del mismo modo existe un 

 
1 AZMI, Nur A; SAMSUL, Shafiqa; YAMADA, Yoshihide; YAKUB, Mohd F M; ISMAIL, Mohd I M; DZIYAUDDIN, Rudzidatul A. 

A Survey of Localization using RSSI and TDoA Techniques in Wireless Sensor Network: System Architecture. En: 2018 2nd 
International Conference on Telematics and Future Generation Networks (TAFGEN) [en linea]. Kuching, Malaysia, diciembre 
2018. DOI https://doi.org/10.1109/TAFGEN.2018.8580464 E-ISBN 978-1-5386-1275-0 
2 MAHNOOR Anjum; MUHAMMAD, Abdullah K; SYED, Ali. H; AAMIR Mahmood y MIKAEL Gidlund. Analysis of RSSI 

Fingerprinting in LoRa Networks. En: 15th International Wireless Communications Mobile Computing Conference (IWCMC) 
[en línea], Tangier, Morocco, julio 2019. p 1178-1183. https://doi.org/10.1109/IWCMC.2019.8766468 E-ISBN 978-1-5386-
7747-6 

https://doi.org/10.1109/TAFGEN.2018.8580464
https://doi.org/10.1109/IWCMC.2019.8766468
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auge en el uso de algoritmos de aprendizaje de máquina para resolver problemas 
de modelamiento no lineal a partir del uso de datos, por ende utilizar estos 

algoritmos con características no lineales como lo es la intensidad de la señal 
resulta ser una solución tentativa, método el cual tiene pocos estudios realizados 
hasta ahora demostrando su eficiencia3. 
 
En vista de lo anterior y buscando aportar a esta área de investigación en la región 
se realiza un estudio para determinar la viabilidad de un sistema de localización 
basado en el nivel de intensidad de señal recibida en una red LPWAN mediado el 
uso de algoritmos de aprendizaje de máquina basados en modelos probabilísticos, 
revisando la eficiencia de implementar este tipo de sistemas y sus respectivas 
limitantes. 
  

 
3 DARAMOUSKAS, Ioannis; KAPOULAS, Vaggelis y PARASKEVAS, Michael. Using Neural Networks for RSSI Location 

Estimation in LoRa Networks. En: 10th International Conference on Information, Intelligence, Systems and Applications (IISA) 
[en línea], Patras, Greece, noviembre 2019, p. 1-7. DOI https://doi.org/10.1109/IISA.2019.8900742 E-ISBN 978-1-7281-4959-
2 

https://doi.org/10.1109/IISA.2019.8900742
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OBJETIVOS. 

OBJETIVO GENERAL. 

Realizar un estudio de viabilidad de un sistema de localización basado en la fuerza 
de la señal recibida en una red LPWAN. 
 

OBJETIVOS ESPECÍFICOS. 

• Examinar dispositivos de la tecnología LPWAN LoRa que se adecue a un 

sistema de comunicación, comprendiendo su funcionamiento, ventajas y sus 
limitantes para transmisión.  

• Implementar un sistema de comunicación LPWAN en una zona rural delimitada 
por los gateways LoRa para obtener valores del indicador de intensidad de 

señal recibida en distintos puntos de un área en el corregimiento la Ulloa del 
municipio de Rivera.  

• Registrar los parámetros parciales de mediciones del RSSI de acuerdo con la 
ubicación del nodo respecto a los gateways.  

• Determinar un modelo que establezca una relación entre el RSSI recibida en 
los gateways y la ubicación del nodo LoRa.  

• Validar el modelo de red neuronal propuesto con datos y pruebas en un 
entorno real, definiendo límites, margen de error y precisión de este 
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ANTECEDENTES. 

 
Números trabajos se han realizado para la implementación de sistemas de 

localización basados en redes LPWAN como LoRa o Sigfox, algunos de estos tienen 
como base el uso del indicador RSSI para estimar localización: 
 
“Las técnicas de localización y seguimiento enfrentan en el actual escenario de 
Internet de las Cosas”4. Con el fin de dar soluciones de localización en agricultura 
y ganadería se implementa un sistema de rastreo utilizando un dispositivo GPS y 

una estación base con protocolos de red LPWAN, validando el sistema con datos 
reales y dejando abierta la propuesta a la implementación de una API para 
monitorear varios geteways a la vez. 

 
5Se implementa un sistema de localización entre un terminal móvil y una estación 

base con protocolos LPWAN, basado en la propagación de la señal dado que un 
dispositivo GPS consume mucha energía, finalmente el sistema implementado con 
una precisión similar a la de un GPS (90%) y que se debe seguir explorando para 

tomar decisiones más razonables respecto a la localización. 
 
6LoraLoc machine learning based fingerprinting for outdoor Geolocation using Lora. 
Un desafío en la actualidad implementar sistemas de geolocalización usando 
dispositivos LoRa cuando no existe línea de vista, por lo tanto, se presenta una 

solución basada en el uso de diferencia de hora de llegada (TDOA) y algoritmos de 
Machine Learning cuyos datos verdaderos son tomados mediante el uso de GPS, 

verificados en simulación con técnicas de redes neuronales, bosques aleatorios y 
arquitecturas de redes neuronales recurrentes. 
 
7 A Comparison of Signal Strength Localization Methods with Sigfox. Se presenta 
una comparación de tres métodos de proximidad, un método de huellas digitales y 

tres métodos de alcance con un error de 586 metros en entornos sin línea de vista. 
 
 

 

 
4 DA SILVA, Wesley R; OLIVEIRA Luiz; KUMAR, Neerai; RABELO, Ricardo A.L; MARINS, Carlos N.M y RODRIGUEZ Joel 

J. P. C. An Internet of Things Tracking System Approach Based on LoRa Protocol. En: IEEE Global Communications 
Conference (GLOBECOM) [en línea], Abu Dhabi, United Arab Emirates, febrero 2019, p. 1-7. DOI https://doi.org/ 
10.1109/GLOCOM.2018.8647984  E-ISBN 978-1-5386-4727-1 
5 LEMIC, Filip; BEHBOODI, Arash; FAMAEY, Jeroen y MATHAR, Rudolf. Location-Based Discovery and Vertical Handover 

in Heterogeneous Low-Power Wide-Area Networks (2019). En: IEEE Internet of Things Journa [en línea]l, marzo 2018, vol. 6, 
nro. 6, p 10150-10165. DOI https://doi.org/10.1109/JIOT.2019.2935804  
6 FRANCESCO, Carrino; ALES, Janka; OMAR, Abou K y ELENA, Mugellini. LoRaLoc: Machine Learning-Based Fingerprinting 

for Outdoor Geolocation using LoRa. En: 6th Swiss Conference on Data Science (SDS) [en línea], Bern, Switzerland, agosto 
2019, p. 82-86. https://doi.org/10.1109/SDS.2019.000-2  E-ISBN 978-1-7281-3105-4 
7 BELLENSKENS, Ben; AERNOUTS, Michiel; BERKENS, Rafael y WEYN, Maarten A Comparison of Signal Strength 

Localization Methods with Sigfox. En: 2018 15th Workshop on Positioning, Navigation and Communications (WPNC) [en 
línea]. Breme, Germany diciembre 2018. DOI https://doi.org/10.1109/WPNC.2018.8555743 E-ISBN 978-1-5386-6436-0 

https://doi.org/10.1109/GLOCOM+.2018.8647984
https://doi.org/10.1109/GLOCOM+.2018.8647984
https://doi.org/10.1109/JIOT.2019.2935804
https://doi.org/10.1109/SDS.2019.000-2
https://doi.org/10.1109/WPNC.2018.8555743
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2Analysis of RSSI Fingerprinting in LoRa Networks. Investigación de la idoneidad 
de la tecnología LoRa para implementar un sistema de posicionamiento utilizando la 

intensidad de la señal recibida huella digital del indicador de intensidad de señal 
recibida (RSSI) con línea de vista y sin línea de vista y huellas digitales como el 
uso de diferencia horaria de llegada (TDOA) mostrando que estos pueden ser 

utilizados para hacer sistemas de localización robustos. 
 
 
8A Survey of Localization using RSSI and TDoA Techniques in Wireless Sensor 

Network: System Architecture. Se propone un sistema de localización usando redes 
de largo alcance (LoRa) sin utilizar GPS mediante distintas técnicas basadas en 

distancia como el uso de la intensidad de señal recibida. 
 
 
9Evaluating indoor and outdoor localization services for LoRaWAN in Smart City 

applications.  En este trabajo, los autores hacen uso conjunto de LPWAN y técnicas 
de localización aceptadas y sistemas de localización en tiempo real para 
aplicaciones de Smart Campus. Los resultados experimentales demuestran la 

viabilidad del enfoque propuesto; en particular, los errores de ubicación están en el 
orden de pocas decenas de metros para GPS. 

 
 
10Low-Cost Car Park Localization Using RSSI in Supervised LoRa Mesh Networks. 
Se implementa un sistema de localización basado en redes LoRa y RSSI, diseñado 

para ubicar autos en grandes concesionarios, se deja claro que estos sistemas 
deben ser calibrados para distintos ambientes. 
 
11LoRaIn: Making a Case for LoRa in Indoor Localization.  Se analiza la viabilidad 

de usar LoRa en localización de interiores con espacios variados en obstáculos 
como paredes y objetos, considerando la cobertura, estabilidad y regularidad de 

las señales, precisión de localización, capacidad de respuesta, poder y costo se 
concluyó que LoRa es una opción factible para solución de localización en 
interiores. 
 

 
8 AZMI, Nur A; SAMSUL, Shafiqa; YAMADA, Yoshihide; YAKUB, Mohd F M; ISMAIL, Mohd I M; DZIYAUDDIN, Rudzidatul 

A. A Survey of Localization using RSSI and TDoA Techniques in Wireless Sensor Network: System Architecture. En: 2018 
2nd International Conference on Telematics and Future Generation Networks (TAFGEN) [en linea]. Kuching, Malaysia, 
diciembre 2018. DOI https://doi.org/10.1109/TAFGEN.2018.8580464 E-ISBN 978-1-5386-1275-0 
9 BONANAFI, F; FERNANDEZ, Carvalho D; DEPARI, A; FERRARI, P; FLAMMINI, A; PASETTI M; RINALDI, S y SISINNI, E. 
Evaluating indoor and outdoor localization services for LoRaWAN in Smart City applications. En: II Workshop on Metrology for 
Industry 4.0 and IoT (MetroInd4.0 IoT) [en línea]. Naples, Italy, agosto 2019, p. 300-305. DOI 
https://doi.org/10.1109/METROI4.2019.8792901 E-ISBN 978-1-7281-0429-4 
10 GOTTHARD Petr y JANKECHK Tomáš. Low-Cost Car Park Localization Using RSSI in Supervised LoRa Mesh Networks. 

En: 15th Workshop on Positioning, Navigation and Communications (WPNC) [en línea], Bremen, Germany, diciembre 2018, 
p. 1-6. DOI https://doi.org/10.1109/WPNC.2018.8555792 E-ISBN 978-1-5386-6436-0 
11 ISLAM, Bashima; ISLAM, Md Tamzeed y KAUR, Jasleen. LoRaIn: Making a Case for LoRa in Indoor Localization. En: 2019 

IEEE International Conference on Pervasive Computing and Communications Workshops (PerCom Workshops) [en línea], 
Kyoto, Japan, p. 423-426. DOI https://doi.org/10.1109/PERCOMW.2019.8730767 E-ISBN 978-1-5386-9151-9 

https://doi.org/10.1109/TAFGEN.2018.8580464
https://doi.org/10.1109/METROI4.2019.8792901
https://doi.org/10.1109/WPNC.2018.8555792
https://doi.org/10.1109/PERCOMW.2019.8730767


19 
 

12Outdoor Fingerprinting Localization using Sigfox. Se implementa un sistema de 
localización haciendo uso de redes LPWAN, el indicador de intensidad de señal 

recibida RSSI y el algoritmo k-vecinos más cercanos kNN, si bien los resultados no 
son los óptimos, se observa la viabilidad de uso del RSSI como mecanismo para 
lograr localización de objetos y se deja en claro la necesidad de obtener más datos 

para alimentar el algoritmo kNN para una mejor precisión. 
 
13New RSSI-based LoRa localization Algorithms for Very Noisy Outdoor 
Environment. Partiendo de estudios que comprueban la utilidad de usar dispositivos 

LoRa en exteriores y la eficiencia de usar algoritmos basados en la RSSI se 
proponen dos algoritmos nuevos para ambientes ruidosos. 

 
14Towards Location Enhanced IoT: Characterization of LoRa Signal For Wide Area 
Localization. Este documento proporciona una evaluación sistemática de sistemas 

de ubicación LoRa haciendo uso de RSSI tanto interior como exterior con 
porcentajes de error a favor de esta tecnología por sus amplios rangos y costos. 
 
15Se realiza un estudio de un sistema de localización utilizando un base de datos 
en los cuales se utiliza el método de huella digital para estimar localización, 

comparan los resultados de este estudio con el modelo implementado usando redes 
neuronales artificiales, probando distintas arquitecturas y métodos de 

procesamiento de datos logrando un margen de error de 300 metros, el cual se 
considera aceptable debido a que la tecnología LoRa abarca grandes cantidades  
de terreno, por lo cual esta incertidumbre puede ser considerablemente útil en 

ciertos casos de estimación de localización 
 
Al realizar la búsqueda a nivel nacional, no se encuentran trabajos de grado que 
usen LPWAN para implementar sistemas de localización, de hecho, se encuentran 
muy pocos trabajos realizados con esta tecnología, sin embargo, se encontró un 
sistema de localización basado en RSSI con redes Wi-fi 
 

 
12 JANSSEN, Thomas; AERNOUTS, Michiel; BERKENS, Rafael y WEYN, Maarten. Outdoor Fingerprinting Localization Using 
Sigfox. En: 2018 International Conference on Indoor Positioning and Indoor Navigation (IPIN) [en línea], Nantes, France, 
noviembre 2018,  p 1-6. DOI https://doi.org/10.1109/IPIN.2018.8533826 E-ISBN 978-1-5386-5635-8 
13 LAM, Ka-Ho; CHEUNG, Chi-Chung y LEE, Wah-Ching. New RSSI-Based LoRa Localization Algorithms for Very Noisy 

Outdoor Environment. En: 2018 IEEE 42nd Annual Computer Software and Applications Conference (COMPSAC) [en línea]. 
Tokyo, Japan, junio 2018, p. 794-799. DOI https://doi.org/10.1109/COMPSAC.2018.10340 E-ISBN 978-1-5386-2667-2 
14 LI, You; HE, Zhe; LI, Yuqi; XU, Hongliang; Pei, Ling y Zhang, Yu.  Towards Location Enhanced IoT: Characterization of 

LoRa Signal For Wide Area Localization. En: 2018 Ubiquitous Positioning, Indoor Navigation and Location-Based Services 
(UPINLBS) [En línea]. Wuhan, China. diciembre 2018, p. 1-7.  DOI https://doi.org/10.1109/UPINLBS.2018.8559844 E-ISBN 
978-1-5386-3755-5 
15 DARAMOUSKAS, Ioannis; KAPOULAS, Vaggelis y PARASKEVAS, Michael. Using Neural Networks for RSSI Location 

Estimation in LoRa Networks. En: 10th International Conference on Information, Intelligence, Systems and Applications 
(IISA) [en línea], Patras, Greece, noviembre 2019, p. 1-7. DOI https://doi.org/10.1109/IISA.2019.8900742 E-ISBN 978-1-
7281-4959-2 

https://doi.org/10.1109/IPIN.2018.8533826
https://doi.org/10.1109/COMPSAC.2018.10340
https://doi.org/10.1109/UPINLBS.2018.8559844
https://doi.org/10.1109/IISA.2019.8900742
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16Aplicativo móvil para localizar y guiar personas a través del campus universitario 
de la Pontificia Universidad Javeriana. Se implementó un aplicativo móvil para 

estimar la ubicación de personas en tiempo real en zonas del edificio del edificio 
de ingeniería de la Pontificia Universidad Javeriana, mediante el uso de la  

intensidad de señal Wi-Fi en distintos puntos y el método de predicción k-vecinos 
más cercano KNN. 
 
