
 

 
UNIVERSIDAD SURCOLOMBIANA 

GESTIÓN DE BIBLIOTECAS 

 CARTA DE AUTORIZACIÓN 

CÓDIGO AP-BIB-FO-06 VERSIÓN 1 VIGENCIA 2014 PÁGINA 1 de 2  

 

Vigilada Mineducación 
La versión vigente y controlada de este documento, solo podrá ser consultada a través del sitio web Institucional  www.usco.edu.co, link 
Sistema Gestión de Calidad. La copia o impresión diferente a la publicada, será considerada como documento no controlado y su uso 

indebido no es de responsabilidad de la Universidad Surcolombiana. 

Neiva, 31 de septiembre de 2022 

 

Señores 

CENTRO DE INFORMACIÓN Y DOCUMENTACIÓN 

UNIVERSIDAD SURCOLOMBIANA 

Neiva 

 

El (Los) suscrito(s): 

Maicol Andres Garcia Rodriguez , con C.C. No 1075310787, 

Gustavo Andres Medina Diaz, con C.C. No. 1075292739 

Autor(es) de la tesis y/o trabajo de grado titulado SISTEMA EXPERTO PARA EL APOYO AL DIAGNÓSTICO 

MÉDICO DE HIPERTENSIÓN Y DIABETES A TRAVÉS DE MACHINE LEARNING, presentado y aprobado en 

el año 2022 como requisito para optar al título de INGENIERO ELECTRÓNICO; 

Autorizo (amos) al CENTRO DE INFORMACIÓN Y DOCUMENTACIÓN de la Universidad Surcolombiana para 

que, con fines académicos, muestre al país y el exterior la producción intelectual de la Universidad 

Surcolombiana, a través de la visibilidad de su contenido de la siguiente manera: 

● Los usuarios puedan consultar el contenido de este trabajo de grado en los sitios web que administra la 

Universidad, en bases de datos, repositorio digital, catálogos y en otros sitios web, redes y sistemas de 

información nacionales e internacionales “open access” y en las redes de información con las cuales tenga 

convenio la Institución. 

● Permita la consulta, la reproducción y préstamo a los usuarios interesados en el contenido de este trabajo, 

para todos los usos que tengan finalidad académica, ya sea en formato Cd-Rom o digital desde internet, 

intranet, etc., y en general para cualquier formato conocido o por conocer, dentro de los términos 

establecidos en la Ley 23 de 1982, Ley 44 de 1993, Decisión Andina 351 de 1993, Decreto 460 de 1995 y 

demás normas generales sobre la materia. 

● Continúo conservando los correspondientes derechos sin modificación o restricción alguna; puesto que, de 

acuerdo con la legislación colombiana aplicable, el presente es un acuerdo jurídico que en ningún caso 

conlleva la enajenación del derecho de autor y sus conexos. 

De conformidad con lo establecido en el artículo 30 de la Ley 23 de 1982 y el artículo 11 de la Decisión Andina 

351 de 1993, “Los derechos morales sobre el trabajo son propiedad de los autores”, los cuales son irrenunciables, 

imprescriptibles, inembargables e inalienables. 

http://www.usco.edu.co/


 

 
UNIVERSIDAD SURCOLOMBIANA 

GESTIÓN DE BIBLIOTECAS 

 CARTA DE AUTORIZACIÓN 

CÓDIGO AP-BIB-FO-06 VERSIÓN 1 VIGENCIA 2014 PÁGINA 2 de 2  

 

Vigilada Mineducación 
La versión vigente y controlada de este documento, solo podrá ser consultada a través del sitio web Institucional  www.usco.edu.co, link 
Sistema Gestión de Calidad. La copia o impresión diferente a la publicada, será considerada como documento no controlado y su uso 

indebido no es de responsabilidad de la Universidad Surcolombiana. 

EL AUTOR/ESTUDIANTE:                                               EL AUTOR/ESTUDIANTE: 

Maicol Andres Garcia Rodriguez    Gustavo Andres Medina Diaz 

Firma: ___________________________                          Firma: ___________________________ 

http://www.usco.edu.co/


 

 UNIVERSIDAD SURCOLOMBIANA 
GESTIÓN DE BIBLIOTECAS 

 DESCRIPCIÓN DE LA TESIS Y/O TRABAJOS DE GRADO 

CÓDIGO AP-BIB-FO-07 VERSIÓN 1 VIGENCIA 2014 PÁGINA 1 de 3 
 

 

Vigilada Mineducación 
La versión vigente y controlada de este documento, solo podrá ser consultada a través del sitio web Institucional  www.usco.edu.co, link 
Sistema Gestión de Calidad. La copia o impresión diferente a la publicada, será considerada como documento no controlado y su uso 

indebido no es de responsabilidad de la Universidad Surcolombiana. 

TÍTULO COMPLETO DEL TRABAJO: SISTEMA EXPERTO PARA EL APOYO AL DIAGNÓSTICO MÉDICO DE 

HIPERTENSIÓN Y DIABETES A TRAVÉS DE MACHINE LEARNING 

AUTOR O AUTORES: 

Primero y Segundo Apellido Primero y Segundo Nombre 

GARCIA RODRIGUEZ 

MEDINA DIAZ 

 

 

 

MAICOL ANDRES 

GUSTAVO ANDRES 

 

DIRECTOR Y CODIRECTOR TESIS:  

Primero y Segundo Apellido Primero y Segundo Nombre 

QUINTERO POLANCO JESÚS DAVID 

 

ASESOR (ES): 

Primero y Segundo Apellido Primero y Segundo Nombre 

 

 

 

 

PARA OPTAR AL TÍTULO DE: Ingeniero Electrónico 

FACULTAD: Ingeniería 

PROGRAMA O POSGRADO: Ingeniería Electrónica 

 

CIUDAD:  Neiva                           AÑO DE PRESENTACIÓN:  2022     NÚMERO DE PÁGINAS: 108 

http://www.usco.edu.co/


 

 UNIVERSIDAD SURCOLOMBIANA 
GESTIÓN DE BIBLIOTECAS 

 DESCRIPCIÓN DE LA TESIS Y/O TRABAJOS DE GRADO 

CÓDIGO AP-BIB-FO-07 VERSIÓN 1 VIGENCIA 2014 PÁGINA 2 de 3 
 

 

Vigilada Mineducación 
La versión vigente y controlada de este documento, solo podrá ser consultada a través del sitio web Institucional  www.usco.edu.co, link 
Sistema Gestión de Calidad. La copia o impresión diferente a la publicada, será considerada como documento no controlado y su uso 

indebido no es de responsabilidad de la Universidad Surcolombiana. 