 
A nivel regional en la Revista Ingeniería y Región de la Universidad Surcolombiana 

se puede encontrar un artículo de revisión sobre los métodos utilizados para 
detectar localización de objetos ToA, DToA y AoA, donde se concluye que la 

precisión de estas técnicas es muy afectada por el ruido del ambiente e interferencia 

causada por elementos que interfieran en la red 17 
  

 
16 CRUZ, Gómez D. E y MENDOZA, Ortiz J. C. Aplicativo móvil para localizar y guiar personas a través del campus 

universitario de la Pontificia Universidad Javeriana. En: Pontificia Universidad Javeriana [en línea]. Bogota: Universidad 
Javeriana, 2016, Disponible en:  http://repository.javeriana.edu.co/handle/10554/21446  
17 GARCIA, A. F; GOMEZ, C; SANCHEZ, T; RENDONDO, A. D; BETANCOUR, L y HINCAPIE, R. C. Algoritmos de 

Radiolocalización basados en ToA, TDoA y AoA. En: Ingeniería y Región [en linea], Neiva: Universidad Surcolombiana, 
febrero 2016 v.14, p. 9-22. DOI https://doi.org/10.25054/22161325.689  

http://repository.javeriana.edu.co/handle/10554/21446
https://doi.org/10.25054/22161325.689
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1. CAPÍTULO UNO: FUNDAMENTOS BÁSICOS 

 

1.1 REDES LPWAN. 

 

Las redes LPWAN (low-power wide-area network) representan una alternativa de 
red inalámbrica y evolución de tecnologías IoT18, cuenta con características 
deseables en las que destacan largo alcance de transmisión y bajo consumo 

energético, al mismo tiempo presenta una solución de bajo costo económico 19, 
como contrapartida se presenta baja velocidad de transmisión de datos, capacidad 

de cálculo limitada al hardware de los dispositivos finales, por esta razón las redes 
LPWAN suelen estar integradas a una arquitectura inalámbrica en la nube, por 
último presenta baja tasa de transmisión de datos aunque esta última no es 

fundamental en una red IoT. 
 

Es posible encontrar redes LPWAN con rango de transmisión entre 10-40 km en 
zonas rurales y 5 km en zonas urbanas, consumo energético reducido, permitiendo 
una duración de la batería de hasta 10 años, estas características acompañadas al 

bajo costo de los dispositivos consolidaron las redes LPWAN con un futuro 
prometedor para implementar aplicaciones IoT que requieran transmitir pocos 
datos, impulsando estudios experimentales en ambientes internos y externos y el 

surgimiento de tecnologías emergentes como NB-IoT, Sigfox y LoRa20, aunque 
estas utilizan técnicas de modulación diferentes, comparten similitud en la 

arquitectura de red, conformada por tres capas. La figura 1.1 muestra una 
representación de una red LPWAN estándar y sus capas. 
 

 
18 SONG, Yonghua; LIN, Jin; TANG, Ming y DONG, Shufeng. An Internet of Energy Things Based on Wireless LPWAN. En: 

Engineering [en línea]. Chinese Academy of Engineering, agosto 2017. vol. 3, nro. 4. p. 2. DOI  
https://doi.org/10.1016/J.ENG.2017.04.011. ISSN 2095-8099 
19 MEKKI, Kais; BAJIC, Eddy; CHAXEL, Frederic y MEYER, Fernand. Overview of Cellular LPWAN Technologies for IoT 

Deployment: Sigfox, LoRaWAN, and NB-IoT. En: 2018 IEEE International Conference on Pervasive Computing and 
Communications Workshops (PerCom Workshops) [en linea]. Athens, Greece, octubre 2018. p. 1. DOI 
https://doi.org/10.1109/PERCOMW.2018.8480255  E-ISSN 978-1-5386-3227-7 
20 MEKKI, Kais; BAJIC, Eddy; CHAXEL, Frederic y MEYER, Fernand. A comparative study of LPWAN technologies for large-

scale IoT deployment. En: ICT Express [en linea]. The Korean Institute of Communications Information Sciences, marzo 2019. 
vol. 5, nro. 1. p. 1. DOI https://doi.org/10.1016/j.icte.2017.12.005 ISSN 2405-9595 

https://doi.org/10.1016/J.ENG.2017.04.011
https://doi.org/10.1109/PERCOMW.2018.8480255
https://doi.org/10.1016/j.icte.2017.12.005
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Figura No. 1.1 Arquitectura de una red LPWAN para desarrollo de aplicaciones IoT 

 
En primer lugar se encuentra la capa de nodos, donde es posible encontrar gran 

cantidad de sensores que envían información por la red hasta la nube y actuadores 
que reciben ordenes provenientes de esta, en segundo lugar se considera como 

capa de transmisión todos los dispositivos dispersos geográficamente que ofrecen 
canales inalámbricos de comunicación, en esta capa es posible encontrar grandes 
distancias entre dispositivo y dispositivo que en redes tales como WiFi o ZigBee 

resultan imposibles de implementar, en la figura 1.2 se puede observar una 
comparativa de distancia. Así mismo se suelen encontrar redes con topología de 

estrella en donde existe una única estación base a la cual envían información todos 
los nodos, finalmente se encuentra la capa de nube, la cual contiene aplicaciones e 
intercambia datos entre el usuario final y la capa de nodos.  

 

 
Figura No. 1.2 Comparación distancia entre tecnologías inalámbricas 
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1.2 LoRa. 

 
LoRa es una tecnología inalámbrica, consiste en la técnica de modulación de 

radiofrecuencia patentada por Semtech, los dispositivos que hacen uso de esta y 
las redes de comunicación implementadas para desarrollar aplicaciones IoT 

desarrolladas a partir de estos 21. 
 

La capa física de la red LoRa utiliza una variante de la modulación de espectro 

ensanchado o SSM, conocida como chirp spread spectrum o CSS. SSM codifica la 
señal original con una secuencia de alta frecuencia, aumentando el ancho de banda 
de la señal, pero reduciendo la potencia presente en esta y mejorando ante 

interferencias electromagnética, para el caso de CSS, la señal es codificada con 
una señal sinusoidal de frecuencia modulada en banda ancha, esta tendrá 

variaciones en el tiempo, aumentando o disminuyendo y es conocida como un pitido 
o “chirp”22. Adicionalmente LoRa permite modificar la cantidad de bits para codificar 
un símbolo, este valor es conocido como factor de propagación SF, para el caso de 

LoRa se permite usar seis valores de SF (7 - 12 bits), tres anchos de banda 
(125KHz, 250 KHz y 500KHz) regulados según el continente donde se implementa 

LoRa. 
 
LoRa opera en la banda ISM, libre en todo el mundo con fines no comerciales, con 

variaciones en las frecuencias utilizadas en continentes, 915 MHz para América 
868MHz para Europa, reduciendo el costo de implementación al poder operar en 

una red propia sin pagar licencias para uso de espectro, siendo la primera 
implementación de CSS de manera comercial y a bajo costo. 
 

En una red LoRa existen dos tipos de dispositivos que serán el eje de toda la 
arquitectura, los dispositivos finales o nodos, encargados de monitorizar, 
encargados de interactuar con el ambiente donde están ubicados como receptores 

de información proveniente de sensores o controlar los actuadores mediante 
ordenes provenientes de la red LoRa, al mismo tiempo operan los gateways, pues 

son el puente de la red LoRa entre los nodos y las señales de comunicación 
estándar para acceso a internet , enviando información proveniente de los nodos a 
un servidor en la nube o entregando a los nodos información proveniente de esta. 

Respecto al protocolo de conexión a internet, existe la posibilidad de usar la 
especificación LoRaWAN, la cual abarca el conjunto de protocolos de 

comunicaciones y arquitectura de red 23, siendo esta adoptada por algunas 
compañías en el mundo para brindar conectividad, sin embargo no siempre es 

 
21 RAY, Brian. What Is LoRa? A Technical Breakdown [blog]. Blogs Link Labs. 26 de junio de 2018. Disponible en 

https://www.link-labs.com/blog/what-is-lora  
22 PICKERING, Paul. Desarrollar con LoRa para aplicaciones IoT de baja tasa y largo alcance [blog]. Blogs Digi-Key. 29 de 

junio de 2017. Disponible en https://www.digikey.com/es/articles/develop-lora-for-low-rate-long-range-iot-applications  
23 Lora Alliance. A technical overview of LoRa® and LoRaWAN® [documento digital]. Lora Alliance - Resources, noviembre 

2015. Disponible en https://lora-alliance.org/resource_hub/what-is-lorawan/  

https://www.link-labs.com/blog/what-is-lora
https://www.digikey.com/es/articles/develop-lora-for-low-rate-long-range-iot-applications
https://lora-alliance.org/resource_hub/what-is-lorawan/
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posible usar LoRaWAN , motivo por el cual la red puede ser adaptada al medio de 
implementación mediante el protocolo LoRa-MAC o LoRa RAW, siendo este 

protocolo el adecuado para zonas donde el acceso a internet es limitado. 
 
 

1.3 MACHINE LEARNING Y DEEP LEARNING. 

 
El aprendizaje automático o machine learning es un área de estudio en el campo de 
la Inteligencia Artificial que estudia modelos estadísticos y algoritmos a fin de que 

un sistema de cómputo pueda lograr realizar tareas sin ser estas programadas 
directamente, esos sistemas logran encontrar patrones en un conjunto de datos y a 

futuro utilizará realizando nuevas predicciones a partir de nuevos datos, entre mayor 
cantidad y mejor calidad de datos, el algoritmo encontrado logrará predicciones 
precisas y fiables, una definición muy aceptada en ingeniería dicta: 

 
“Se dice que un programa de computadora aprende de experiencia E, con respecto 
a alguna tarea T y alguna medida de desempeño P, mejora con experiencia E, si su 

desempeño en T, como fue medido con P, mejora con experiencia E.” 24 
 

Con respecto a desarrollar un sistema mediante de machine learning, es importante 
resaltar que su finalidad es realizar una predicción, esta puede estar en un conjunto 
de valores continuos (Regresión) o un conjunto de valores discretos (Clasificación), 

estas predicciones se evaluaran a fin de determinar  qué tan acertadas son lo que 
permitirá al programador ajustar el modelo a partir de una métrica estadística, 

realizando este proceso cíclicamente hasta obtener un modelo adecuado al 
conjunto de datos. 
 

 

1.3.1 MÁQUINAS DE SOPORTE VECTORIAL. 

Las máquinas de soporte vectorial (SVM) son un algoritmo de Machine Learning 

que surgieron como evolución de la clásica regresión lineal, muy utilizado cuando 
los conjuntos de datos para clasificar son bastantes complejos y tienen una cantidad 
pequeña o mediana en cantidad de datos para aprendizaje 25, aunque en la 

regresión lineal se puede lograr desarrollar un hiperplano lineal que logre separar 

las clases en el conjunto de datos, este no siempre es óptimo, SVM trazará nuevos 

hiperplanos paralelos al original con ayuda de un vector que determinará la posición 
hiperplano paralelo más cercano a cada clase, este vector es conocido como vector 
de soporte y dan nombre al algoritmo, así mismo, la distancia entre los nuevos 

 
24 MITCHEL, Tom Michael. Machine Learning [en línea]. 1 ed. McGraw-Hill Education. 1997, 870-877 p. Disponible en 

https://www.amazon.com/Machine-Learning-Tom-M-Mitchell/dp/0070428077  ISBN 0070428077 
25 GERON, Aurelien. Hands-On Machine Learning with Scikit-Learn and TensorFlow: Concepts, Tools, and Techniques to 

Build Intelligent Systems [en linea]. 2 ed. O'Reilly Media, Inc 2019. Disponible en https://www.amazon.com/-/es/Aur-C3-A9lien-
G-C3-A9ron-dp-1492032646/dp/1492032646/ref=dp_ob_image_bk ISBN: 9781492032649 

https://www.amazon.com/Machine-Learning-Tom-M-Mitchell/dp/0070428077
https://www.amazon.com/-/es/Aur-C3-A9lien-G-C3-A9ron-dp-1492032646/dp/1492032646/ref=dp_ob_image_bk
https://www.amazon.com/-/es/Aur-C3-A9lien-G-C3-A9ron-dp-1492032646/dp/1492032646/ref=dp_ob_image_bk
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hiperplanos será conocida como margen máximo, la ecuación principal para una 
SVM, como puede ser observada a continuación, describe una combinación lineal 

de las entradas, siendo 𝑋 el vector de las entradas y 𝛽 el vector de parámetros para 

ponderar las entradas, finalmente 𝛽0 corresponderá al sesgo introducido en el 

modelo. 
 

𝑓(𝑥) = 𝑋𝑇𝛽 + 𝛽0 (1) 
 

Evidentemente, estos hiperplanos no serán siempre lineales, sin embargo, SVM 
adopta el uso de funciones matemáticas conocidas como kernel que trasladará el 
conjunto de datos a un nuevo espacio matemático donde puede lograr una solución 

lineal, una vez lograda esta se transforma al espacio original 26. 
 

1.3.2 LOS K-VECINOS MÁS CERCANOS. 

 
Los K-vecinos más cercanos consisten en uno de los algoritmos de machine 

learning más sencillos, consiste en determinar la clase a la cual un dato (x𝑜) 
pertenece mediante el uso de métodos de similitud entre este dato y una cantidad 

(k) de puntos (𝑥(𝑖)) cercanas al dato, tal es el caso de la distancia euclidiana, así 

mismo la determinación de la clase se hace en base a la mayoría de clases más 
cercanas obtenidas y no requiere entrenar un modelo, motivo por el cual se le 

conoce este modelo como un clasificador basado en memoria 27. 
 

𝑑(𝑖) = ‖𝑥(𝑖) − 𝑥𝑜‖ (2) 

 
El factor característico de este método y su único hiperparámetro es k, sin embargo, 
no existe un método preciso para determinar el mejor valor para este, por lo cual su 

búsqueda se convierte en un método heurístico de ensayo y error, no obstante es 
muy común encontrar situaciones similares donde un valor pequeño de k logra 

predicciones poco precisas, por su parte valores grandes implica menor varianza en 
la predicción pero un mayor sesgo, además de malas predicciones ante datos 
desconocidos y costo computacional más elevado. 

 
En conclusión, este algoritmo es sencillo de implementar debido a la presencia de 

un único hiperparámetro, su matemática lo hace idóneo para clasificación y 
multiclasificación, al mismo tiempo el calcular cada distancia propuesta en él implica 
considerar los datos de entrenamiento como parte del modelo, siendo estos 

 
26 VERSLOOT, Christian. Understanding SVM and SVR for Classification and Regression [blog]. Blogs MACHINECURVE 20 

de septiembre de 2019. Disponible en https://www.machinecurve.com/index.php/2019/09/20/intuitively-understanding-svm-
and-svr/  
27 HASTIE, Trevor; TIBSHIRANI, Robert y FRIEDMAN, Jerome. The Elements of Statistical Learning: Data Mining, Inference, 

and Prediction [en linea]. 2 ed. Springer 2016. Disponible en https://www.amazon.com/-/es/Trevor-Hastie/dp/0387848576 
ISBN: 0387848576 

https://www.machinecurve.com/index.php/2019/09/20/intuitively-understanding-svm-and-svr/
https://www.machinecurve.com/index.php/2019/09/20/intuitively-understanding-svm-and-svr/
https://www.amazon.com/-/es/Trevor-Hastie/dp/0387848576
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utilizados para realizar los cálculos, motivo por el cual deben ser almacenados para 
ser utilizados en el posterior cálculo de distancias, aumentando los tiempos de 

procesamiento. 
 
 

1.3.3 ÁRBOL DE DECISIÓN. 

 
El árbol de decisión es un algoritmo de machine learning que analiza las variables 

predictoras y todos los posibles conjuntos de división sobre estas para generar dos 
o más conjuntos de datos nuevos homogéneos basados en la característica que 
más significativa encuentre en estos. 

 
Las variables más significativas son puestas en la cima del árbol y a partir de estas 

se generan dos nuevos conjuntos de datos o regiones a las cuales el algoritmo 
establecerá la pertenencia a estas regiones mediante condiciones o desigualdades 
matemáticas se consiguen calculando el índice de impureza de Gini, descrita en la 

ecuación 3 donde 𝑃𝐶𝑖 corresponde a la probabilidad de seleccionar aleatoriamente 

una variable de una clase 𝐶𝑖, el índice de impureza de Gini representa el valor 

esperado de clasificaciones incorrectas sí la clasificación se realiza de manera 

aletoria. 
 

𝐺𝑖𝑛𝑖 =  1 − ∑𝑃2(𝐶𝑖)

𝑛

𝑖=1

 (3) 

 

La probabilidad de elegir aleatoriamente una muestra de la clase 𝐶𝑖es 𝑃(𝐶𝑖), por el 

contrario, la probabilidad de predecir la clase incorrecta es 1 − 𝑃(𝐶𝑖). Realizando la 

suma 𝑃(𝐶𝑖)*(1 − 𝑃(𝐶𝑖)) sobre todas las clases obtenemos la fórmula para la 
impureza de Gini 

 
La idea detrás de un árbol de decisión es lograr dividir los datos en nuevos 
conjuntos, de manera similar crecer el árbol, decidir las características que serán 

condiciones para dividir, matemáticamente una técnica común conocida como 
división binaria recursiva que mediante alguna función de costo generará las 

condiciones para lograr la división de menor costo. 
 

1.3.4 CLASIFICADOR BAYESIANO INGENUO. 

 
Los clasificadores bayesianos son un algoritmo probabilístico y estadístico utilizado 
para determinar si una muestra pertenece a una clase, específicamente 

fundamentado en el teorema de Bayes, mientas que otros algoritmos parten de 
correlacionar los datos de entrada utilizados en el entrenamiento, estos asumen que 
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las variables predictoras tienen valores independientes entre ellas, es decir, no 
consideran que exista una correlación entre variables, esta hipótesis permite 

simplificar los métodos de computación, por esta razón son conocidos como 
ingenuos. 
 

Cabe destacar el eje principal de este clasificador, el teorema de Bayes, busca la 
probabilidad de cada combinación específica de variables predictoras asignadas a 
una clase, esto implicaría grandes cantidades de datos, sin embargo, recordando 

que este algoritmo asume que estas son independientes entre sí minimiza el cálculo, 
este cálculo es utilizado en el teorema de Bayes que en literatura puede ser descrito 

de la forma: 

 

𝐶𝑜𝑛𝑜𝑐𝑖𝑚𝑖𝑒𝑛𝑡𝑜 𝑃𝑜𝑠𝑡𝑒𝑟𝑖𝑜𝑟 =
𝐶𝑜𝑛𝑜𝑐𝑖𝑚𝑖𝑒𝑛𝑡𝑜 𝑃𝑟𝑒𝑣𝑖𝑜 ∗ 𝑃𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑑𝑎𝑑 𝑑𝑒 𝑜𝑐𝑢𝑟𝑟𝑖𝑟

𝐸𝑣𝑖𝑑𝑒𝑛𝑐𝑖𝑎
(4) 

 

En la práctica, representando como 𝑦 las salidas o clases a predecir y 𝑋 como las 

características o entradas, la ecuación 4 puede ser descrita matemáticamente 
como: 

 

𝑝(𝑦𝑖|𝑋1, 𝑋2, … 𝑋𝑛) =
𝑝(𝑋1, 𝑋2, … 𝑋𝑛|𝑦𝑖). 𝑝(𝑦𝑖)

𝑝(𝑋1, 𝑋2, … 𝑋𝑛)
(5) 

 
Sobre todo, es importante analizar el numerador, debido a que el denominador es 
constante puede ser eliminado para reducir costos computacionales, la primera 

parte del numerador o conocimiento previo muestra la probabilidad de cada 
combinación de entrada para la clase a predecir, debido a la previa hipótesis de 
variables predictoras independientes esta puede ser omitida, por otro parte la 

probabilidad de ocurrir esta simplemente está descrita lingüísticamente como: 
 

El algoritmo almacenará las distribuciones de probabilidad para cada clase 
independientemente, similar al algoritmo de K-Vecinos más cercanos se evaluará 
para cada clase y se elegirá la que obtenga mayor probabilidad  

 
 

1.3.5 REDES NEURONALES ARTIFICIALES. 

 
Durante la historia de la humanidad, el ser humano desarrolló soluciones para 
facilitar tareas que realizaba a diario, algunas de estas fueron inspiradas en la 

naturaleza, de la misma forma ocurrió al explorar el cuerpo humano mismo, donde 
la arquitectura del cerebro sirvió de inspiración para desarrollar el concepto de redes 

neuronales artificiales (RNA)25 
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Resulta lógico pensar que las RNA en sus inicios fueron bastante primitivas, siendo 
únicamente útiles en problemas de cómputo binario28 donde se estableció la 

característica de una neurona artificial para activar su salida en función de las 
entradas y conectar esta salida a otra neurona para implementar versiones más 
avanzadas de cómputo, con el tiempo este problema se enfocaría a resolver 

problemas mayores donde las entradas y salidas dejarían atrás valores binarios y 
se enfocarían en valores numéricos continuos siendo esta arquitectura básica pero 
muy implementada, conocida como el perceptrón, el cual asociaba cada entrada de 

una neurona a un peso y la salida de esta correspondería a la suma ponderada de 
estas entradas añadiendo una función no lineal que activará cada neurona, esta 

ecuación es descrita como: 

 

𝑍 = 𝜎(𝑊1𝑋1 + 𝑊2𝑋2 + ⋯ + 𝑊𝑛𝑋𝑛 + 𝑏) =  𝜎(𝑋𝑇𝑊 + 𝑏) (6) 
 

Donde 𝜎 representa la función no lineal conocida como función de activación y 

puede variar dado que existen distintas funciones de activación adecuadas para 

ciertas ocasiones. Por esto puede definirse una neurona como una transformación 

no lineal a características lineales de las entradas (𝑋𝑇) ponderadas en función de 

un vector de parámetros conocidos como pesos de la neurona (𝑊) y un sesgo 

añadido (𝑏) ,finalmente una red neuronal como un conjunto de neuronas 

conectadas entre sí y serán conocidos como capas en principio salidas a entradas 
desde la primera capa o capa de entrada encargada de recibir las variables 

predictoras, estas entregan sus salidas a las siguientes capas que se encargaran 
de añadir más características no lineales al modelo y son conocidas como capas 

ocultas, por último las capas ocultas entregan a la última capa, encargada de dar la 
predicción, será conocida como capa de salida. 
 

Cabe destacar que el proceso de diseño de una red neuronal abarca desde 
seleccionar una arquitectura de conexión entre neuronas, el tipo de función de 

activación, el método de aprendizaje, tipo de capa final que puede variar para 
regresión o clasificación, evidentemente es un algoritmo muy completo si se 
compara con los ya mencionados de machine learning, sin embargo el precio a 

pagar para implementar este tipo de algoritmo es un elevado aumento de costo 
computacional en función de la cantidad de neuronas y capas implementadas. 
 

  

 
25 GERON, Aurelien. Hands-On Machine Learning with Scikit-Learn and TensorFlow: Concepts, Tools, and Techniques to 

Build Intelligent Systems [en linea]. 2 ed. O'Reilly Media, Inc 2019. Disponible en https://www.amazon.com/-/es/Aur-C3-A9lien-
G-C3-A9ron-dp-1492032646/dp/1492032646/ref=dp_ob_image_bk ISBN: 9781492032649 
28 MCCULLOCH, Warren Sturgis y WALTER, Pitts. A logical calculus of the ideas immanent in nervous activity. En: Springer 

- Bulletin of Mathematical Biophysics. The University of Chicago, Chicago, USA, diciembre 1943. vol. 5, nro. 1. DOI 
https://doi.org/10.1007/BF02478259. 

https://www.amazon.com/-/es/Aur-C3-A9lien-G-C3-A9ron-dp-1492032646/dp/1492032646/ref=dp_ob_image_bk
https://www.amazon.com/-/es/Aur-C3-A9lien-G-C3-A9ron-dp-1492032646/dp/1492032646/ref=dp_ob_image_bk
https://doi.org/10.1007/BF02478259
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2. CAPÍTULO DOS: CONFIGURACIÓN DE RED LORA. 

 
En este capítulo se describen los dispositivos (gateway y nodos) utilizados para 

implementar la red LoRa, como acceder a ellos, configurar los parámetros de red, 
la instalación de librerías y uso de estas para programar las rutinas para realizar el 

envío de mensajes y almacenamiento de información de valores de RSSI y zona de 
envío de mensajes en la memoria ROM de cada gateway. 
 

2.1 DISPOSITIVOS UTILIZADOS. 

 

2.1.1 DRAGINO LORA SHIELD. 

Es un módulo de Arduino desarrollado pro Dragino que permite enviar y recibir datos 
utilizando la tecnología LoRa, en otras palabras, es un transceptor (transmisor-
receptor), que permite enviar pequeños paquetes de datos por medio de señales de 

radiofrecuencia, capaces de alcanzar rangos considerablemente amplios con un 
bajo consumo energético29. 

 

 
Figura No. 2.1 Módulo Dragino LoRa Shield. 

Este módulo utiliza el chip transceptor SX1276/SX1277 desarrollado y fabricado por 
Semtech, módulo desarrollado para operar en el rango de frecuencias entre 

137MHz y 1020MMhz usando la técnica de modulación LoRa patentada por la 
misma compañía para lograr mayor alcance de comunicación, menor consumo 
energético y mayor inmunidad a interferencias. 

 
El módulo permite la modulación LoRa con un rango dinámico de 127 dB, de la 

misma manera otros dispositivos como sensores o actuadores pueden ser 
integrados para desarrollar una red IoT basada en LoRa accediendo a las entradas 

 
29 Dragino. Lora Shield [en linea]. Dragino, julio 2016. Disponible en https://wiki.dragino.com/index.php?title=Lora_Shield  

https://wiki.dragino.com/index.php?title=Lora_Shield
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digitales y analógicas que puede ser observadas en la figura 2.2, facilitando la 
operación como emisor o receptor, para la red LoRa implementada se utilizó como 

emisor. 
 

 
Figura No. 2.2 Diagrama de pines Dragino LoRa Shield 

 

2.1.2 LG01 LORA GATEWAY. 

LG01 es un gateway LoRa de la compañía Dragino, código abierto y de un canal, 
permite conectar la red LoRa a una red IP mediante protocolo WiFi, ethernet o 

telefonía 3G/4G permitiendo implementar una red inalámbrica destinada a IoT con 
ventajas típicas de una red LoRa. La arquitectura de este dispositivo observada en 

la figura 2.4 dada por el fabricante permite visualizar los dos componentes 
principales del dispositivo 
 

En primer lugar, se encuentra el microcontrolador ATMega 328P conectado por un 
bus de datos SPI al chip transceptor SX1276/SX1277 encargado de realizar los 

procesos de la red desde el lado de LoRa, como emisor o receptor de mensajes 
además de proveer funciones adicionales programables mediante el entorno de 
desarrollo de Arduino, algunos modelos como el LG01-S permiten integrar sensores 

directamente a este microcontrolador para expandir las aplicaciones de la red.  
 
En segundo lugar, se encuentra el módulo Dragino HE AR933, esta parte del 

gateway controla el acceso a la red IP y puede ser configurado mediante el entorno 
basado en Linux Open Wrt, accediendo por medio del protocolo de acceso remoto 

SSH, además de contar con memoria flash de 16MB y memoria RAM de 64MB, 
además de la posibilidad de añadir almacenamiento externo por medio de la interfaz 
USB 
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Ambos entornos se encuentran conectados mediante los protocolos de interfaz 
periférica serial (SPI) y transmisor-receptor asíncrono universal (UART), lo que 

facilita el intercambio de información entre el entorno Arduino y el entorno Linux, 
esto permite manipular el gateway desde el entorno de Arduino con mayor facilidad 
y enviar al módulo Linux para el posterior almacenamiento de información. 

 

 
Figura No. 2.3 Arquitectura Dragino LG01 

 

2.2 ENTORNO ARDUINO IDE Y LIBRERÍA RADIOHEAD RF95. 

 
Para empezar, es importante adaptar el IDE Arduino, dentro del gestor de tarjeta de 

la IDE es posible incluir el soporte de la compañía Dragino añadiendo la URL:  
 
http://www.dragino.com/downloads/downloads/YunShield/package_dragino_yun_test_inde

x_test.json 

 
Esto da acceso al gestor de tarjetas para poder acceder a dispositivos Dragino mediante el 

IDE Arduino para realizar control sobre el microcontrolador ATMega 328P 

 

Para poder acceder al microcontrolador del dragino LG01, una vez energizado el 
gateway crea un punto de acceso WiFi con el nombre dragino, esta red por defecto 

permite ingresar al usuario root con la contraseña dragino, esta contraseña puede 
ser modificada ingresando a la interfaz gráfica o conectando de manera remota por 
medio del protocolo SSH al sistema Open Wrt, la ip por defecto para acceder es 

10.130.1.1. Por medio de esta red es posible cargar el sketch desde el entorno 
Arduino al Dragino LG01. 
 

http://www.dragino.com/downloads/downloads/YunShield/package_dragino_yun_test_index_test.json
http://www.dragino.com/downloads/downloads/YunShield/package_dragino_yun_test_index_test.json
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Cabe destacar que para este punto, es posible acceder al microcontrolador y por 
medio del protocolo SPI conectarse al chip SX1276/SX1277, sin embargo existen 

librería adaptadas a este protocolo recomendadas por el fabricante, tal es el caso 
del paquete público RadioHead Packet Radio Library, una biblioteca desarrollada 
bajo el paradigma de la programación orientada a objetos para envío y recepción 

de mensajes en diferentes protocolos de comunicación inalámbrica, 
específicamente se hace uso del objeto RH_RF95, el soporte oficial para LoRa para 
el chip transceptor mencionado previamente que incluye el soporte de configuración 

de parámetros de red, envío y recepción de mensajes como puede ser visto en la 
2.4 

 

 
 

 
Figura No. 2.4 Diagrama UML RadioHead RF95 

 

 

Al observar el diagrama UML es posible encontrar los parámetros de configuración 
estándar de la red LoRa en el objeto RF95 como son el ancho de banda, frecuencia, 
factor de progragación y tasa de codificación, este objeto hereda los métodos de 

envío y recepción genéricos de la librería RadioHead para implementar un protocolo 
de comunicación básico con LoRa Raw sin acceder a la interfaz gráfica o el sistema 
Open Wrt. 
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2.3 ALGORITMO DE ENVÍO Y RECEPCIÓN DE LOCALIZACIÓN. 

 
Para implementar el sistema de comunicación se hace uso de la librería RadioHead 

descrita previamente, el gateway Dragino LG01 será el receptor de mensajes y una 
tarjeta Arduino con el módulo Dragino LoRa Shield funcionará como nodo o emisor 

de mensajes, es importante resaltar que el mensaje enviado por el dispositivo 
Arduino indica la zona desde la cual se emite el este, al ser recibido por el gateway 
es almacenado en la memoria de este junto al RSSI obtenido. 

 
 
Configuración del nodo. 

 
El diagrama de flujo de datos en la figura 2.5 representa la rutina programada en el 

Arduino operando como nodo. 
 

 
Figura No. 2.5 Diagrama flujo de datos nodo 

Se inicializan las variables zona, counter y frecuencia, la variable zona corresponde 

al dato tipo string que contendrá la zona de envío del mensaje, la variable counter 
es una variable tipo integer que lleva el registro del número mensajes enviados, 

finalmente la variable frecuencia es definida tipo flotante con valor 915.0 de acuerdo 
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con la documentación de la librería RadioHead 30, para operar en la frecuencia 
permitida en la región. El siguiente paso consiste fijar los parámetros de la red LoRa 

correspondientes al ancho de banda, factor de propagación, tasa de codificación, 
finalmente se inicia un ciclo infinito de envío de mensajes mediante el método send 
de rf95 y se espera a la bandera de envío, en este método se envía en la zona y el 

contador como guía para sincronizar los datos posteriormente. 
 
Configuración de gateway. 

 
El diagrama de flujo de datos en la figura 2.6 representa la rutina programada en el 

LG01 operando como gateway o receptor. 