TIPO DE ILUSTRACIONES (Marcar con una X): 

Diagramas X Fotografías X Grabaciones en discos___ Ilustraciones en general X Grabados___ Láminas___ 

Litografías___ Mapas___ Música impresa___ Planos___ Retratos___   Sin ilustraciones___ Tablas o Cuadros X 

 

SOFTWARE requerido y/o especializado para la lectura del documento:  

 

MATERIAL ANEXO:  

 

PREMIO O DISTINCIÓN (En caso de ser LAUREADAS o Meritoria): 

 

PALABRAS CLAVES EN ESPAÑOL E INGLÉS:  

Español                  Inglés                                      Español                      Inglés 

1.   API                    API                           6. Predicciones           Predictions 

2.   Framework                           Framework                      7. Aplicación móvil     Mobile application 

3.  Django                                       Django              

4.  Aprendizaje de máquina       Machine learning               

5.  Algoritmos         Algorithms              

 

RESUMEN DEL CONTENIDO: (Máximo 250 palabras) 

Se realizó la implementación de un producto mínimo viable del sistema experto para el 
diagnóstico de hipertensión y diabetes con Machine Learning desarrollado en Python donde 
se probaron diferentes métodos tradicionales para determinar cuál se ajustaba mejor a los 
datos y entregaba un mayor porcentaje de predicción. 

Se desarrolló una aplicación web con el framework de Django que permite a los usuarios 
realizar un proceso de diagnóstico a través de una interfaz gráfica con diferentes formularios 
que la hacen fácil y agradable de utilizar, así como también llevar un historial de las consultas 
realizadas mediante la utilización del gestor de bases de datos PostgreSQL. Además, se 

http://www.usco.edu.co/


 

 UNIVERSIDAD SURCOLOMBIANA 
GESTIÓN DE BIBLIOTECAS 

 DESCRIPCIÓN DE LA TESIS Y/O TRABAJOS DE GRADO 

CÓDIGO AP-BIB-FO-07 VERSIÓN 1 VIGENCIA 2014 PÁGINA 3 de 3 
 

 

Vigilada Mineducación 
La versión vigente y controlada de este documento, solo podrá ser consultada a través del sitio web Institucional  www.usco.edu.co, link 
Sistema Gestión de Calidad. La copia o impresión diferente a la publicada, será considerada como documento no controlado y su uso 

indebido no es de responsabilidad de la Universidad Surcolombiana. 

utilizó la librería Django Rest Framework para crear una API que interactúa e intercambia 
información con   una aplicación móvil desarrollada en Android Studio. 

La aplicación móvil permite a los usuarios registrarse, hacer un proceso de login y realizar 
el proceso de diagnóstico de hipertensión y diabetes haciendo uso de la librería Retrofit para 
la comunicación con la API. 

 

ABSTRACT: (Máximo 250 palabras) 

The implementation of a minimum viable product of the expert system for the diagnosis of 
hypertension and diabetes was carried out with Machine Learning developed in Python 
where different traditional methods were tested to determine which one best fit the data and 
delivered a higher percentage of prediction. 

A web application was developed with the Django framework that allows users to carry out a 
diagnostic process through a graphical interface with different forms that make it easy and 
pleasant to use, as well as keeping a history of the queries made through the use of the 
PostgreSQL database manager. In addition, the Django Rest Framework library was used to 
create an API that interacts and exchanges information with a mobile application developed 
in Android Studio. 

The mobile application allows users to register, perform a login process and carry out the 
hypertension and diabetes diagnosis process using the Retrofit library for communication 
with the API. 

 
APROBACION DE LA TESIS  

Nombre Jurado:  Martín Diomedes Bravo Obando 

Firma:  

 

 

Nombre Jurado: Johan Julián Molina Mosquera 

Firma:  

 

 

http://www.usco.edu.co/


SISTEMA EXPERTO PARA EL APOYO AL DIAGNÓSTICO MÉDICO DE
HIPERTENSIÓN Y DIABETES A TRAVÉS DE MACHINE LEARNING

MAICOL ANDRES GARCIA RODRIGUEZ
GUSTAVO ANDRÉS MEDINA DIAZ

UNIVERSIDAD SURCOLOMBIANA
FACULTAD DE INGENIERÍA

PROGRAMA DE INGENIERÍA ELECTRÓNICA
NEIVA - HUILA

2022



SISTEMA EXPERTO PARA EL APOYO AL DIAGNÓSTICO MÉDICO DE
HIPERTENSIÓN Y DIABETES A TRAVÉS DE MACHINE LEARNING

MAICOL ANDRES GARCIA RODRIGUEZ
GUSTAVO ANDRES MEDINA DIAZ

Trabajo de Grado Para Optar al Título de Ingeniero Electrónico

Director
Jesús David Quintero Polanco

Msc. TIC, Profundización en Telecomunicaciones

UNIVERSIDAD SURCOLOMBIANA
FACULTAD DE INGENIERÍA

PROGRAMA DE INGENIERÍA ELECTRÓNICA
NEIVA - HUILA

2022



Nota de aceptación
_________________________________
_________________________________
_________________________________
_________________________________
_________________________________
_________________________________
_________________________________

_________________________________
Firma del presidente del jurado

_________________________________
Firma del jurado

_________________________________
Firma del jurado

Neiva, 29 de Junio de 2022



DEDICATORIA

Este trabajo de grado quiero dedicárselo a mis papás, a mi hermano, y novia quienes
me apoyaron moral y económicamente, también a esas personas que me dieron su voz

de aliento para seguir adelante.
Maicol Andrés García Rodríguez

A Dios por bendecir mi camino, a mis padres que con mucho esfuerzo me apoyaron y
guiaron incondicionalmente para crecer personal y profesionalmente, a mis hermanas.

A familiares y amigos con quienes conté durante todo este proceso.
Gustavo Andrés Medina Díaz



AGRADECIMIENTOS

Al ingeniero electrónico Jesús David Quintero quien nos guió como director de
tesis para desarrollar el proyecto y culminar de la mejor manera posible.

A la Facultad de Ingeniería de la Universidad Surcolombiana nuestra alma máter
y a todos los docentes quienes nos brindaron las herramientas necesarias para

prepararnos académicamente y adquirir los conocimientos que tenemos actualmente.

Finalmente a nuestros padres, familiares, amigos y a todas aquellas personas
que nos apoyaron y pusieron un granito de arena para que este proyecto saliera

adelante.