 

Inicio

Fin

Float Frecuencia = 
915.0

While(True)

Iniciar RF95
Fijar frecuencia, potencia 
TX, SF, Coding Rate,BW

Iniciar Brigde
Iniciar Datalogger

Rf95.avaliable()

Falló 
comunicación

T

uint_8 buf[]
uint_8 len = sizeof(buf)

T

rf95.recv(buf, 
&len)

F
Decodificar buffer

rf95.lastRSSI()

Buffer & Rssi
a memoria 

Dragino

T

1

2

3

4

 
Figura No. 2.6 Diagrama flujo de datos gateway. 

 
30 Airspayce. RadioHead Packet Radio library for embedded microprocessors [en linea]. Airspayce, arbil 2014. Disponible en 

https://www.airspayce.com/mikem/arduino/RadioHead/  

https://www.airspayce.com/mikem/arduino/RadioHead/
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En primer lugar, se inicializan las mismas variables para establecer comunicación 

inalámbrica por medio de LoRa, evidentemente estas deben tener los mismos 
valores para realizar la conexión, adicional se inicia el puente entre el 
microcontrolador y el módulo Linux para poder acceder al sistema de 

almacenamiento disponible en este lado del gateway y el datalogger de Arduino que 
permite la creación y edición de archivos en la memoria del dispositivo. 
 

A diferencia del nodo, el gateway se pone en modo de esperar hasta recibir un 
mensaje proveniente, cuando se recibe un mensaje este lo decodificará y 

almacenará junto al valor de RSSI con el cual recibió el mensaje en un archivo csv, 

este proceso es posible por medio del puente que permite enviar desde el ATMega 
al módulo Linux y almacenar en la memoria flash de este. 

 
 

2.4 IMPLEMENTACIÓN DE RED Y ADQUISICIÓN NIVELES DE RSSI. 

 

Con los algoritmos listos para transmitir y almacenar, se procede a implementar la 
red en el terreno de pruebas que puede ser observado a continuación, 

fundamentalmente el experimento consiste en obtener valores de RSSI en distintas 
zonas de este terreno para implementar un modelo que logre predecir la ubicación 
del nodo en alguna zona determinada dentro del terreno, correspondiente al 

conjunto residencial Colinas de Compostela, ubicado en el corregimiento La Ulloa 
del municipio Rivera, en un área aproximada de 48000m². 

 
La ubicación de los gateways comprende las zonas resaltadas, esta es determinada 
buscando cobertura de la red LoRa en la mayor parte del área del terreno, aunque 

en pruebas preliminares se logra un rango de conexión de 2km con línea de vista, 
es importante considerar la presencia de árboles y casas que logran dificultar la 
conexión en algunas zonas, ocasionando que no todos los mensajes lleguen a los 

gateway, una vez instalados los gateway se procede a realizar envío de mensajes 
del nodo en cada zona, estas últimas corresponden a las divisiones físicas del 

conjunto residencial, es decir, cada lote presente es usado como guía para 
establecer un punto de envío de mensajes desde el nodo, cada zona tiene asignado 
un identificador, estas divisiones pueden ser vistas en las figuras 
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Figura No. 2.7 Imagen Satelital terreno de pruebas 

 
Figura No. 2.8 Conjunto de zonas sector social. 
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Figura No. 2.9 Conjunto 1 zonas de lotes. 

 
Figura No. 2.10Conjunto 2 zonas de lotes 
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Figura No. 2.11 Conjunto 3 zonas de lotes 

 
Figura No. 2.12 Conjunto 4 zonas de lotes 
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2.5 RECOLECCIÓN Y FILTRADO DE DATOS. 

 
Después de haber capturado los distintos niveles de RSSI en las zonas planteadas 

inicialmente, transmitir esta información por medio de los nodos a los gateways y 
almacenarla dentro de la memoria interna de este último, es posible acceder a esta 

memoria por medio de protocolo FTP y extraer el conjunto de datos almacenado en 
cada gateway. 
 

En ocasiones, los mensajes enviados pueden perderse y no llegar a todos los 
gateway, lo anterior representa un problema al momento de realizar el análisis y 
modelamiento de los datos debido a que es necesario exista una uniformidad en los 

datos para obtener modelos confiables. Por esta razón es necesario realizar una 
limpieza y filtrado de los datos, eliminando aquellos paquetes que no hayan llegado 

a los tres gateways instalados, esta tarea podría ser realizada manualmente 
revisando los datos almacenados en cada uno de los gateways y borrando aquellos 
que no se encuentren en todos los gateways, sin embargo, debido a la gran cantidad 

de datos que se registran en cada una de las zonas, realizar esta tarea de manera 
manual es ineficiente. 

 
Por este motivo, como ayuda del software Excel, se programó un algoritmo que 
detecta cuando un paquete no se encuentra en todos los gateways y lo elimina, de 

esta manera, al final del filtrado, únicamente quedaran los niveles de RSSI de los 
paquetes que llegaron correctamente a todos los gateway, en este punto, el 

contador almacenado indicando el número de mensajes enviados es la clave para 
indicar si el mensaje no llegó a todos los gateways y será la variable que permite 
automatizar el proceso de filtrado, es importante eliminar información donde falten 

mensajes para lograr un proceso de entrenamiento de modelos  de machine 
learning limpio. El diagrama de flujo del algoritmo está representado en figura 2.13 
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Figura No. 2.13 Diagrama filtrado de datos RSSI 

 

El proceso de filtrado de datos se realiza de la siguiente manera:  
 
SELECCIÓN DE RANGO 

 
En este punto se selecciona el rango de celdas en las cuales se ejecutará el 

algoritmo, se selecciona un rango en vez de un número de elementos fijos para 
trabajar con un lote de datos, en este punto se crean las variables de SelectedRow 
que es la fila inicial del rango, LastRow que es la fila final del rango y por último se 
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declaran las variables Indoor, IndoorN y Outdoor, que corresponde al contador de 
la muestra, en cada uno de los tres gateways de la fila. 

 
VERIFICACION DE LA ULTIMA FILA 
 

Una vez se establecen las variables anteriores el programa comienza con el filtrado 
de los datos, en primer lugar, verifica si la fila actual en la que se va a realizar la 
comparación de datos es menor a la última fila, si esta condición es verdadera, 

significa que la fila actual no es la última fila y daría fin al proceso de filtrado. 
 

COMPARACION DE CONTADORES Y BORRADO DE DATOS 

 
El proceso de filtrado se realiza fila por fila de la selección, cuando el algoritmo inicia, 

este procede a verificar la columna correspondiente a los contadores, en caso de 
encontrar si un contador tiene un valor menor procederá a borrar las celdas 

relacionadas a este contador. 
 
A continuación, se presenta en la tabla la cantidad de datos obtenidos en cada zona, 

además se incluye la información de área para cada zona. 
 

Tabla 1 Síntesis zonas de experimento post-filtrado 

CLASE LUGAR CANTIDAD MENSAJES ALMACENADOS ÁREA (m²) 

1 Lote salón social 197 875 

2 Lote piscina 165 637,32 

3 Lote puerta llanera e 165 457 

4 Lote puerta llanera 1 197 731 

5 Cancha voleibol 146 434 

6 Lote esquina Lucho 165 541 

7 Lote 1 Lucho 167 416 

8 Lote 2 Lucho 174 459 

9 Asador 174 1042 

10 Planta tratamiento 180 696 

11 Lote Panel 189 1131 

12 Lote Panel 1 133 1301 

13 Lote Panel 2 164 1144 

14 Lote Panel 3 206 1097 

15 Lote Panel 4-1 286 1118,48 

16 Lote Panel 4-2 346 1065,64 

17 Lote Panel 5 269 1083,2 

18 Lote Panel 6 433 1325,44 

19 Lote Panel 7 293 1230,47 

20 L-01 361 1317,73 
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21 L-02 303 1036,35 

22 L-03 298 1319,16 

23 L-04 120 1136,33 

24 L-05 139 1514,53 

25 L-06 120 1296,27 

26 L-07 174 908,22 

27 F-01 323 921,6 

28 F-02 189 801,92 

29 F-03 286 1593,94 

30 F-04 274 1192,78 

31 F-05 159 1360,72 

32 M 142 1082 

33 M-P 58 1075 

34 M-1 195 1551 

35 M-2 193 1143 

36 M-3 363 1175,9 

37 V 171 1118 

38 V-2 225 1172 

39 V-3 234 1077,78 

40 V-4 213 997,76 

41 V-5 210 1414,16 

42 V-6 165 1105 

43 V-7 185 1137,89 

44 V-8 172 1746,96 

45 Casa 85 1106 
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3. CAPÍTULO TRES: DESARROLLO DE MODELO 

 
En este capítulo se presenta el proceso de entrenamiento de distintos modelos de 

Machine Learning, abarca todo el procedimiento de procesamiento de datos, 
implementación de modelo y ajuste de hiperparámetros, finalizando con el 

desarrollo de una red neuronal. 
 

3.1 PYTHON Y PROCESAMIENTO DE DATOS. 

 

Una vez almacenados los datos y realizado el filtrado de limpieza, es necesario el 
conjunto de datos dentro de Python, lenguaje de programación interpretado, con 
licencia de código abierto y librerías implementadas para desarrollo de modelos de 

machine learning de alto nivel, fundamentalmente para procesar datos con Python 
se utilizan las librerías NumPy, Pandas, Matplotlib y Scikit-learn, este procedimiento 

consta de tres partes que pueden ser observadas en la figura 3.1 
  
 

Carga de datos
División de conjunto 

de datos

Conjunto de 
entrenamiento

Conjunto de 
validación

Datos Niveles 
RSSI y Zonas

Entradas 
normalizadas

Escalado de 
características

 
Figura No. 3.1 Procesamiento de datos 

 

3.1.1 CARGA DE DATOS. 

Para cargar los datos que fueron recolectados, filtrados y se encuentran en formato 

de hoja de cálculo xlsx se hace uso de Pandas, esta entrega un objeto tipo 

DataFrame definido como datos tabulares bidimensionales, con tamaño mutable y 
potencialmente heterogéneos este objeto puede ser visto en la figura 3.2  
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Figura No. 3.2 Pandas DataFrame RSSI 

 
Este DataFrame permite realizar operaciones algebraicas en el conjunto de datos, 
así como separar la columna zona que será posteriormente la variable objetivo 

durante el entrenamiento, así como Indoor 1, Indoor 2 y Outdoor se mantendrán 
para hacer parte del conjunto de variables de entrada. 

 

3.1.2 ESCALADO DE CARACTERÍSTICAS: NORMALIZACIÓN ESTÁNDAR. 

Para desarrollar un algoritmo de Machine Learning, es ideal poseer características 
en los datos como media estadística cercana o idealmente con valor cero y varianza 
similar, esta última debido a casos donde una característica al presentar una 

varianza mayor implicará que el algoritmo estimador de mayor prioridad al 
aprendizaje en esta característica y empeorar para otras, para enfrentar estos dos 

problemas una solución estándar es la normalización estándar o z-score descrita 
por la ecuación. 
 

𝑧 =
𝑥 −  𝜇

𝜎
7 

 
Donde μ corresponde a la media de los datos y σ la desviación estándar, como 
resultado el conjunto de datos será escalado a valores entre 0 y 1 y una desviación 

estándar unitaria, el proceso de normalización estándar puede ser implementado en 
Python mediante scikit-learn en el conjunto de funciones de preprocesamiento. 
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3.1.3 DIVISION DE DATOS: ENTRENAMIENTO Y PRUEBA 

Para finalizar el procesamiento de datos se realiza la división del conjunto de datos 
en dos grupos, el primero de estos grupos será utilizado y visto por el algoritmo 

durante el proceso de entrenamiento, el segundo grupo únicamente será utilizado 
para evaluar el rendimiento del modelo después de finalizado el entrenamiento. 
 

Debido a que el conjunto de datos no tiene una cantidad elevada de datos se opta 
por una división de conjunto de datos estándar correspondiente a 80% de datos 
para entrenamiento y 20% para pruebas, esta división se realiza con el módulo de 

scikit-learn para selección de modelos, aunque esta selección es aleatoria, se 
genera un número pseudo-aleatorio para realizar la división con el fin de poder 

replicar el experimento con los distintos modelos en las mismas condiciones de 
división del conjunto de datos. 
 

 

3.2 ENTRENAMIENTO DE MODELOS. 

 
El proceso de entrenamiento de modelos de Machine Learning como puede ser visto 

en la figura 3.3 consiste en un proceso cíclico para evaluar el rendimiento del 
modelo, previamente se debe tener el conjunto de datos, definir el objetivo para 

implementar el modelo y los hiperparámetros de este, de igual manera el conjunto 
de datos debe ser limpio de ruido, previamente procesado para evitar salidas 
defectuosas que afectan el rendimiento. 

 

Estudio de problema, 
definición de objetivos

Data

Entrenamiento 
modelo

Evaluar 
rendimiento

Definición de 
hiperparámetros 

modelo.

Ajuste de modelo

Modelamiento 
finalizado

Buen rendimiento

Mal desempeño, 
over-fitting o under-

fitting

 
Figura No. 3.3 Procedimiento entrenamiento de algoritmos Machine Learning 
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3.2.1 OPTIMIZACIÓN HIPERPARÁMETROS: BUSQUEDA EN CUADRILLA 

Dentro del desarrollo del modelo interviene la selección de hiperparámetros, en un 
algoritmo de Machine Learning, hiperparámetro hace referencia a las variables que 

son fijadas previamente al entrenamiento y no pueden cambiar su valor durante 
este, aunque no existe una forma óptima de elegir un valor correcto para estos, se 
puede tomar algún tipo de estrategia para acercarse a un rendimiento deseable. 

 
Se optó por implementar la búsqueda de cuadrilla, un método fácil de desarrollar, 
aunque no muy recomendado para algoritmos de mayor complejidad, la búsqueda 

de cuadrilla consiste en definir un conjunto o vector del hiperparámetro a ajustar, 

una vez entrenado el modelo se realiza una nueva búsqueda en un nuevo conjunto 

de valores limitados por los dos que mayor rendimiento presentaron, este método 
puede ser automatizado limitado por el tiempo y costo computacional, este proceso 
se repite en el entrenamiento de todos los modelos de machine learning 

implementados para encontrar el mejor desempeño de estos. 
 

 
Figura No. 3.4 Método de la búsqueda de cuadrilla. 

 

3.2.2 MÉTRICAS DE RENDIMIENTO. 

Para evaluar el rendimiento del modelo se evalúan haciendo uso del subconjunto 
de datos de validación, cada algoritmo predice a partir de las variables de entrada y 
se comparan las salidas obtenidas con las salidas almacenadas, las métricas de 

evaluación implementadas corresponden a exactitud del modelo y puntaje R².  
 
Naturalmente en clasificación el desempeño del modelo es evaluado en función de 

las veces que predijo una clase correctamente, para clasificación binaria se 



47 
 

consideran cuatro estados para una predicción, verdadero positivo (VP), verdadero 
negativo (VN), falso positivo (FP) y falso negativo (FN) 

 
 
EXACTITUD. 

 
En clasificación, exactitud corresponde a la fracción de datos predichos del total de 
predicciones, puede ser representada como el porcentaje de predicciones correctas 

realizada por algoritmo y está descrita por la ecuación 8 
 

 

𝐸𝑥𝑎𝑐𝑡𝑖𝑡𝑢𝑑 =
𝑁ú𝑚𝑒𝑟𝑜 𝑑𝑒 𝑝𝑟𝑒𝑑𝑖𝑐𝑐𝑖𝑜𝑛𝑒𝑠 𝑐𝑜𝑟𝑟𝑒𝑐𝑡𝑎𝑠

𝑁ú𝑚𝑒𝑟𝑜 𝑡𝑜𝑡𝑎𝑙 𝑑𝑒 𝑝𝑟𝑒𝑑𝑖𝑐𝑐𝑖𝑜𝑛𝑒𝑠
=

𝑉𝑃 + 𝑉𝑁

𝑉𝑃 + 𝑉𝑁 + 𝐹𝑃 + 𝐹𝑁
(8) 

 
 

En modelos de multiclasificación, resulta lógico considerar para cada subconjunto 
de datos que exactitud fue lograda para cada clase, como puede ser observado en 

la ecuación 9, donde 𝑦̂𝑖 corresponde a la i-enésima predicción, evidentemente la 
generalización de exactitud se logra al ponderar las exactitudes logradas por clase. 

 

𝐸𝑥𝑎𝑐𝑡𝑖𝑡𝑢𝑑(𝑦, 𝑦̂) =
1

𝑛𝑚𝑢𝑒𝑠𝑡𝑟𝑎𝑠
 =  ∑ 1(𝑦̂𝑖 = 𝑦𝑖)

𝑛𝑚𝑢𝑒𝑠𝑡𝑟𝑎𝑠
−1

𝑖= 0

(9) 

 
PUNTAJE R². 

 
El puntaje R² representa el coeficiente de determinación obtenido, en otras palabras, 
representa la proporción de varianza para la variable predicha, proporciona un 

indicador de que tan probable es que el modelo prediga bien ante muestras o datos 
no vistos mediante la varianza, esta métrica está determinada por la ecuación 10. 
 

𝑅2(𝑦, 𝑦̂) =  1 −
∑ (𝑦𝑖 − 𝑦̂𝑖)

2𝑛
𝑖=1

∑ (𝑦𝑖 − 𝑦𝑖̅)2𝑛
𝑖=1

 , 𝑑𝑜𝑛𝑑𝑒 𝑦𝑖̅ =
1

𝑛
∑𝑦𝑖

𝑛

𝑖=1

(10) 

 

3.2.3 MODELOS MACHINE LEARNING. 

Para realizar el entrenamiento de modelos se hace uso de los módulos de 

modelamiento de scikit-learn, como puede ser visto en la figura 3.5 estos modelos 
tienen los métodos train en los cuales se insertarán las variables para aprendizaje 

y predict, este solo puede ser implementado si el modelo fue entrenado y retornará 
las predicciones para un arreglo de datos, este método será utilizado para validar 
posteriormente el rendimiento de cada algoritmo. 
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Figura No. 3.5 Diagrama UML Scikit-learn modelamiento. 

 
Todos los modelos de Machine Learning heredan los métodos de aprendizaje y 

predicción y en su constructor añaden las variables correspondientes a sus 
hiperparámetros, se implementa el método de búsqueda en cuadrilla para cada 

modelo y se almacena el rendimiento de estos para posterior comparación y 
selección del mejor rendimiento, una vez finalizado el entrenamiento de cada 
modelo para cada grupo de hiperparámetros se escogen como modelos finales 

aquellos con el mejor rendimiento y se almacenan para comparar los resultados de 
rendimiento para cada modelo implementado. 

 

3.3 REDES NEURONALES PROFUNDAS. 

 
La implementación de redes neuronales se lleva a cabo con la API Keras, una 

extensión de la librería de grafos computacionales de Python conocida como 
TensorFlow, implementar una red neuronal el Keras permite probar configuraciones 
de redes neuronales sin modificar cada grafo computacional, facilitando el diseño 

de redes, experimentar la prueba de arquitecturas mediante los objetos que dispone 
para las capas neuronales y hacer uso de distintos modelos matemáticos para 

optimización y cálculo de pérdidas en un alto nivel de programación. 
 

3.2.1 ESCALADO DE CARACTERÍSTICAS: FUNCIÓN MINMAX 

MinMax es una técnica de escalado de características, de manera similar a la 
normalización estándar, tiene como objetivo acercar la media del conjunto de datos 

a cero y tener varianza unitaria, a diferencia de la normalización estándar, en 
MinMax se busca que las características de los datos sean movidas a un conjunto 

de datos en un rango de valores deseados, ideal para redes neuronales donde se 
buscan valores de entradas en el rango de valores de cero y uno para evitar que 
valores muy grandes sean escalados sin control en las funciones de activación de 
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las neuronas, al momento de optimizar la velocidad de cómputo de gradientes 
presente en la red, empeorando el aprendizaje de la red neuronal, la función MinMax 

está descrita por la ecuación 11, donde max y min corresponden a los valores del 
rango al cual se desea ajustar el conjunto de datos, estos son omitidos para el caso 
donde el rango a ajustar está entre cero y uno como se desea para el caso de las 

redes neuronales 
 

𝐸𝑥 =
𝑥 − 𝑥𝑚𝑖𝑛 

𝑥𝑚𝑎𝑥 − 𝑥𝑚𝑖𝑛 
(𝑚𝑎𝑥 − min) + 𝑚𝑖𝑛 (11) 

 
 

3.3.2 ARQUITECTURA. 

La arquitectura de red implementada es un perceptrón multicapa conocida en ingles 
también como Fully Connected Network, consiste en una serie de capas que 

conectan todas sus salidas a todas las entradas de la siguiente capa, 
matemáticamente cada nodo o grafo computacional tomará un conjunto de datos 

entrantes y retornada una salida al siguiente conjunto de grafos, este proceso se 
conoce como propagación y es realizado por la neurona en entrenamiento y 
operando como modelo, la topología de la red implementada es ilustrada en la figura 

3.6 
 

Entre las características de este tipo de red, cada grafo computacional tendrá un 
conjunto de pesos que serán utilizados para ponderar las entradas de este y una 
función de transferencia no lineal para recrear características no lineales de la 

ponderación realizada por el grafo, teóricamente la cantidad de neuronas en cada 
grafo permite la generar hiperplanos de decisión mientras la cantidad de capas 

extiende la capacidad de generar hiperplanos para decisiones no lineales, sin 
embargo introducir muchas capas ocultas implica mayor costo computacional para 
el procesamiento de la red neuronal resultante, debido a la cantidad de clases a 

segmentar y la cercanía de niveles de RSSI en cada zona se optó por implementar 
varias capas ocultas en la red. 
 

Por último, se implementa la capa de salida, en esta capa se definen las 
características que permiten que la red opere como algoritmo de clasificación, 

específicamente como multiclasificación, al haber elegido 45 zonas y por tal motivo 
tener 45 clases a predecir, la capa de salida tiene obligatoriamente 46 salidas, 
siendo esta salida adicional para casos donde no es posible clasificar en alguna de 

las clases con las cuales fuese entrenado. 
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Figura No. 3.6 Arquitectura red implementada. 

 

3.3.3 SMOTE. 

En clasificación un problema muy recurrente es la presencia de conjuntos de datos 

desequilibrado, es decir, datos donde una clase puede tener una cantidad reducida 
de datos para entrenar si es comparada con alguna otra clase, pues la red neuronal 
al pasar pocas veces esta clase durante su entrenamiento no considerará lo 

suficiente esta clase para generar hiperplanos de decisión, una forma de solventar 
este problema consiste en duplicar la información de las clases minoritarias, sin 

embargo no se añadiría información adicional para mejorar el entrenamiento. 
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Una forma propuesta para abordar este problema consiste aumentar las muestras 
de datos en las clases minoritarias, generando muestras de datos sintéticas, de ahí 

el nombre en inglés de esta técnica conocida como Synthetic Minority Oversampling 
Tecnique, la cual busca sobre ejemplos aleatorios de la clase minoritaria cercanos 
en características y sus vecinos más cercanos, creando datos nuevos entre el 

ejemplo escogido aleatoriamente y uno de sus vecinos al azar,el nuevo dato 
sintético corresponde a una combinación convexa de los dos datos, este proceso 
de generar un dato sintético se realiza por medio de la ecuación 12, donde 

𝑋𝑖corresponde al dato elegido aleatoriamente, 𝜆 un número aleatorio entre 0 y 1 y 

𝑋𝑧𝑖 un vecino cercano al dato aleatorio 
 

𝑋𝑛𝑢𝑒𝑣𝑜 = 𝑋𝑖 + 𝜆(𝑋𝑧𝑖 + 𝑋𝑖) (12) 
 

 

3.3.4 FUNCIÓN DE ACTIVACIÓN. 

La función de activación elegida para las capas de entrada y capas ocultas es el 
rectificador lineal unitario o ReLU, debido a que demanda bajo costo computacional, 
converge rápidamente y genera salidas inestables que otras funciones pueden 

llegar a presentar, adicionalmente tiene características deseables como volver cero 
los valores negativos, algo deseable para este modelo debido a que al ser 

clasificación los valores negativos no son deseable en este modelo, está descrito 
por la ecuación donde z representa la salida de cada neuronal. 

(𝑧) = max (0, 𝑧) {
0, 𝑧 < 0
𝑧, 𝑧 ≥ 0

(13) 

 

 
Figura No. 3.7 Función de activación ReLU 



52 
 

Para la capa de salida esta función no es conveniente, al ser un sistema de 
clasificación la salida será un valor estimando la probabilidad para que un conjunto 

de datos sea una clase, esta salida tiene como estándar la función logística ilustrada 
en la ecuación 13  
 

𝜎(𝑧) =
1

1 + 𝑒−𝑧 
(14) 

 

 
Figura No. 3 8 Función logística. 

En esta función se toma la salida ponderada de la neurona y la transforma a un 
valor entre 1 y 0, sin embargo, sigue sin ser eficiente para la salida del tipo de 
modelo a recrear con la red neuronal, pues esta función solo permite una salida 

binaria, en otras palabras, solo es eficiente si el objetivo es determinar una clase, 
para solucionar este conflicto, se hace uso de una solución que consiste en la 

generalización de esta función para salidas multiclases conocida como la función 
softmax, esta toma como entrada el vector z de dimensión C correspondiente a las 
salidas producidas por la capa de salida de la red neuronal y entrega un vector de 

salida y de dimensión C , matemáticamente esto es representado de acuerdo a la 
ecuación 14 

 

𝑦𝑐(𝑧) =  
𝑒𝑍𝑐

∑ 𝑒𝑍𝑑𝐶
𝑑=1

 , 𝑝𝑎𝑟𝑎 𝑐 = 1,…𝐶 (15) 

 

Para poder entender la ecuación 15 como una función de probabilidad para la capa 
de salida de una red neuronal, es posible expresar esta ecuación de la siguiente 
forma. 
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[
 
 
 
 
𝑃(𝑡 = 1|𝐶)

.

.

.
𝑃(𝑡 = 𝐶 |𝑧)]

 
 
 
 

=   

[
 
 
 
 
𝑦𝑐(𝑧)1

.

.

.
𝑦𝑐(𝑧)𝐶]

 
 
 
 

=
1

∑ 𝑒𝑍𝑑𝐶
𝑑=1

[
 
 
 
 
𝑒𝑍1

.

.

.
𝑒𝑍𝑐]

 
 
 
 

(16) 

 

Donde 𝑃(𝑡 = 𝐶 |𝑧) representa la probabilidad de que a partir de una entrada Z 

corresponda a una clase C, en otras palabras, la función softmax aplicada a una red 
neuronal generará un vector de probabilidades para cada clase, siendo la clase que 

estimará como salida aquella que tenga mayor probabilidad en este vector. 
 

 

3.3.5 ENTRENAMIENTO DE RED NEURONAL. 

El proceso de aprendizaje de la red neuronal consiste en dos partes, la propagación 
que incluiría el realizar el cálculo de los grafos computacionales los cuales contienen 
los vectores de parámetros de la red conocidos como pesos seguido de la 

propagación hacia atrás o propagación regresiva, donde se evalúa el desempeño 
de la red y se ajustan los vectores de parámetros, esto es un procedimiento cíclico 

que permite a la red mejorar su desempeño en cada ciclo o época, gracias a este 
procedimiento las redes neuronales tienen mejor desempeño para realizar tareas 
de predicción respecto a los algoritmos de predicción tradicionales, para este 

modelo el entrenamiento es llevado a cabo con mil épocas. 
 
Función de pérdidas. 

 
La función de pérdidas es la métrica que permite a la red neuronal evaluar su 

desempeño durante el aprendizaje, comparará sus predicciones con la información 
del conjunto de base de datos de entrenamiento y ejecutará un cálculo de error, 
debido al objetivo de la red neuronal a implementar se hace uso de la función 

Entropía Cruzada Categórica, en ingles Categorical Cross-Entropy loss, esta 
computa cálculo de pérdida en función de un vector one-hot, idealmente se espera 

que solo la clase a predecir tenga como valor uno, lo equivale a que es la clase 
positiva para la predicción, en los otros casos debería obtenerse idealmente cero, 
castigando y aumentando el cálculo de error por todas las demás clases donde la 

red tienda a generar una probabilidad distinta a cero. 
 

𝐶𝐸 =  ℒ = −∑𝑡𝑖 log 𝑓(𝑍𝑖)

𝐶

𝑖

 , 𝑑𝑜𝑛𝑑𝑒 𝑓(𝑍𝑖) =
𝑒𝑍𝑖

∑ 𝑒𝑆𝑗𝐶
𝑗

(17) 

 

Optimizador. 
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El optimizador es el método utilizado para ajustar los parámetros de la red neuronal, 
este busca minimizar el error encontrado en la función de pérdidas, lo que implicaría 

que la red neuronal puede tener mejores predicciones, se utiliza el algoritmo ADAM, 
en inglés Adaptative Moment Estimator, este es una combinación de los algoritmos 
RMSProp y Gradiente Descendiente Estocástico , ajustando en cada iteracción el 

factor de aprendizaje, mediante el cálculo de los dos primeros momentos del 
gradiente para ajustar el factor de aprendizaje encargado de ajustar el peso de las 
neuronas, este cálculo está descrito en la ecuación 17 

 

𝑊𝑡 = 𝑊𝑡−1 −  𝜂
𝑚̂𝑡

√𝑣𝑡 + 𝜖
(18) 

 

Los momentos 𝑚̂𝑡 y 𝑣𝑡 son calculados a partir de las ecuaciones descritas 

acontinuacion, donde 𝛽 es el factor de aprendizaje, hiperparámetro que debe ser 
definido previo al entrenamiento de la red neuronal. 

 
 

𝑚 = 𝛽1𝑚𝑡−1 + (1 − 𝛽1) ∗ 𝑔 (19) 
 

 

𝑚̂𝑡 =
𝑚

1 − 𝛽1
𝑡 (20) 

 

 

𝑣 =  𝛽2𝑣𝑡−1 + (1 − 𝛽1) ∗ 𝑔2 (21) 
 
 

𝑣𝑡 =
𝑣

1 − 𝛽2
𝑡 (22) 

 
 

Donde 𝑔 corresponde al gradiente de la función de error respecto al vector de 

parámetros, en otras palabras, 𝑔 está definido por la ecuación, siendo ℒ el vector 

de pérdidas obtenido y 𝜃 el vector de parámetros de la red neuronal. 

 
 

𝑔 =
𝜕ℒ

𝜕𝜃
(23) 

 
Gráficas de entrenamiento. 
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Una vez se implementó la red neuronal con los hiperparámetros descritos 
previamente se procede a entrenar la red neuronal, durante el proceso de 

aprendizaje se genera un tercer conjunto de datos utilizados por el algoritmo para 
validar el desempeño de la red ante datos que aún no ve durante su entrenamiento. 
 

 

 
Figura No. 3.9 Gráfica de pérdidas durante entrenamiento red neuronal 

 

 
Figura No. 3.10 Gráfica de exactitud durante entrenamiento red neuronal 

Como puede ser visto en las figuras 3.9 y 3.10, la red va disminuyendo el error y 

aumentando la exactitud de sus predicciones, aunque en el conjunto de validación 
es posible observar como la pendiente de aprendizaje mantiene su valor, lo que 

quiere expresar es que con esta arquitectura definida la red no es posible obtener 
un mejor desempeño. 
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4. RESULTADOS Y DISCUSIONES. 

 
 

En este capítulo se presentan los resultados de este trabajo de investigación, se 
presenta el desempeño de los algoritmos entrenados antes datos que no 

intervinieron durante el proceso de aprendizaje, las gráficas comparativas entre 
modelos que fueron fundamental para la elección, adicional se realiza la evaluación 
del desempeño por zonas de los mejores algoritmos mediante un reporte de 

clasificación y matriz de confusión. 
 

4.1 SELECCIÓN DE MEJORES MODELOS. 

 

El proceso de elección de los mejores modelos es llevado a partir de las métricas 
de exactitud y puntaje R², métricas discutidas previamente, en otras palabras, se 

eligió directamente tener un gran número de predicciones acertadas en el modelo 
 
A continuación, se presenta el resultado para el algoritmo KNN. 

 

 
Figura No. 4.1 Resultados ajuste KNN 

 

De la figura 4.1, destaca el desempeño del algoritmo cuando el valor de K es 16, 
aunque presenta un puntaje R², la exactitud muestra que este algoritmo logra 65% 
de sus predicciones acertadamente. 