CONTENIDO

Pág

1. INTRODUCCIÓN 17

2. OBJETIVOS 18

2.1. OBJETIVO GENERAL 18
2.2. OBJETIVOS ESPECÍFICOS 18

3. MARCO TEÓRICO 19

3.1. HIPERTENSIÓN 19
3.2. DIABETES 19
3.3. SISTEMA EXPERTO 20
3.4. SISTEMA OPERATIVO ANDROID 20
3.5. MODELO VISTA CONTROLADOR (MVC) 20
3.6. MACHINE LEARNING 21

3.6.1. K-NEAREST-NEIGHBOR 22
3.6.2. ÁRBOLES DE DECISIÓN 23
3.6.3. MÁQUINAS DE VECTORES DE SOPORTE (SVM) 23
3.6.4. NAIVE BAYES 23
3.6.5. BOSQUES ALEATORIOS 23

3.7. PREPROCESAMIENTO DE DATOS 23
3.8. ANÁLISIS DE COMPONENTES PRINCIPALES (PCA) 24
3.9. POSTGRESQL 24
3.10. API REST 24
3.11. DOCKER 24
3.12. KUBERNETES 25
3.13. AMAZON ELASTIC KUBERNETES SERVICE (EKS) 26

4. DESARROLLO ALGORITMO DE MACHINE LEARNING 27

4.1. BASES DE DATOS 27
4.1.1. Función de Pedigrí de Diabetes 27

4.2. LIMPIEZA Y PREPROCESAMIENTO DE LOS DATOS 28
4.2.1. Algoritmo de preprocesamiento PCA 31

4.3. ALGORITMO DE PREDICCIÓN 31
5. DESARROLLO DEL SISTEMA EXPERTO 33



5.1. DESARROLLO APLICACIÓN WEB EN DJANGO 33
5.1.1. Configuración inicial 33
5.1.2. Creación de apps para el proyecto 33
5.1.3. Conexión base de datos 33

5.2. CREACIÓN DE TABLAS DE DATOS EN DJANGO 34
5.2.1. Creación de tabla usuarios 34
5.2.2. Creación de tabla hipertensión 35
5.2.3. Creación tabla diabetes 36

5.3. ENVÍO Y RECEPCIÓN DE INFORMACIÓN DE BASES DE DATOS 37
5.4. CREACIÓN DE VISTAS EN DJANGO 37

5.4.1. Vista Login 38
5.4.2. Vista Registro 38
5.4.3. Vista Inicio 39
5.4.4. Vista diagnóstico hipertensión 40
5.4.5. Vista diagnóstico Diabetes 40
5.4.6. Vista Historial 42

5.5. CREACIÓN DE CONTROLADORES EN DJANGO 42
5.5.1. Controlador Registro 42
5.5.2. Controlador Login 43
5.5.3. Controlador Inicio 44
5.5.4. Controlador Historial 44
5.5.5. Controlador Hipertensión 45
5.5.6. Controlador Diabetes 46

5.6. RUTAS PAGINA WEB 46
5.6.1. Rutas usuario 46
5.6.2. Rutas Hipertensión 47
5.6.3. Rutas Diabetes 47

5.7. CONTENERIZACIÓN Y ALOJAMIENTO WEB MEDIANTE EKS DE AWS 51
5.7.1. Contenerización de aplicación web 51
5.7.2. Alojamiento web mediante EKS de AWS 52

6. DESARROLLO APLICACIÓN MÓVIL 56

6.1. CONFIGURACIÓN 56
6.1.1. Build.grade 56
6.1.2. AndroidManifest.xml 56



6.2. VISTAS 56
6.2.1. Vista login 56
6.2.2. Vista Home 58
6.2.3. Vista Hipertensión 60
6.2.4. Vista Diabetes 63
6.2.5. Vista Registro 65

6.3. COMUNICACIÓN POR RETROFIT PARA CONSUMIR API 67
7. CONCLUSIONES 69

8. RECOMENDACIONES 71

9. REFERENCIAS 72

10. ANEXOS 76



LISTA DE FIGURAS

Pág

Figura 1. Diagrama vista controlador (MVC). (imagen de [14]) 21
Figura 2. Maneras de desplegar aplicaciones. 25
Figura 3. Tipos de datos de cada columna de base de datos 29
Figura 4. Sumatoria de valores null por columna. 30
Figura 5. Configuración base de datos en Django 34
Figura 6. Código tabla hipertensión 35
Figura 7. Código tabla diabetes 36
Figura 8. Relación de tablas base de datos 37
Figura 9. Vista login de la aplicación web 38
Figura 10. Vista registro de la aplicación web 39
Figura 11. Vista Inicio de la aplicación web 39
Figura 12. Vista diagnóstico hipertensión de la aplicación web 40
Figura 13. Vista diagnostico diabetes de la aplicación web 41
Figura 14. Vista resultado diabetes de la aplicación web 41
Figura 15. Vista login de la aplicación web 42
Figura 16. Controlador registro usuario página web 43
Figura 17. Controlador login usuario página web 43
Figura 19. Controlador historial página web 44
Figura 20. Controlador diagnóstico hipertensión página web 45
Figura 21. Controlador diagnóstico diabetes página web 46
Figura 22. Rutas usuario página web 47
Figura 23. Rutas diagnóstico hipertensión página web 47
Figura 24. Rutas diagnóstico diabetes página web 48
Figura 25. Librerías para la creación del API 48
Figura 26. Archivo Serializers para la creación del API 49
Figura 27. Serializer diabetes para la API 49
Figura 28. Método para la crear una petición POST y poder diagnosticar diabetes 50
Figura 29. Lógica de respuesta de la API para el método de diagnosticar diabetes 50



Figura 30. Código archivo Dockerfile para la contenerización de la aplicación 51
Figura 31. Políticas o permisos para el Rol que maneja el cluster 52
Figura 32. Políticas o permisos para el Rol que maneja los worker-nodes 52
Figura 33. Imagen Cluster EKS creado 53
Figura 34. Código YAML para el despliegue del deployment en kubernetes 54
Figura 35. Código YAML para el despliegue del servicio en kubernetes 54
Figura 36. Código YAML para el despliegue de base de datos en kubernetes 55
Figura 37. Vista login app 57
Figura 38. Validación de ingreso app 58
Figura 39. Vista servicio app 59
Figura 40. Menú desplegable 60
Figura 41. Ejemplo vistas diagnóstico hipertensión App Móvil 61
Figura 42. Vista recopilación datos hipertensión 62
Figura 43. Vista resultado diagnóstico hipertensión 62
Figura 44. Ejemplo vistas diagnóstico diabetes App Móvil 63
Figura 45. Vista recopilación datos diabetes 64
Figura 46. Vista resultado diagnóstico diabetes 65
Figura 47. Vista registro de la aplicación móvil 66
Figura 48. Validación de campos del registro 67
Figura 49. Código creación de cliente retrofit 68
Figura 50. Código interfaz para la comunicación con los endpoints del API 68
Figura 51. Código Algoritmo en Machine Learning en Python parte 1 76
Figura 52. Código Algoritmo en Machine Learning en Python parte 2 77
Figura 53. Código Python preprocesamiento datos parte 1 77
Figura 54. Código Python preprocesamiento datos parte 2 78
Figura 55. Código Python preprocesamiento datos parte 3 79
Figura 56. Código Settings.py Django parte 1 80
Figura 57. Código Settings.py Django parte 2 81
Figura 58. Código Archivo Views.py (controlador) para diagnosticar hipertensión parte 1
82
Figura 59. Código Archivo Views.py (controlador) para diagnosticar hipertensión parte 2
83
Figura 60. Código Archivo Views.py (controlador) para el login y registro parte 1 84