 
Con las máquinas de soporte vectorial se evalúa y compara el rendimiento con los 

cuatro tipos de kernel, después de realizar la comparativa como puede ser visto en 
la figura 4.2 el kernel que implementa características a los datos mediante la función 
de base radial o RBF es el que logra un mejor desempeño, este desempeño resulta 
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curioso pues la condición matemática RBF está familiarizada con la distribución 
gaussiana y similitud entre puntos, esta segunda es compartida con el algoritmo de 

KNN, aunque tiene menor exactitud que este último, motivo por el cual se compara 
al ajustar el parámetro C de las SVM, este resultado puede ser visualizado en la 
figura 4.3 

 

 
Figura No. 4.2 Ajuste de Kernel en SVM 

 

 
Figura No. 4.3 Ajuste penalidad C en SVM 
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Se observa un desempeño muy similar al algoritmo KNN en exactitud con valor de 
C igual a 1, en conclusión, no se presentan mejoras relevantes. 

 
Por otro lado, los algoritmos basados en métodos de árbol y ensamblaje de árboles 
presentan un desempeño similar, aunque inferior a los algoritmos presentados 

hasta ahora como puede ser visto en la figura 4.4 
 

 
Figura No. 4.4 Comparativa modelos basados en árboles de decisión 

 
Para finalizar la discusión de comparativa en los algoritmos tradicionales de 

machine learning, se comparan los mejores modelos obtenidos en cada algoritmo 
junto al algoritmo bayesiano, el cual tuvo el peor rendimiento, KNN se muestra como 

el algoritmo con mejor desempeño, sin embargo los resultados de estos algoritmo 
no indican un desempeño ideal para implementar un sistema de localización, pues 
solo el 65% de las veces logrará predicciones correctas, dejando mucho margen de 

error para considerar viable este método de localización. 
 

Con respecto a las redes neuronales, parte del desempeño fue presentado durante 
las gráficas de entrenamiento, sin embargo, se realiza la evaluación con los datos 
de prueba, los cuales nunca intervinieron en el proceso de entrenamiento, 

obteniendo notables diferencias respecto a los demás algoritmos como puede ser 

observado en la figura 4.5 red neuronal logra obtener 84% de predicciones 

correctas, motivo por el cual es posible considerar las redes neuronales como el 
mejor algoritmo para esta aplicación. 
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Figura No. 4.5 Comparativa exactitud de modelos entrenados 

4.2 REPORTES DE CLASIFICACIÓN. 

 
Para observar mejor el comportamiento en el sistema, se realiza la implementación 

del reporte de clasificación de los algoritmos, esto permite obtener información 
específica de como responden estos algoritmos en cada clase o zona a estimar 

localización, permitiendo observar en cuales es posible estimar con seguridad la 
ubicación del nodo y en cuales existe un peor desempeño. 
 

Para este reporte se implementan tres nuevas métricas para medir rendimiento de 
los algoritmos, para clasificación es posible considerar una predicción como 
verdadera o falsa en función de las clase a predecir, siendo verdadera positiva y 

verdadera negativa (VP y VN) las salidas deseadas en este tipo de sistemas, como 
contrapartida falsa positiva o falsa negativa (FP y FN), son salidas que resultan en 

predicciones  empeorando el rendimiento de este, estas salidas son evaluadas con 
las métricas precisión y exhaustividad (precision y recall en inglés) y la relación entre 
estas conocida como valor-F(F1 Score en inglés) 

 
Precisión es la métrica que indica en la exactitud del modelo cuantas predicciones 

fueron positivas realmente, representando la habilidad del clasificador de no 
clasificar como negativo una salida positiva, una baja precisión disminuye el 
rendimiento para que el algoritmo pueda identificar correctamente una clase, en esta 

aplicación, precisión indica que tan bueno es el algoritmo para identificar cada zona, 
la generalización de esta métrica está dada por la ecuación 23 

 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑉𝑃

𝑉𝑃 + 𝐹𝑃
(24) 
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Ahora bien, exhaustividad indica la habilidad del algoritmo para encontrar todas las 

muestras positivas, otra forma de medir la capacidad del algoritmo para encontrar 
correctamente la clase y evaluar cuantas veces este fallo en reconocerla, en otras 
palabras, dio valores de falso negativos, esta relación es vista en la ecuación 24 

 

𝐸𝑥ℎ𝑎𝑢𝑠𝑡𝑖𝑣𝑖𝑑𝑎𝑑 =
𝑉𝑃

𝑉𝑃 + 𝐹𝑁
(25) 

 

Finalmente, el valor-F presenta la relación entre precisión y exhaustividad, esta 
relación puede ser vista en la ecuación 25. 

 

𝐹1 𝑆𝑐𝑜𝑟𝑒 =
𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 ∗ 𝐸𝑥ℎ𝑎𝑢𝑠𝑡𝑖𝑣𝑖𝑑𝑎𝑑

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝐸𝑥ℎ𝑎𝑢𝑠𝑡𝑖𝑣𝑖𝑑𝑎𝑑
 (26) 

 
En síntesis, valor-F evalúa con igual importancia la exhaustividad y la precisión, a 

diferencia de la exactitud en estos casos se evalúan realmente cuando se va a 
clasificar exactamente la zona en función de la RSSI, no la capacidad de este de 

considerar las otras zonas como negativos de clasificación, a diferencia de la 
exactitud donde este caso si es considerado, al tener 45 zonas el algoritmo evalúa 
cada caso, por lo cual la cantidad de veces tendrá que dar resultados verdadero 

negativo será elevada y esta información es poco relevante, en otras palabras estas 
métricas presentan la calidad del modelo para identificar correctamente las zonas. 
 

La información de estas métricas se puede encontrar en la tabla 2 (Anexo A), en 
esta se presenta un informe de resultados de los algoritmos en función de la 

precisión, para el caso de la tabla 3 (Anexo A) se visualiza la exhaustividad de estos 
algoritmos, por último, la tabla 4 presenta el valor-F obtenido, adicionalmente en las 
tablas es posible encontrar la cantidad de datos con por cada zona con los que fue 

realizado el reporte. 
 

La tabla 5 (Anexo B) ilustra el desempeño de los algoritmos entrenados, 
específicamente en la red neuronal implementada es posible encontrar un bajo 
valor-F en la zona 23 (menor a 0.6) indicando que el algoritmo no es capaz de 

clasificar correctamente esta zona, se encuentra un grupo de rendimiento donde se 

tiene un valor aceptable pero no lo suficientemente bueno para las zonas 3, 15 y 25 

(valor entre 0.6 y 0.69), adicional se mantienen las clases 7, 16, 31 y 41 con un valor 
muy cercano en el límite de un valor-F considerado en las tres zonas anteriores, las 
otras 37 zonas restantes indican un valor-F donde el algoritmo será capaz de 

identificar estas zonas. 
 
De la misma forma se realiza el reporte de clasificación, específicamente el valor-F 

en la red neuronal con los datos de entrenamiento y se comparan con los de prueba, 
como puede ser visto en la tabla 5, la razón principal para realizar esta comparativa 
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se basa en la cantidad de datos totales, donde solo una muestra de 20% fue 
utilizada para prueba, motivo por el cual se opta por realizar esta comparación. 

 
En la información presentada en la tabla 5 es posible confirmar que el algoritmo no 
logra clasificar la zona 23 durante el entrenamiento, pero presenta mejores 

resultados en las demás zonas consideradas anteriormente, llevando las zonas 15, 
16 y 41 al grupo donde son clasificadas correctamente y subiendo al grupo de límite 
las demás zonas puestas en consideración, respecto a las 37 zonas restantes como 

es de esperarse debido a las gráficas de entrenamiento presentadas anteriormente, 
con valor-F cercano a 1, indicando que el algoritmo clasifica correctamente estas 

zonas. 

 

4.3 MATRIZ DE CONFUSIÓN. 

 

En un análisis de clasificación binario, la matriz de confusión únicamente consistiría 
en mostrar gráficamente los resultados de clasificación en los estados VP, VN, FP, 
FN, sin embargo, en multiclasificación la matriz de confusión resulta un método 

gráfico interesante para evaluar el rendimiento de la red neuronal. 
 

En este caso, el algoritmo se evaluó individualmente las predicciones de cada zona 
hechas con el algoritmo y se comparó con la etiqueta de prueba, si el eje horizontal 
representa la etiqueta de predicción y el eje vertical la etiqueta esperada, cada 

predicción hecha correctamente se ubica en la diagonal de la matriz, lo que es lo 
mismo a que cada predicción mal realizada por la red neuronal se ubicará fuera de 

la diagonal, esto resulta interesante pues aunque ya es posible saber que el 
algoritmo presenta errores en zonas, como es el caso de la zona 23, introduce una 
información adicional a evaluar interesante, mediante la matriz de confusión es 

posible confirmar el rendimiento de la red neuronal pero adicional permite observar 
en las clases donde se presentan fallos que está prediciendo la red neuronal, en 
otras palabras, como se equivoca el algoritmo, esta matriz es presentada en un 

mapa de calor en la figura 4.6 



62 
 

 
Figura No. 4.6 Matriz de confusión red neuronal. 

En primer lugar, es importante interpretar la forma de presentar las clases en la 

matriz de confusión, las clases van etiquetadas desde 0 hasta 44, sin embargo, 
representan las zonas 1 a 45 respectivamente, adicionalmente la matriz es 
presentada mediante una gráfica tipo mapa de calor o heatmap en inglés, este tipo 

de gráfico nos permite observar la cantidad de datos acumulados en cada espacio 
de la matriz, evidentemente gracias al rendimiento del algoritmo descrito 

previamente, la mayor densidad de datos se encuentra en la diagonal de la matriz 
debido a la gran cantidad de predicciones acertadas por la red neuronal. 
 

Al observar las etiquetas reales se observa como la red neuronal cuando realiza 
una predicción errónea, predice una zona muy cercana a la esperada, este es un 
comportamiento esperado, debido a que en zonas cercanas el nivel de RSSI tiende 

a ser similar, igualmente resulta interesante observar las zonas 1, 11 y 45 no tienen 
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errores de predicción, validando la información de las tablas de reporte de 
clasificación, y sus zonas cercanas tienden a tener pocos errores de predicción 

como es de esperarse de acuerdo al reporte dado, sin embargo, la matriz permite 
observar la concentración de errores puede ser observada en la matriz, este 
conjunto grande de errores que afectan negativamente el rendimiento del algoritmo 

evitando lograr la totalidad de predicciones correctas se encuentran en las clase de 
la mitad de la matriz, específicamente la zona 23, la cual fue previamente vista como 
la zona que peor rendimiento tuvo el algoritmo seguida de las zonas 15 y 16, es 

posible observar como las predicciones realizadas por la red neuronal son 
igualmente zonas muy cercanas a estas zonas mencionadas. 

 

Esta información sacada de la matriz de confusión resulta valiosa al revisar la figura 
4.6, sobre todo para confirmar la ubicación de estas zonas y las predicciones 

erróneas ubicadas zonas geográficamente cercanas, además cabe destacar la 
ubicación geográfica de estas zonas en todo el terreno de experimentación, 

aproximadamente ubicadas en el centro del terreno, una distancia intermedia a la 
ubicación entre las tres puertas de enlace, esto permite generar algunas hipótesis 
sobre el rendimiento del algoritmo, entre las cuales cabe destacar la falta de generar 

hiperplanos por parte de la red neuronal para segmentar correctamente las clases 
o zonas ubicadas en la mitad del terreno, al ser puntos donde la distancia entre el 
nodo y las puertas de enlace es común puede generarse dificultad en la red 

neuronal para identificar la zona de donde se obtienen los niveles de RSSI. 
 

Esta hipótesis planteada deja abierta la opción de buscar formas para mejorar la red 
neuronal, una posibilidad interesante por explotar de acuerdo a lo descrito en el 
párrafo anterior consistiría en añadir una cuarta puerta de enlace ubicada en este 

punto central donde se encuentran los errores de clasificación para añadir una 
nueva entrada de datos a la red neuronal que facilite la identificación de estas zonas. 

Resulta lógico pensar en un incremento de costos de implementación el utilizar una 
cuarta puerta de enlace, evidentemente, al revisar los casos aislados de zonas 
alejadas del centro donde también resultan fallos de predicción aunque en una 

cantidad muchísimo menor en teoría no deberían verse afectados por la hipótesis 
planteada, de todos modos estas zonas presentan elevados porcentajes de 

predicción correctos y en una implementación en un contexto aplicado de este 
método debería evaluarse si este porcentaje de error es aceptable. 

 

Finalmente, si se compara con trabajos previos que involucran redes LPWAN y el 
uso del RSSI para estimar ubicación, los métodos clásicos de regresión para 
predicción de latitud y longitud en promedio tienen un margen de error en un radio 

entre 300 m y 500 m (lo que en áreas circulares equivalen a 250000 m²), siendo un 
terreno considerablemente mayor a las áreas de en promedio 800 m² sobre las 

cuales se desarrollaron las pruebas para este proyecto, además del uso de menor 
cantidad de puertas de enlace LoRa, minimizando el costo de implementación.  
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5. CONCLUSIONES Y RECOMENDACIONES. 

 

5.1 CONCLUSIONES. 

 

Se logró implementar una red LPWAN basada en LoRa mediante el uso de 
dispositivos Dragino. La red tuvo un nodo y tres puertas de enlace logrando 
transmitir sin línea de vista a una distancia máxima de 350m en un área de 48000m² 

ubicada en el corregimiento La Ulloa del municipio de Rivera, para todos los puntos 
dentro de esta área se logró envío y recepción de mensajes. 

 
La zona de experimentación donde fue implementada la red consistió en un conjunto 
residencial, las divisiones existentes de las residencias, lotes y áreas comunes se 

utilizaron como puntos de referencia para el envío de mensajes desde el nodo LoRa, 
el envío de mensajes en cada zona permitió adquirir niveles de RSSI etiquetados 

con la información de la zona desde la cual fue enviado el mensaje, este registro es 
guardado para su posterior uso en la generación de modelos basados en algoritmos 
de aprendizaje de máquina para estimar la localización del nodo mediante estos 

modelos. 
 
Se desarrollan cinco modelos de aprendizaje de máquina, cada modelo fue ajustado 

para obtener el mejor desempeño de estos modelos realizando el ajuste de 
hiperparámetros, estos modelos probabilísticos o de clasificación buscan predecir a 

partir del nivel de RSSI obtenido en las puertas de enlace el punto de origen de 
envío de mensaje utilizando el registro de datos obtenido para determinar la huella 
digital del RSSI en cada zona, debido a la relación no lineal entre RSSI y localización 

los modelos de aprendizaje tradicionales logran un buen desempeño con los datos 
utilizados durante el aprendizaje, sin embargo, con datos nuevos solo logran estimar 

correctamente el 60% de los casos en promedio, siendo esto un indicativo de sobre-
entrenamiento en los modelos, motivo por el cual son descartados para estimar 
localización basado en intensidad de señal. 

 
Las dificultades para estimar ciertas zonas se deben a que el nivel de RSSI no 

presentaba cambios significativos, debido a la naturaleza logarítmica de esta escala 
de referencia, obteniendo niveles de RSSI similares en cada gateway, 

imposibilitándole al algoritmo estimar correctamente la ubicación del nodo 

 
Mediante el uso de Python y una API de alto nivel de modelamiento se desarrolla 
una red neuronal basada en modelos probabilísticos, esta red con topología 

totalmente conectada y salida de multiclasificación genera transformaciones no 
lineales de los niveles de RSSI para determinar la relación no lineal entre estos y la 

localización donde se obtuvieron estos niveles, la red tiene una salida de 
multiclasificación que estima la probabilidad para cada zona , siendo la salida con 
mayor probabilidad la determinada por el algoritmo como predicción de la red 
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neuronal, la generación de características no lineales dentro de la red permitió tener 
en este modelo mejor desempeño sobre los demás algoritmos, logrando 

predicciones el 94% del conjunto de datos de RSSI con los cuales fue entrenado el 
algoritmo y 84% sobre un conjunto de datos no vistos durante el entrenamiento. 
 

Aunque el método utilizado para estimar la ubicación de los nodos no es el más 
preciso, se comprobó que con equipo de bajo costo se pudieron conseguir 
probabilidades de más del 80% para las zonas establecidas sin demandar un alto 

costo computacional, siendo esta una alternativa a los métodos vistos en trabajos 
previos en donde la estimación se basa en una regresión, en la que se relaciona la 

posición con los valores de latitud y longitud de un punto, obteniendo rangos de 

estimación con fiabilidad de 800 m². 
 

 
 

5.2 RECOMENDACIONES. 

 

 
Una limitante del gateway Dragino LG01 es el uso del chip SX1276, este al ser 

monocanal solo permite la comunicación por un nodo, se recomienda el uso de 
gateway LoRa que tengan integrados chip multicanal como el SX1301 o SX1308 
para implementar una estructura de red LoRaWAN más sólida.  

 
Diseñar e implementar un sistema de alimentación fotovoltaico para suplir la 

demanda energética de los dispositivos en vista que este sistema está pensado 
principalmente para entornos rurales donde se requiera fuentes de energías 
distintas a la red eléctrica convencional 

 
Aumentar el número de gateways de la red para obtener un mayor número de 
variables de referencia para facilitar al algoritmo la estimación de la ubicación al 

aumentar el número de entradas que recibe. 
 

Implementar el sistema elevando los gateways en zonas donde pueda lograr línea 
de vista dentro de toda la zona para estimar localización, evitando perdidas en los 
mensajes transmitidos y disminuyendo el problema de sincronización de datos. 

 
Implementar pruebas y estudios con distintas configuraciones de parámetros de la 

red tales como el SF, ancho de banda y potencia de transmisión y contrastar los 
distintos resultados posibles. 
 

Automatizar la etapa de recolección de datos para entrenar el algoritmo, 
implementando una infraestructura que permita guardar los niveles de RSSI en una 
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base de datos y poder realizar posteriormente con mayor facilidad el proceso de 
limpieza de estos. 

 
Investigar e implementar modelos de aprendizaje de máquina de mayor complejidad 
y comparar resultados a fin de lograr mejores oportunidades de estimación de 

ubicación 
 
Realizar comparativas y estudios de costos con otros sistemas de ubicación. 

 
Implementar el modelo entrenado en un sistema productivo y realizar una 

investigación respecto a la eficiencia del modelo con el paso del tiempo, evaluando 

el impacto causado por la degeneración del modelo de aprendizaje de máquina 
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ANEXOS. 

 

ANEXO A. TABLAS RENDIMIENTO DE MODELOS DE MACHINE LEARNING 
 

Tabla 2 Reporte de precisión de algoritmos 

PRECISION 
ZONA CANTIDAD 

DATOS 
KNN SVM ÁRBOLES BAYESIANO RED NEURONAL 

1 37 0,74 0,86 0,80 0,57 0,94 

2 21 0,50 0,67 0,50 0,31 0,81 

3 33 0,36 0,43 0,30 0,12 0,69 

4 49 0,67 0,80 0,77 0,44 0,88 

5 34 0,55 0,66 0,60 0,63 0,84 

6 29 0,51 0,43 0,44 0,25 0,73 

7 39 0,36 0,27 0,26 0,23 0,68 

8 29 0,40 0,38 0,38 0,30 0,68 

9 39 0,93 0,97 0,95 0,95 1,00 

10 36 0,94 0,96 0,85 0,85 1,00 

11 47 1,00 1,00 1,00 1,00 1,00 

12 27 0,67 0,77 0,86 0,65 0,76 

13 44 0,92 0,98 0,93 0,90 0,95 

14 46 0,53 0,71 0,63 0,34 0,84 

15 53 0,44 0,42 0,37 0,52 0,76 

16 56 0,38 0,22 0,31 0,39 0,73 

17 50 0,64 0,64 0,61 0,54 0,75 

18 98 0,83 0,81 0,84 0,72 0,91 

19 55 0,84 0,81 0,73 0,72 0,94 

20 58 0,58 0,62 0,66 0,41 0,89 

21 72 0,44 0,37 0,41 0,24 0,83 

22 60 0,57 0,56 0,56 0,05 0,92 

23 19 0,31 0,29 0,13 0,17 0,50 

24 30 0,44 0,45 0,47 0,47 0,68 

25 22 0,37 0,30 0,29 0,15 0,56 

26 43 0,72 0,72 0,52 0,54 0,83 

27 69 0,58 0,54 0,53 0,48 0,79 

28 30 0,86 0,88 0,88 0,86 0,94 

29 61 0,87 0,95 0,85 0,78 0,95 

30 60 0,49 0,42 0,42 0,40 0,85 

31 32 0,33 0,23 0,35 0,83 0,80 
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32 29 0,70 0,81 0,64 0,62 0,76 

33 10 0,56 0,25 0,44 0,42 1,00 

34 35 0,52 0,59 0,57 0,51 0,70 

35 36 0,79 0,89 0,86 0,83 0,89 

36 75 0,66 0,60 0,59 0,62 0,81 

37 36 0,80 0,83 0,62 0,60 0,83 

38 34 0,65 0,71 0,45 0,33 0,90 

39 47 0,61 0,54 0,48 0,40 0,80 

40 41 0,42 0,60 0,47 0,45 0,80 

41 43 0,53 0,50 0,45 0,45 0,67 

42 37 0,81 0,83 0,70 0,55 0,82 

43 35 0,83 0,94 0,92 0,90 1,00 

44 40 0,78 0,79 0,86 0,81 1,00 

45 15 1,00 1,00 0,94 1,00 1,00 
 

 
Tabla 3 Reporte de exhaustividad de algoritmos. 

RECALL 

ZONA CANTIDAD 
DATOS 

KNN SVM ÁRBOLES BAYESIANO RED NEURONAL 

1 37 0,86 0,81 0,89 0,81 0,86 
2 21 0,86 0,76 0,67 0,71 1,00 

3 33 0,30 0,36 0,27 0,06 0,67 
4 49 0,63 0,67 0,76 0,49 0,88 
5 34 0,50 0,56 0,53 0,29 0,76 
6 29 0,62 0,52 0,48 0,31 0,83 
7 39 0,26 0,18 0,23 0,15 0,72 
8 29 0,21 0,38 0,41 0,21 0,86 
9 39 0,95 0,90 0,92 0,92 0,97 

10 36 0,83 0,72 0,81 0,81 0,97 
11 47 0,96 0,87 1,00 0,94 1,00 
12 27 0,96 0,89 0,93 0,74 0,96 
13 44 1,00 1,00 0,98 1,00 0,93 
14 46 0,65 0,65 0,63 0,37 0,78 
15 53 0,30 0,38 0,32 0,21 0,58 
16 56 0,38 0,46 0,34 0,45 0,71 
17 50 0,64 0,58 0,60 0,64 0,86 
18 98 0,94 0,90 0,90 0,93 0,94 
19 55 0,78 0,78 0,75 0,85 0,91 
20 58 0,79 0,72 0,71 0,16 0,88 
21 72 0,32 0,33 0,29 0,14 0,68 
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22 60 0,60 0,65 0,60 0,02 0,75 
23 19 0,21 0,11 0,11 0,05 0,63 
24 30 0,57 0,50 0,57 0,67 0,87 
25 22 0,32 0,32 0,32 0,45 0,91 
26 43 0,30 0,30 0,33 0,44 0,81 
27 69 0,70 0,72 0,61 0,72 0,81 
28 30 1,00 1,00 1,00 1,00 1,00 
29 61 0,89 0,89 0,92 0,87 0,90 
30 60 0,40 0,47 0,37 0,35 0,77 
31 32 0,22 0,19 0,38 0,16 0,63 
32 29 0,66 0,59 0,62 0,79 0,86 

33 10 0,50 0,10 0,40 0,80 0,60 
34 35 0,91 0,86 0,71 0,66 0,86 
35 36 0,94 0,92 0,89 0,94 0,94 
36 75 0,63 0,65 0,59 0,53 0,80 
37 36 0,67 0,67 0,64 0,69 0,83 
38 34 0,71 0,71 0,59 0,38 0,76 
39 47 0,57 0,53 0,55 0,40 0,85 
40 41 0,37 0,44 0,41 0,46 0,85 
41 43 0,44 0,47 0,30 0,12 0,77 
42 37 0,68 0,65 0,62 0,76 0,84 
43 35 1,00 0,97 0,97 1,00 0,94 
44 40 0,98 0,83 0,75 0,95 0,70 
45 15 1,00 0,67 1,00 1,00 1,00 

 
 

Tabla 4 Reporte de Valor-F de algoritmos. 

F1 

ZONA CANTIDAD 
DATOS 

KNN SVM ÁRBOLES BAYESIANO RED NEURONAL 

1 37 0,80 0,83 0,85 0,67 0,90 
2 21 0,63 0,71 0,57 0,43 0,89 
3 33 0,33 0,39 0,29 0,08 0,68 
4 49 0,65 0,73 0,76 0,47 0,88 
5 34 0,52 0,60 0,56 0,40 0,80 
6 29 0,56 0,47 0,46 0,28 0,77 
7 39 0,30 0,22 0,25 0,18 0,70 
8 29 0,27 0,38 0,39 0,24 0,76 
9 39 0,94 0,93 0,94 0,94 0,99 

10 36 0,88 0,83 0,83 0,83 0,99 
11 47 0,98 0,93 1,00 0,97 1,00 
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12 27 0,79 0,83 0,89 0,69 0,85 
13 44 0,96 0,99 0,96 0,95 0,94 
14 46 0,58 0,68 0,63 0,35 0,81 
15 53 0,36 0,40 0,34 0,30 0,66 
16 56 0,38 0,30 0,32 0,42 0,72 
17 50 0,64 0,61 0,61 0,59 0,80 
18 98 0,88 0,85 0,87 0,81 0,92 
19 55 0,81 0,80 0,74 0,78 0,93 
20 58 0,67 0,67 0,68 0,23 0,89 
21 72 0,37 0,35 0,34 0,18 0,75 
22 60 0,59 0,60 0,58 0,03 0,83 

23 19 0,25 0,15 0,11 0,08 0,56 
24 30 0,49 0,48 0,52 0,55 0,76 
25 22 0,34 0,31 0,30 0,23 0,69 
26 43 0,43 0,43 0,40 0,49 0,82 
27 69 0,63 0,62 0,57 0,57 0,80 
28 30 0,92 0,94 0,94 0,92 0,97 
29 61 0,88 0,92 0,88 0,82 0,92 
30 60 0,44 0,44 0,39 0,38 0,81 
31 32 0,26 0,21 0,36 0,26 0,70 
32 29 0,68 0,68 0,63 0,70 0,81 
33 10 0,53 0,14 0,42 0,55 0,75 
34 35 0,67 0,70 0,63 0,58 0,77 
35 36 0,86 0,90 0,88 0,88 0,92 
36 75 0,64 0,63 0,59 0,57 0,81 
37 36 0,73 0,74 0,63 0,64 0,83 
38 34 0,68 0,71 0,51 0,36 0,83 
39 47 0,59 0,54 0,51 0,40 0,82 
40 41 0,39 0,51 0,44 0,46 0,82 
41 43 0,48 0,48 0,36 0,19 0,72 
42 37 0,74 0,73 0,66 0,64 0,83 
43 35 0,91 0,96 0,94 0,95 0,97 
44 40 0,87 0,80 0,80 0,87 0,82 
45 15 1,00 0,80 0,97 1,00 1,00 
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ANEXO B. TABLA RENDIMIENTO DE MODELO DE RED NEURONAL 
 

Tabla 5 Comparativa valor-F entrenamiento y prueba de red neuronal 

REPORTE RED NEURONAL 

ZONA TRAIN TEST 
CANTIDAD F1-SCORE CANTIDAD F1-SCORE 

1 161 0,91 37 0,90 
2 145 0,86 21 0,89 
3 133 0,71 33 0,68 
4 149 0,83 49 0,88 

5 113 0,74 34 0,80 
6 137 0,74 29 0,77 
7 129 0,73 39 0,70 
8 146 0,81 29 0,76 
9 136 0,98 39 0,99 

10 145 0,95 36 0,99 
11 143 0,98 47 1,00 
12 107 0,88 27 0,85 
13 121 0,95 44 0,94 
14 161 0,88 46 0,81 
15 234 0,75 53 0,66 
16 291 0,78 56 0,72 
17 220 0,84 50 0,80 
18 336 0,92 98 0,92 
19 239 0,88 55 0,93 
20 304 0,86 58 0,89 
21 232 0,72 72 0,75 
22 239 0,83 60 0,83 
23 102 0,61 19 0,56 
24 110 0,80 30 0,76 
25 99 0,69 22 0,69 
26 132 0,74 43 0,82 
27 255 0,80 69 0,80 
28 160 0,99 30 0,97 
29 226 0,92 61 0,92 
30 215 0,72 60 0,81 
31 128 0,73 32 0,70 
32 114 0,84 29 0,81 
33 49 0,83 10 0,75 
34 161 0,84 35 0,77 
35 158 0,94 36 0,92 
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36 289 0,85 75 0,81 
37 136 0,88 36 0,83 
38 192 0,79 34 0,83 
39 188 0,86 47 0,82 
40 173 0,79 41 0,82 
41 168 0,78 43 0,72 
42 129 0,79 37 0,83 
43 151 0,96 35 0,97 
44 133 0,85 40 0,82 
45 71 1,00 15 1,00 

 

 
ANEXO C. CÓDIGO DE TRANSMISIÓN NODO LORA 

 
#include <SPI.h> 
#include <RH_RF95.h> 

RH_RF95 rf95; 
float frequency = 915.0; 
int counter = 0; 

 
char message = "lotecod"; /* Reemplazar cod por identificador zona*/ 

 
void setup()  
{ 

  Serial.begin(9600); 
  Serial.println("Start LoRa Client"); 

  if (!rf95.init()) 
    Serial.println("init failed"); 
  rf95.setFrequency(frequency); 

  rf95.setTxPower(13); 
  rf95.setSpreadingFactor(7); 
  rf95.setSignalBandwidth(125000);  

  rf95.setCodingRate4(5); 
} 

void loop() 
{ 
  Serial.println("Sending to LoRa Server"); 

  String str = "Prueba en lotecas: "+String(counter)+"/"; 
  counter++; 

  rf95.send(str.c_str(),str.length()); 
  rf95.waitPacketSent(); 
  delay(500); 

}  
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ANEXO D. CÓDIGO RECEPCIÓN GATEWAY LORA. 
 

#define BAUDRATE 115200 
#include <Console.h> 
#include <SPI.h> 

#include <RH_RF95.h> 
#include <FileIO.h> 
 

RH_RF95 rf95; 
float frequency = 915.0; 

 

void setup()  
{    

  Bridge.begin(BAUDRATE); 
  Console.begin(); 

  FileSystem.begin(); 
  while (!Console) ;  
  Console.println("Iniciando comunicación"); 

  if (!rf95.init()) 
    Console.println("Inicio fallido"); 
 

  // Configuración banda de frecuencia ISM 
  rf95.setFrequency(frequency); 

 
  // Configuración potencia señal 
  rf95.setTxPower(13); 

 
  // Configuración SF 

  rf95.setSpreadingFactor(7); 
   
  // Asignar Ancho de Banda 

  rf95.setSignalBandwidth(125000); 
   

  // Configurar CR :5(4/5),6(4/6),7(4/7),8(4/8)  
  rf95.setCodingRate4(5); 

   

  Console.print("Escuchando en la frecuencia: "); 
  Console.println(frequency); 
} 

 
void loop() 

{ 
  if (rf95.available()) 
  { 
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    // Recepción de mensaje    
    uint8_t buf[RH_RF95_MAX_MESSAGE_LEN]; 

    uint8_t len = sizeof(buf); 
    if (rf95.recv(buf, &len)) 
    { 

      RH_RF95::printBuffer("request: ", buf, len); 
      Console.print("got request: "); 
      Console.println((char*)buf); 

      Console.print("RSSI: "); 
      Console.println(rf95.lastRssi(), DEC); 

 

       
      // Almacenar RSSI en memoria 

 
      // Crear cadena string mensaje y rssi 

      String dataString = ""; 
      dataString = String((char*)buf) + "," + String(rf95.lastRssi(), DEC); 
       

      File dataFile = FileSystem.open("/usr/datos.csv", FILE_APPEND); 
        if (dataFile) { 
        dataFile.println(dataString); 

        dataFile.close(); 
        // print to the serial port too: 

        Console.println(dataString); 
      } 
        else { 

          Console.println("Error abriendo datos.csv"); 
        } 

    } 
    else 
    { 

      Console.println("recv failed"); 
    } 

  } 
} 

 

ANEXO E. CÓDIGO ENTRENAMIENTO DE MODELOS MACHINE LEARNING Y 
RED NEURONAL 
 

#Librerias Base:  
import pandas as pd 

import numpy as np 
import matplotlib.pyplot as plt 
from sklearn.model_selection import train_test_split # Utilidad dividir datos 
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#Metricas 

from sklearn.metrics import r2_score 
from sklearn.metrics import accuracy_score 
from sklearn.metrics import classification_report 

 np.random.seed(1234) 
datos = pd.read_excel("datosTesis.xlsx",index_col=None) 
datos = datos.abs() 

 
#Preprocesamiento, escalado de características. 