Figura 61. Código Archivo Views.py (controlador) para el login y registro parte 2 85
Figura 62. Código HTML base de la página web 86
Figura 63. Código para crear el formulario que se muestra en la página web parte 1 87
Figura 64. Código para crear el formulario que se muestra en la página web parte 2 88
Figura 65. Código HTML de vista donde se muestra el resultado en página web 89
Figura 66. Código vista login aplicación móvil parte 1 90
Figura 67. Código vista login aplicación móvil parte 2 91
Figura 68. Código vista login aplicación móvil parte 3 92
Figura 69. Código vista Registro aplicación móvil parte 1 93
Figura 70. Código vista Registro aplicación móvil parte 2 94
Figura 71. Código vista Registro aplicación móvil parte 3 95
Figura 72. Código vista Menú aplicación móvil parte 1 96
Figura 73. Código vista Menú aplicación móvil parte 2 97
Figura 74. Código vista Menú aplicación móvil parte 3 98
Figura 75. Código vista formulario Edad aplicación móvil 99



LISTA DE ANEXOS

Pág

Anexo A. Código Algoritmo en Machine Learning en Python
82
Anexo B. Código Django 86

Anexo C. Lógica frontend (Django) 88

Anexo D. Lógica aplicación móvil 93



GLOSARIO

API: Interfaz de programación de aplicaciones que contiene un conjunto de funciones y
procedimientos para realizar una o varias funciones con el fin de ser utilizadas por otro
software.

APP: abreviatura de la palabra inglesa Application. Es una aplicación de software que
realiza funciones específicas y trabaja en diversos dispositivos como teléfonos, relojes
inteligentes, tablets e incluso televisores.

FRAMEWORK: esquema de trabajo para desarrollar e implementar software en
diversos lenguajes de programación.

HTTP: protocolo de transferencia de hipertexto el cual permite la transferencia de datos
y navegación en la web.

JSON: notación de objetos de JavaScript, formato de intercambio de datos que permite
transferir información entre cliente y servidor.

MÉTODO: función que contiene un conjunto de instrucciones, las cuales se ejecutan
cuando se llame a dicha función.

Middleware: software que provee un mecanismo para filtrar las peticiones HTTP de una
aplicación.

Postgresql : Es un sistema de gestión de bases de datos relacional orientado a objetos
y de código abierto, publicado bajo la licencia PostgreSQL.

Django: Es un framework de desarrollo web de código abierto que se encuentra escrito
en Python y que respeta el patrón de diseño conocido como modelo–vista–controlador.

REST: transferencia de estados representacional, es una arquitectura que permite
realizar la comunicación entre cliente y servidor basado en el protocolo HTTP, lo cual
permite obtener y generar datos u operaciones que se entregan en formatos como el
JSON.



Retrofit: Retrofit es un cliente de servidores REST para Android y Java desarrollado por
Square, muy simple y muy fácil de aprender. Permite hacer peticiones al servidor tipo
GET, POST, PUT, PATCH, DELETE y HEAD.

Docker: Docker es un sistema operativo (o runtime) para contenedores. Proporciona un
conjunto sencillo de comandos que puede utilizar para crear, iniciar o detener
contenedores.

Kubernetes: Kubernetes es una plataforma portable y extensible de código abierto para
administrar cargas de trabajo y servicios. Kubernetes facilita la automatización y la
configuración declarativa.



RESUMEN

Se realizó la implementación de un producto mínimo viable del sistema experto para el
diagnóstico de hipertensión y diabetes con Machine Learning desarrollado en Python
donde se probaron diferentes métodos tradicionales para determinar cuál se ajustaba
mejor a los datos y entregaba un mayor porcentaje de predicción.
Se desarrolló una aplicación web con el framework de Django que permite a los
usuarios realizar un proceso de diagnóstico a través de una interfaz gráfica con
diferentes formularios que la hacen fácil y agradable de utilizar, así como también llevar
un historial de las consultas realizadas mediante la utilización del gestor de bases de
datos PostgreSQL. Además, se utilizó la librería Django Rest Framework para crear
una API que interactúa e intercambia información con una aplicación móvil
desarrollada en Android Studio.
La aplicación móvil permite a los usuarios registrarse, hacer un proceso de login y
realizar el proceso de diagnóstico de hipertensión y diabetes haciendo uso de la librería
Retrofit para la comunicación con la API.

PALABRAS CLAVE

API, framework, aprendizaje de máquina, Django, algoritmos, predicciones, aplicación
móvil.



ABSTRACT

The implementation of a minimum viable product of the expert system for the diagnosis
of hypertension and diabetes was carried out with Machine Learning developed in
Python where different traditional methods were tested to determine which one best fit
the data and delivered a higher percentage of prediction.
A web application was developed with the Django framework that allows users to carry
out a diagnostic process through a graphical interface with different forms that make it
easy and pleasant to use, as well as keeping a history of the queries made through the
use of the PostgreSQL database manager. In addition, the Django Rest Framework
library was used to create an API that interacts and exchanges information with a
mobile application developed in Android Studio.
The mobile application allows users to register, perform a login process and carry out
the hypertension and diabetes diagnosis process using the Retrofit library for
communication with the API.

KEYWORDS:

API, framework, Machine Learning, Django,  algorithms, predictions, mobile application.



1. INTRODUCCIÓN

En la última década, las enfermedades de hipertensión y diabetes han sido una de las
principales causas de muertes a nivel mundial, ya que son pocas las personas que
poseen estas enfermedades y son conscientes de padecerlas, esto se debe a
deficiencias en el sistema de salud en cuanto a no llevar a cabo campañas de
prevención, información y acciones de autocuidado para conservar la salud y vida.
Tanto la hipertensión y la diabetes son enfermedades que generan múltiples
complicaciones como: problemas cardiovasculares, daño a las arterias, nervios, daño
en los órganos, en los ojos, extremidades, entre otros. Por lo que es de gran
importancia tomar medidas de autocuidado.

Teniendo en cuenta lo anterior, en la actualidad algunas organizaciones y
universidades, han desarrollado diferentes proyectos que facilitan el diagnóstico médico
de enfermedades de hipertensión y diabetes. Proyectos que se han enfocado en
diagnosticar solo una de estas enfermedades con porcentajes de precisión bajas.

Debido a esto, se desarrolló un sistema experto que facilita el diagnóstico de las dos
enfermedades en una misma aplicación, utilizando métodos de pre-procesamientos y
algoritmos de Machine Learning que permiten mejorar el porcentaje de precisión de
diagnóstico. De igual forma se usó el framework Django, que permite simplificar el
desarrollo de sitios web complejos y facilita la implementación de la Api Rest Full
Django (DRF), logrando la comunicación entre los pacientes mediante la App Android
creada y las peticiones HTTP con la página web.

17



2. OBJETIVOS

2.1. OBJETIVO GENERAL

Desarrollo de un sistema experto para el apoyo al diagnóstico médico de enfermedades
de hipertensión y diabetes a través de Machine Learning.

2.2. OBJETIVOS ESPECÍFICOS

● Investigar el estado del arte de los diferentes algoritmos de Machine
Learning y pre-procesamiento para la predicción de enfermedades de
hipertensión y diabetes.

● Realizar el algoritmo de Machine Learning para la predicción de
enfermedades de hipertensión y diabetes.

● Desarrollar el sistema experto mediante el diseño del modelo vista
controlador MVC de la aplicación nativa y la aplicación web.

● Realizar la validación de los aplicativos web y móvil, junto con la precisión
del algoritmo de aprendizaje desarrollado, y elaborar el documento final.

18



3. MARCO TEÓRICO

3.1. HIPERTENSIÓN

La hipertensión, muy conocida como presión arterial alta, es un trastorno muy
frecuente que afecta a un tercio de la población adulta, donde los vasos sanguíneos
presentan una tensión permanentemente alta, lo que puede dañarlos. La presión
arterial es la fuerza que produce la sangre contra las paredes de los vasos(arterias)
al ser bombeadas por el corazón. Una de las características de la hipertensión es
que no presenta síntomas claros, por ello se le conoce como el “asesino silencioso”
y puede tardar mucho tiempo en manifestarse, de igual forma presenta uno de los
factores de riesgos cardiovasculares más prevalentes.

En adultos la presión arterial normal cuando el corazón late (presión sistólica) es de
120 mm Hg y cuando el corazón esta relajado (presión diastólica) es de 80 mm Hg.
La presión arterial se considera alta cuando la presión sistólica es mayor o igual a
140 mm Hg y/o la presión diastólica es mayor o igual a 90 mm Hg. La hipertensión
es la causa prevenible más importante de enfermedades cardiovasculares del
mundo y si no es controlada puede provocar un ensanchamiento en el corazón,
infarto de miocardio, insuficiencia cardiaca, daños en las arterias, dilatación en el
ventrículo izquierdo, accidente isquémico transitorio, insuficiencia renal, daño en los
vasos sanguíneos de los ojos, coroidopatía y neuropatía óptica. Los efectos de la
hipertensión para la salud se pueden empeorar por otros factores como lo es una
dieta poco saludable, el consumo de tabaco, la inactividad física, el uso nocivo de
alcohol, la diabetes, la obesidad y el colesterol alto [8].

3.2. DIABETES

La diabetes es una enfermedad incurable que se produce porque el páncreas no
genera suficiente insulina o el cuerpo no utiliza de manera eficiente la insulina que
produce. La insulina es una hormona generada por el páncreas. La cual se encarga del
mantenimiento de los valores exactos de glucosa en la sangre. La insulina permite que
la glucosa sea capaz de ingresar al organismo y llegue al interior de las células, para
transformarse en energía y funcionen de manera adecuada los músculos y tendones.

La diabetes se puede presentar en diferentes tipos: diabetes tipo 1, diabetes tipo 2 y
diabetes gestacional. La diabetes tipo 1, se le diagnostica a niños y jóvenes. Se
produce debido a que el cuerpo no genera insulina porque el sistema inmunitario
destruye cada una de las células del páncreas. Por lo tanto, estas personas tienen que
usar insulina todos los días para poder vivir. La diabetes tipo 2, puede aparecer en

19



cualquier edad y es el tipo más común de diabetes. Se produce porque el cuerpo no
genera o no usa la insulina adecuadamente. La diabetes gestacional, se presenta en
algunas mujeres en embarazo y desaparece en la mayoría de los casos cuando nazca
el bebé [9].

3.3. SISTEMA EXPERTO

Es un sistema basado en computadoras, interactivas y confiables. Que usa
conocimiento de un área de aplicación compleja y actúa como un consultor experto
para los usuarios finales. También, Proporcionan soluciones a problemas muy
específicos al hacer inferencias iguales a la de los humanos sobre los conocimientos
específicos. Los sistemas expertos se identifican por el alto nivel de experiencia que
proporciona precisión, eficiencia y resolución imaginativas de problemas [10].

3.4. SISTEMA OPERATIVO ANDROID

Android es una plataforma de software para dispositivos móviles que incorpora un
sistema Operativo y aplicaciones de base. También mezcla herramientas y aplicaciones
que están vinculadas a una distribución Linux para dispositivos móviles y es de código
abierto, donde se pueden crear aplicaciones para plataformas usando el SDK de
Android para dispositivos móviles [11].

3.5. MODELO VISTA CONTROLADOR (MVC)

El modelo vista controlador (MVC) es un patrón de arquitectura de software que separa
una aplicación en tres componentes fundamentales, los cuales son el Modelo, la Vista y
el Controlador, que se trabajan de forma independiente, permitiendo que la aplicación
sea mucho más fácil de desarrollar y más organizada. Muchos frameworks modernos
implementan MCV para la arquitectura, de los cuales podemos mencionar AngularJS,
Ruby on Rails y Django [12].

En el caso específico de Django, a pesar de que sigue en teoría el patrón MVC, en éste
el Controlador, "C" es manejada por el mismo framework y la parte más importante se
produce en los modelos, las plantillas y las vistas, Django es conocido como un
Framework MTV [13]. Donde MTV significa:

M de "Model" (Modelo), la capa de acceso a la base de datos.
20



T significa "Template" (Plantilla), la capa de presentación.