 

from sklearn.preprocessing import StandardScaler 
Normalizador = StandardScaler() 

datosN = Normalizador.fit_transform(X) 
 

 
#Creación de conjuntos de entrenamiento y prueba 
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2) 

 
 
#Listas auxiliares para validar modelos: 

best_acc = [] 
best_model = [] 

best_precision = [] 
 
Entrenamiento KNN 

 
from sklearn.neighbors import KNeighborsClassifier 

 
K_max = 100 
error_rate = [] 

r2_vector = [] 
acc_vector = [] 

# Will take some time 
for i in range(1,K_max): 

     

    knn = KNeighborsClassifier(n_neighbors=i) 
    knn.fit(X_train,y_train) 
    y_pred = knn.predict(X_test) 

    error_rate.append(np.mean(y_pred != y_test)) 
    r2_vector.append(r2_score(y_test, y_pred)) 

    acc_vector.append(accuracy_score(y_test, y_pred)) 
 
#Visualizar resultados: 
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plt.figure(figsize=(18,8)) 
 

plt.subplot(121) 
plt.plot(range(1,K_max),r2_vector,color='blue', linestyle='dashed', marker='o', 
         markerfacecolor='red', markersize=10) 

plt.title('R2 vs. K Value') 
plt.xlabel('K') 
plt.ylabel('R2') 

plt.grid() 
 

 

plt.subplot(122) 
plt.plot(range(1,K_max),acc_vector,color='blue', linestyle='dashed', marker='o', 

         markerfacecolor='red', markersize=10) 
plt.title('Acc vs. K Value') 

plt.xlabel('K') 
plt.ylabel('Acc') 
plt.grid() 

 
#Revisión mejor valor de K obtenido (K = 16) 
 

knn = KNeighborsClassifier(n_neighbors=16) 
knn.fit(X_train, y_train) 

y_pred = knn.predict(X_test) 
print("Accuracy:",accuracy_score(y_test, y_pred)) 
print("R^2:",r2_score(y_test, y_pred)) 

print(classification_report(y_test,y_pred)) 
best_acc.append(1-np.mean(y_pred != y_test)) 

best_model.append('KNN/K=16') 
 
report = classification_report(y_test,y_pred, output_dict=True ) 

best_precision.append(report['macro avg']['precision']) 
 

# Guardar reporte como tabla de excel. 
df_reporte_clasificacion = pd.DataFrame(report).transpose() 

df_reporte_clasificacion.to_excel("KNN_Class.xlsx") 

 
 
Entrenamiento SVC. 

 
from sklearn.svm import SVC 

 
#Ajuste de Kernel. 
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Kernels = ['linear', 'poly', 'rbf', 'sigmoid'] 
acc_rate = [] 

r2_vector = [] 
# Will take some time 
for i in range(len(Kernels)): 

    svc = SVC(kernel = Kernels[i]) 
    svc.fit(X_train,y_train) 
    y_pred = svc.predict(X_test) 

    acc_rate.append(1-np.mean(y_pred != y_test)) 
    r2_vector.append(r2_score(y_test, y_pred)) 

 

 
# Visualizar resultados 

 
barWidth = 0.25 

plt.figure(figsize=(10,5))  
# set height of bar 
bars1 = acc_rate 

bars2 = r2_vector 
r1 = np.arange(len(bars1)) 
r2 = [x + barWidth for x in r1] 

  
plt.bar(r1, bars1, color='#FE761E', width=barWidth, edgecolor='white', label='Acc 

Rate') 
plt.bar(r2, bars2, color='#3A778A', width=barWidth, edgecolor='white', label='R2') 
  

plt.xlabel('group', fontweight='bold') 
plt.xticks([r + barWidth for r in range(len(bars1))], Kernels) 

  
plt.legend(loc='upper right') 
plt.xlabel('Modelo') 

plt.axhline(y=0.0, color='gray', linestyle='--') 
plt.axhline(y=acc_rate[1], color='#FE761E', linestyle='-') 

plt.axhline(y=r2_vector[1], color='#3A778A', linestyle='-') 
plt.title('Accuracy & R^2 | Tuning SVC Kernel') 

 

 
#Revisión mejor SVC obtenido: (C = 1 , kernel tipo rbf) 
 

svc = SVC(kernel='rbf',gamma='auto', C = 1) 
svc.fit(X_train, y_train) 

 
y_pred = svc.predict(X_test) 
print("Accuracy:",accuracy_score(y_test, y_pred)) 
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print("R^2:",r2_score(y_test, y_pred)) 
print(classification_report(y_test,y_pred)) 

best_acc.append(1-np.mean(y_pred != y_test)) 
best_model.append('SVM/RBF') 
 

report = classification_report(y_test,y_pred, output_dict=True ) 
best_precision.append(report['macro avg']['precision']) 
 

# Guardar reporte como tabla de excel. 
df_reporte_clasificacion = pd.DataFrame(report).transpose() 

df_reporte_clasificacion.to_excel("SVC_RBF_1C_Class.xlsx") 

 
 

Entrenamiento Árboles de decisión. 
 

error_rate = [] 
r2_vector = [] 
type_model = [] 

acc_rate = [] 
 
 

#Árbol de decisión básico 
from sklearn.tree import DecisionTreeClassifier 

dt = DecisionTreeClassifier() 
dt.fit(X_train, y_train) 
y_pred = dt.predict(X_test) 

print("R^2 Score en test: ", r2_score(y_test,y_pred)) 
print("Accuracy:",accuracy_score(y_test, y_pred)) 

#print(classification_report(y_test,y_pred)) 
 
#Añadir a vectores para visualizar resultados. 

error_rate.append(np.mean(y_pred != y_test)) 
r2_vector.append(r2_score(y_test, y_pred)) 

type_model.append('Decision Tree') 
acc_rate.append(1-np.mean(y_pred != y_test)) 

 

 
#Bosque aleatorio 
 

from sklearn.ensemble import RandomForestClassifier 
n_estimators = [1,10,100,200,1000] 

acc_rate_rf = [] 
r2_vector_rf = [] 
# Will take some time 
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for estimator in n_estimators:     
    model = RandomForestClassifier(n_estimators=estimator,  

                               bootstrap = True, 
                               max_features = 'sqrt') 
    model.fit(X_train,y_train) 

    y_pred = model.predict(X_test) 
    acc_rate_rf.append(1-np.mean(y_pred != y_test)) 
    r2_vector_rf.append(r2_score(y_test, y_pred)) 

 
 

#Método avanzado de ensamblaje, XGBOOST 

 
from xgboost import XGBClassifier 

model = XGBClassifier() 
model.fit(X_train, y_train) 

y_pred = model.predict(X_test) 
print("Accuracy:",accuracy_score(y_test, y_pred)) 
print("R^2:",r2_score(y_test, y_pred)) 

#print(classification_report(y_test,y_pred)) 
 
#Añadir a vectores para visualizar resultados. 

error_rate.append(np.mean(y_pred != y_test)) 
r2_vector.append(r2_score(y_test, y_pred)) 

type_model.append('XGBOOST') 
acc_rate.append(1-np.mean(y_pred != y_test)) 
 

best_acc.append(1-np.mean(y_pred != y_test)) 
best_model.append('XGBOOST') 

 
report = classification_report(y_test,y_pred, output_dict=True ) 
best_precision.append(report['macro avg']['precision']) 

 
 

 
#Almacenar en Excel información XGBOOST 

df_reporte_clasificacion = pd.DataFrame(report).transpose() 

df_reporte_clasificacion.to_excel("Arboles_XGBOOST.xlsx") 
 
 

Entrenamiento NBC 
 

from sklearn.naive_bayes import GaussianNB 
gnb = GaussianNB() 
gnb.fit(X_train, y_train) 
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y_pred = gnb.predict(X_test) 

print("Accuracy:",accuracy_score(y_test, y_pred)) 
print("R^2:",r2_score(y_test, y_pred)) 
print(classification_report(y_test,y_pred)) 

 
best_acc.append(1-np.mean(y_pred != y_test)) 
best_model.append('Naive Bayesian') 

 
report = classification_report(y_test,y_pred, output_dict=True ) 

best_precision.append(report['macro avg']['precision']) 

 
#Reporte a Excel 

df_reporte_clasificacion = pd.DataFrame(report).transpose() 
df_reporte_clasificacion.to_excel("NBC.xlsx") 

Comparación resultados modelos machine learning. 
 
plt.figure(figsize=(10,5))  

# set height of bar 
bars1 = best_acc 
bars2 = best_precision 

  
r1 = np.arange(len(bars1)) 

r2 = [x + barWidth for x in r1] 
  
plt.bar(r1, bars1, color='#FE761E', width=barWidth, edgecolor='white', 

label='Accuracy') 
plt.bar(r2, bars2, color='#3A778A', width=barWidth, edgecolor='white', 

label='Precision') 
  
plt.xlabel('group', fontweight='bold') 

plt.xticks([r + barWidth for r in range(len(bars1))], ['KNN/K = 10', 'SVM/RBF', 
'XGBOOST', 'NB']) 

  
plt.legend() 

plt.xlabel('Modelo') 

 
plt.axhline(y=best_acc[n], color='#FE761E', linestyle='-') 
plt.axhline(y=best_precision[n], color='#3A778A', linestyle='-') 

 
 

Generar matriz de confusión KNN(n = 16) 
 
#Create KNN Classifier 
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knn = KNeighborsClassifier(n_neighbors=16) 
knn.fit(X_train, y_train) 

y_pred = knn.predict(X_test) 
 
from sklearn.metrics import confusion_matrix 

from sklearn.metrics import plot_confusion_matrix 
import seaborn as sns 
 

matrizConfusion = confusion_matrix(y_test,y_pred) 
 

df_cm = pd.DataFrame(matrizConfusion) 

df_cm.to_excel("CM_KNN.xlsx") 
 

sns.set(font_scale=1.4)  
fig_dims = (14,14) 

fig, ax = plt.subplots(figsize=fig_dims) 
sns_plot = sns.heatmap(df_cm, annot=True, annot_kws={"size": 16},ax = ax, 
cmap="afmhot_r") # font size 

sns_plot.set_title("Matriz de confusion") 
plt.xlabel("Predicted Label") 
plt.ylabel("True Label") 

 
 

Entrenamiento Red Neuronal. 
 
#MinMax Scaler 

from sklearn.preprocessing import MinMaxScaler 
#Over Sampling 

from imblearn.over_sampling import SMOTE 
#Keras utilidades: 
from keras.utils.np_utils import to_categorical 

 
#Cargar datos 

datos = pd.read_excel("datosTesis.xlsx",index_col=None) 
datos = datos.abs() 

y = datos['Zona'] 

X = datos.drop('Zona',axis = 1) 
 
smote = SMOTE() 

 
 

Normalizador = MinMaxScaler() 
XN = Normalizador.fit_transform(X) 
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X_train, X_test, y_train, y_test = train_test_split(XN, y, 
test_size=0.2,random_state=1234) #Revolver 

print("Datasets originales:",X_train.shape, X_test.shape, y_train.shape, 
y_test.shape) 
X_sm, y_sm = smote.fit_sample(X_train,y_train) 

print("Despues de Smote:",X_sm.shape,y_sm.shape) 
# Convertir a salidas categóricas. 
y_sm = to_categorical(y_sm, num_classes=46) 

 
##Implementación red neuronal con Keras. 

 

from keras.models import Sequential 
from keras.layers import Activation, Dense 

from keras import optimizers 
 

model = Sequential() 
 
#Arquitectura: 

model.add(Dense(100, input_shape = (3, ),activation = 'relu')) # Capa de entrada  
model.add(Dense(200,activation = 'relu')) #Capas ocultas 
model.add(Dense(300,activation = 'relu')) #Capas ocultas 

model.add(Dense(350,activation = 'relu')) #Capas ocultas 
model.add(Dense(400,activation = 'relu')) 

model.add(Dense(200,activation = 'relu')) 
model.add(Dense(46,activation = 'softmax')) #Capa de salida 
 

#Compilación modelo 
 

opt = optimizers.Adam(learning_rate=0.001) 
model.compile(optimizer = opt, loss = 'categorical_crossentropy', metrics = 
['accuracy']) 

 
history = model.fit(X_sm, y_sm, batch_size = 128, validation_split = 0.2, epochs = 

1000, verbose = 1) 
 

#Visualizar reporte entrenamiento. 

 
#Exactitud 
plt.figure(figsize = (10,6)) 

plt.plot(history.history['accuracy']) 
plt.plot(history.history['val_accuracy']) 

plt.legend(['training', 'validation'], loc = 'upper left') 
plt.xlabel("Epocas");plt.ylabel("Accuracy") 
plt.grid(b = True) 
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plt.show() 
 

#Pérdida 
plt.figure(figsize = (10,6)) 
plt.plot(history.history['loss']) 

plt.plot(history.history['val_loss']) 
plt.legend(['loss', 'validation'], loc = 'upper left') 
plt.xlabel("Epocas");plt.ylabel("Loss") 

plt.grid(b = True) 
plt.show() 

 

#Resumen modelo (Aquitectura y parámetros) 
model.summary() 

 
#Prueba modelo datos test. 

y_pred = model.predict(X_test, batch_size=64, verbose=1) 
y_pred_bool = np.argmax(y_pred, axis=1) 
 

print(classification_report(y_test, y_pred_bool)) 
 
 

matrizConfusion = confusion_matrix(y_test,y_pred_bool) 
df_cm = pd.DataFrame(matrizConfusion) 

 
sns.set(font_scale=1.4)  
fig_dims = (14,14) 

fig, ax = plt.subplots(figsize=fig_dims) 
sns_plot = sns.heatmap(df_cm, annot=True, annot_kws={"size": 16},ax = ax, 

cmap="afmhot_r") # font size 
sns_plot.set_title("Matriz de confusion") 
plt.xlabel("Predicted Label") 

plt.ylabel("True Label") 
 

#Almacenar modelo para posterior uso 
from keras.models import model_from_json 

json_model = model.to_json() 

with open('rssi_model84_smote.json', 'w') as json_file: 
    json_file.write(json_model) 
model.save_weights('rssi_weights84_smote.h5') 

 
#Como cargar modelo. 

with open('rssi_model86_smote.json', 'r') as json_file: 
    json_savedModel= json_file.read() 
model_j = model_from_json(json_savedModel) 
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model_j.summary() 
 

model_j.load_weights('rssi_weights86_smote.h5') 
opt = optimizers.Adam(learning_rate=0.001) 
model_j.compile(loss='categorical_crossentropy', 

         optimizer=opt, 
         metrics=['accuracy']) 
 

y_pred_j = model.predict(X_test, batch_size=64, verbose=1) 
y_pred_bool_j = np.argmax(y_pred, axis=1) 

 

report = classification_report(y_test, y_pred_bool_j, output_dict=True) 
print(classification_report(y_test, y_pred_bool_j)) 

 
#Utilidad de visualización arquitectura. 

from keras.utils.vis_utils import plot_model 
plot_model(model, to_file='model_plot.png', show_shapes=True, 
show_layer_names=True) 

 
#Almacenar en Excel resultados. 
df_reporte_clasificacion = pd.DataFrame(report).transpose() 

df_reporte_clasificacion.to_excel("output.xlsx") 
df_cm.to_excel("CM_NN.xlsx") 

 