V significa "View" (Vista), la capa de la lógica de negocios. Esta capa contiene la lógica
que accede al modelo y la delega a la plantilla apropiada.

La razón de que se utilice MVC es que permite separar los componentes de una
aplicación, esto quiere decir que, al momento de modificar una parte del código, esto
no afecta a otra parte del mismo. Por ejemplo, si se llega a modificar la base de datos,
solo se debe modificar el modelo ya que representa la estructura lógica de los datos en
una aplicación. Siendo un puente de comunicación entre el controlador, la base de
datos y la vista. El controlador es el encargado de aceptar y controlar las solicitudes
que hace el usuario, encargándose de solicitar los datos al modelo y, por último, toma
la vista adecuada para mostrar los datos al usuario. La vista en cambio es la
representación visual de los datos, esto quiere decir que va todo lo que tenga que ver
con la interfaz gráfica, todo esto se puede observar de una forma más clara en la
figura 1 [14].

Figura 1. Diagrama vista controlador (MVC). (imagen de [14])

21



3.6. MACHINE LEARNING

Machine Learning o aprendizaje automático, es una de las ramas de la inteligencia
artificial que se encarga de crear sistemas que permitan a las máquinas o
computadores aprender, sin la necesidad de estar expresamente programadas para
ello. Lo que resulta una habilidad indispensable para hacer, no solo sistemas
inteligentes, sino también autónomos, y capaces de identificar patrones entre los datos
para poder hacer predicciones. Machine Learning tiene un aspecto iterativo importante
porque a medida que los modelos son expuestos a nuevos datos, éstos pueden
adaptarse de forma independiente. Aprenden de cálculos previos para producir
decisiones y resultados confiables y repetibles. Es una ciencia que no es nueva – pero
que ha cobrado un nuevo impulso.

El aprendizaje automático tiene una amplia gama de aplicaciones, incluyendo motores
de búsqueda, diagnósticos médicos, detección de fraude en el uso de tarjetas de
crédito, análisis del mercado de valores, clasificación de secuencias de ADN,
reconocimiento del habla y del lenguaje escrito, juegos y robótica.

¿Por qué es importante Machine Learning?, Con el aprendizaje automático es posible
producir modelos de manera rápida y automática que puedan analizar datos más
grandes y complejos y producir resultados más rápidos y precisos – incluso en una
escala muy grande. Y con la construcción de modelos precisos, una organización tiene
una mejor oportunidad de identificar oportunidades rentables – o de evitar riesgos
desconocidos [15].

Métodos de Machine Learning: Dos de los métodos de aprendizaje basado en máquina
más ampliamente adoptados son aprendizaje supervisado y aprendizaje no
supervisado – pero existen también otros métodos de machine Learning.

Los algoritmos de aprendizaje supervisado producen una función que establece una
correspondencia entre las entradas y las salidas deseadas del sistema. Un ejemplo de
este tipo de algoritmo es el problema de clasificación, donde el sistema de aprendizaje
trata de etiquetar (clasificar) una serie de vectores utilizando una entre varias
categorías (clases). La base de conocimiento del sistema está formada por ejemplos de
etiquetados anteriores [16].

El aprendizaje no supervisado se utiliza contra datos que no tienen etiquetas históricas.
No se da la "respuesta correcta" al sistema. El algoritmo debe descubrir lo que se
muestra. El objetivo es explorar los datos y encontrar alguna estructura en su interior
[16]. El sistema tiene que ser capaz de reconocer patrones para poder etiquetar las
nuevas entradas.

Técnicas de clasificación: existen diferentes técnicas o algoritmos que nos permiten
clasificar unos datos de entrada de acuerdo a unas etiquetas de salida, entre las
técnicas se encuentran árboles de decisión, máquinas de soporte vectorial, bosques
aleatorios, redes bayesianas, entre otros.

22



3.6.1. K-NEAREST-NEIGHBOR

K vecinos más cercanos es un algoritmo de clasificación de tipo supervisado de
machine learning. El cual simplemente busca en las observaciones más cercanas a la
que se está tratando de predecir y clasifica el punto de interés basado en la mayoría de
datos que le rodean. Este algoritmo por ser uno de los más básicos y esenciales en
machine learning es muy implementando en el reconocimiento de patrones, sistema de
recomendación, minería de datos, plataforma de contenido digital y detección de
intrusos. [23]

3.6.2. ÁRBOLES DE DECISIÓN

Árboles de decisión es un algoritmo de clasificación de tipo supervisado de machine
learning. El cual está estructurado como un diagrama de flujo que permite la toma de
decisiones. El algoritmo está constituido por diferentes tipos de nodos, donde un nodo
interno representa una característica, la rama representa una regla de decisión y cada
nodo hoja representa el resultado. [24]

3.6.3. MÁQUINAS DE VECTORES DE SOPORTE (SVM)

Máquinas de vectores de soporte es un algoritmo que se puede usar para regresión y
clasificación de tipo supervisado. Este algoritmo con dos o más clases de datos
etiquetados, actúa como un clasificador trazando un hiperplano óptimo que separa
todas las clases, siendo el hiperplano el límite de decisión [25].

3.6.4. NAIVE BAYES

Naive Bayes es un algoritmo de clasificación de tipo supervisado de machine learning.
Este algoritmo proporciona una forma en la que se puede calcular la probabilidad de
una hipótesis dado un conocimiento previo [26].

3.6.5. BOSQUES ALEATORIOS

Bosques Aleatorios es un algoritmo de clasificación de tipo supervisado de machine
learning. Este algoritmo implementa conjuntos de árboles de decisión los cuales
permiten que distintos árboles vean diferentes porciones de datos, logrando que ningún
árbol vea todos los datos de entrenamiento [27]. Esto proporciona que cada árbol se
entrene con una gran variedad de datos de un mismo problema. De esta forma, al
combinar todos los resultados, unos errores se compensan con otros, logrando una
predicción que generaliza mejor.

3.7. PREPROCESAMIENTO DE DATOS

El preprocesamiento de datos es un paso fundamental en la minería de datos. Siendo
una etapa esencial del proceso de descubrimiento de información. Ya que muchos de

23



los datos no están limpios, presentando ausencia de información clave, valores
atípicos, entre otros.

La imperfección en la limpieza de datos es uno de los grandes problemas que permiten
que se presenten resultados erróneos en los algoritmos de clasificación. En el
preprocesamiento se realizan algunas de las siguientes tareas:

● Corregir inconsistencias
● Identificar y eliminar datos que se pueden considerar un ruido
● Rellenar valores faltantes
● Resolver redundancia

3.8. ANÁLISIS DE COMPONENTES PRINCIPALES (PCA)

El análisis de componentes principales es una técnica para disminuir la dimensión del
conjunto de datos, esto quiere decir que sirve para encontrar las causas de la
variabilidad de un conjunto de datos y ordenarlas por importancia. El ACP permite
representar los datos originales, en una especie de dimensión inferior del espacio
original, mientras limita al máximo la pérdida de información [29]

3.9. POSTGRESQL

PostgreSQL es un sistema de gestión de base de datos relacional y está orientado a
objetos, siendo multiplataforma y open source.

3.10. API REST

API REST es un método de arquitectura de desarrollo Web que se apoya en HTTP, y
que a través de los métodos HTTP (GET, POST, PUT, DELETE) se puede implementar
para ejecutar operaciones con los datos de cualquier aplicación, permitiendo gozar de
las ventajas como lo es: facilitar el desarrollo del frontend, crear arquitecturas
orientadas a servicios y exponer datos a otros programas.

3.11. DOCKER

El sistema de software de TI llamado "Docker" es la tecnología de organización en
contenedores que posibilita la creación y el uso de los contenedores de Linux®.

Con Docker, podrá utilizar los contenedores como máquinas virtuales muy livianas y
modulares, y obtendrá la flexibilidad necesaria para crearlos, implementarlos, copiarlos
y trasladarlos de un entorno a otro, lo cual le permite optimizar sus aplicaciones para la
nube.

Existen dos diferentes maneras de desplegar aplicaciones, una antigua y una nueva.

24



Figura 2. Maneras de desplegar aplicaciones.

Fuente: Tomado de la página oficial de Kubernetes [33]

La Manera Antigua de desplegar aplicaciones era instalarlas en un servidor usando el
administrador de paquetes del sistema operativo y la Manera Nueva es desplegar
contenedores basados en virtualización a nivel del sistema operativo, en vez del
hardware. Estos contenedores están aislados entre ellos y con el servidor anfitrión:
tienen sus propios sistemas de archivos, no ven los procesos de los demás y el uso de
recursos puede ser limitado [33].

Entre los beneficios de usar contenedores están:

● Ágil creación y despliegue de aplicaciones: Mayor facilidad y eficiencia al crear
imágenes de contenedor en vez de máquinas virtuales

● Desarrollo, integración y despliegue continuo: Permite que la imagen de
contenedor se construya y despliegue de forma frecuente y confiable, facilitando
los rollbacks pues la imagen es inmutable

● Aislamiento de recursos: Hace el rendimiento de la aplicación más predecible
● Utilización de recursos: Permite mayor eficiencia y densidad

3.12. KUBERNETES

Kubernetes es una plataforma portable y extensible de código abierto para administrar
cargas de trabajo y servicios. Kubernetes facilita la automatización y la configuración
declarativa. Tiene un ecosistema grande y en rápido crecimiento. El soporte, las

25



herramientas y los servicios para Kubernetes están ampliamente disponibles. Es muy
usado para la orquestación de contenedores [33].
3.13. AMAZON ELASTIC KUBERNETES SERVICE (EKS)

Amazon Elastic Kubernetes Service (Amazon EKS) es un servicio de contenedores
administrado para ejecutar y escalar aplicaciones Kubernetes en la nube o en las
instalaciones [35].

26



4. DESARROLLO ALGORITMO DE MACHINE LEARNING

En este capítulo se explicará el desarrollo del algoritmo de Machine Learning que se
encargará de la predicción de hipertensión y diabetes, esto mediante el uso de la
interfaz de escritorio Anaconda Navigator que permite iniciar aplicaciones y administrar
fácilmente paquetes, entornos como Spyder y JupyterLab, y canales de conda sin usar
líneas de comandos, y bajo el lenguaje de programación Python 3 que cuenta con
licencia de código abierto y permite su utilización en cualquier situación y costo.

4.1. BASES DE DATOS

Para el desarrollo del algoritmo, se utilizaron dos bases de datos de uso libre con fines
académicos, que contienen datos que son necesarios para la predicción tanto de
hipertensión cómo de diabetes, la base de datos utilizada para la predicción de
hipertensión fue obtenida de la página web Datos Abiertos de Colombia, y la base de
datos utilizada para diabetes es la Pima Indians Diabetes Database (PIDD) la cual ha
sido ampliamente utilizada y estudiada en el diagnóstico de diabetes.
Entre las columnas necesarias para la predicción de hipertensión están la edad (Años),
presión arterial sistólica (mm Hg), Índice de masa corporal (IMC), Peso (Kg), y los
Atributos necesarios para la predicción de diabetes están la edad (años), presión
arterial sistólica (mm Hg), espesor de piel (mm), insulina (mg/dl), índice de masa
corporal (IMC) y la función de pedigrí de diabetes (FPD). La función de pedigrí de
diabetes es como su nombre lo dice una función creada por un grupo de investigadores
Smith et al. en su trabajo Using the ADAP Learning Algorithm to Forecast the Onset of
Diabetes Mellitus [21], la cual utiliza datos de los antecedentes familiares del paciente
cómo el parentesco del familiar, la edad a la cual fue diagnosticado el familiar entre
otros.

4.1.1. Función de Pedigrí de Diabetes

Consiste en una función que puntúa la probabilidad de diabetes según los
antecedentes familiares de acuerdo a la historia y relación genética con el paciente. La
función de pedigrí de diabetes (DPF en inglés) fue desarrollada por Smith et al. [21] y
proporciona una medida de la influencia genética esperada de los parientes afectados y
no afectados sobre el eventual riesgo de diabetes del paciente. La función del pedigrí
de la diabetes se representa de la siguiente forma:

𝐷𝑃𝐹 = 𝑖
∑𝐾

𝑖
88−𝐴𝐷𝑀

𝑖( )+20

𝑗
∑𝐾

𝑗
𝐴𝐿𝐶

𝑗
−14( )+50

27



Donde,

hace referencia a todos los parientes, que han desarrollado diabetes hasta la𝑖
fecha del examen del paciente.

hace referencia a todos los parientes, que no han desarrollado diabetes hasta la𝑗
fecha del examen del paciente.

es el porcentaje de genes compartidos por el pariente. Y equivale a:𝐾𝑥

0.500 cuando el pariente es padre o hermano completo, 0.250 cuando el
pariente es medio hermano, abuelo, tía o tío, y 0.125 cuando el pariente es mitad
tía o mitad tío.

es la edad en años del familiar cuando se le diagnosticó diabetes.𝐴𝐷𝑀
𝑖

es la edad en años del familiar que no ha sido diagnosticado con diabetes.𝐴𝐿𝐶
𝑗

Las constantes 88 y 14 representan las edades máxima y mínima en
qué familiares de los pacientes generalmente desarrollan diabetes. Y 50 y 20 son
valores para ajustar los resultados de la función

4.2. LIMPIEZA Y PREPROCESAMIENTO DE LOS DATOS

Para comenzar el desarrollo nuestro algoritmo de Machine Learning es necesario
realizar una limpieza y preprocesamiento de los datos con los que vamos a trabajar.
Para realizar la limpieza primero se debe importar todas las librerías con las que se
trabajará para realizar este proceso, entre las librerías que usamos están Pandas, y
numpy las cuales nos sirven para manipular y analizar los datos como arreglos y
dataframes, Otras librerías utilizadas están la librería para visualizar los resultados de
mediante gráficas como matplotlib y seaborn, y librerías para Machine Learning como
Scikit-learn.
Luego de importar las librerías se procede a cargar los datos con los que se va a
trabajar a nuestro entorno de trabajo el cual es JupyterLab, y ya que nuestros datos se
encuentran en un archivo CSV la tarea de cargar los datos resulta bastante fácil, solo
es necesario utilizar el comando de la librería pandas “read_csv(nombrearchivo.csv)”.
Luego de haber cargado la base de datos, podemos proceder a analizar el tipo de dato
de cada columna y una breve descripción sobre ellos mediante el comando dtypes y
decribe().

28



Figura 3. Tipos de datos de cada columna de base de datos

Fuente: elaboración propia

Se comprueba el tipo de datos de cada columna y se separan para poder observar la
cantidad de columnas de tipo numérico y categórico. Estos primeros pasos se realizan
para ambos datasets, el de hipertensión y diabetes, y a continuación se pueden
observar cómo funcionan:

Ahora vamos a comenzar a realizar la limpieza de los datos, primero comprobando la
cantidad de valores nulos presentes entre los datos, analizando cada columna,
eliminando las columnas con mayor número de valores nulos, ya que no aportan
valores suficientes con los cuales trabajar, y también se procede a eliminar todas las
columnas que no aportan nada a nuestro desarrollo, pero se encuentran presentes en
el dataset. Para eliminar los valores nulos se utiliza el comando dropna que permite
eliminar valores de archivos dataframe. Aquellas columnas que tengan un número
pequeño de datos nulos fueron rellenados con el valor medio para cada columna, y
luego se puede comprobar si aún existen valores nulos y suma la cantidad mediante el
código data_h.isnull().any().sum(), como se muestra a continuación:

29



Figura 4. Sumatoria de valores null por columna.

Fuente: elaboración propia

Luego, se completarán los campos nulos hallados utilizando la media de cada columna
respectivamente, y para los datos de tipo categóricos se tomó la decisión de eliminar
las filas que contengan datos nulos para evitar que estos tengan un efecto negativo en
nuestro algoritmo.

Utilizando el componente preprocessing de la librería Sklearn se importó
LabelEncoder(), la cual es una función de esta librería que nos permite realizar una
codificación de las variables categóricas presentes en la tabla por variables numéricas ,
por ejemplo para la salida de hipertensión será 0 si la variable es NO y 1 si la variable
es SI. Este proceso se realiza para las variables categóricas necesarias para la
realización del algoritmo. Luego de esto, se procede a observar la correlación presente
en todos los atributos en relación con los datos de salida y determinar qué variables
tienen una mayor relación. Por lo cual los atributos útiles y que fueron elegidos para la
realización de nuestro algoritmo fueron la edad, la presión arterial sistólica, altura, peso,
Índice de Masa Corporal (IMC).

Se observaron los datos de la salida de nuestra base de datos los cuales se utilizaran
para realizar el entrenamiento, y se construyó una gráfica con python que nos permitirá
observar la cantidad filas que presentan hipertensión, ya sea prehipertensión,

30



hipertensión en etapa 1, o hipertensión en etapa 2, y las filas que no presentan
hipertensión en nuestra base de datos.

4.2.1. Algoritmo de preprocesamiento PCA

Luego de la limpieza de los datos de entrada se utilizará el algoritmo de
preprocesamiento Principal Component Analysis o PCA, por sus siglas en inglés, que
nos permite combinar variables de entrada de una manera específica y eliminar
algunas variables menos importantes. Este algoritmo se puede importar en python
mediante la librería de sklearn, mediante el comando from sklearn.decomposition
import PCA, después de esto se llama el número de componentes que utilizará el
algoritmo para entregar el resultado, y para finalizar utilizamos fit_transform para
transformar nuestros datos mediante PCA, y quedando todo listo para realizar el
entrenamiento de nuestro algoritmo de detección de hipertensión o diabetes.

4.3. ALGORITMO DE PREDICCIÓN

Después de realizar todo el preprocesamiento anterior, los datos se encuentran listos
para poder entrenar el algoritmo, y lo primero que vamos a hacer será crear un arreglo
que tendrá los atributos de entrada y un arreglo que tendrá los valores de salida, luego
se procede a dividir los datos en datos de entrenamiento y en datos de test. Los datos
de entrenamiento serán utilizados para entrenar nuestro algoritmo de machine learning
y de esa manera obtener un resultado, por otra parte, los datos de test serán utilizados
para comprobar el correcto funcionamiento del algoritmo entrenado y la precisión
correspondiente.
El comando para dividir los datos es train_test_split, importado de la librería sklearn de
la siguiente manera, los parámetros utilizados en este comando son el arreglo de
entrada, el arreglo de salida, test_size que indica el tamaño de los datos de test que
retorna el comando, y random_state, que es un valor que se usa básicamente para que
cada vez que se ejecute el comando test_train_split se obtenga el mismo conjunto de
datos de entrenamiento y de test.
Luego, se procede a importar el algoritmo a utilizar desde la librería sklearn, se crea el
algoritmo y se varían sus parámetros de entrada para poder obtener la mejor respuesta
posible, y luego se entrena el algoritmo mediante el arreglo de datos de entrenamiento.

Después, se utiliza la función predict, que utilizará el algoritmo entrenado y los datos de
entrada de test para predecir la salida, la cual será hipertensión y diabetes. los datos
que entrega como resultado este comando se utilizara para obtener el porcentaje de
precisión del algoritmo, se utilizará la salida predecida y la salida de test, y se evalúa en
qué no se cumple que ambas salidas tengan igual valor.

31



Todo este proceso se realizará para diferentes algoritmos de machine learning, y así
obtener el mejor resultado para nuestro conjunto de datos, los algoritmos evaluados
son Arboles de decisión, Random Forest, KNN, Maquina de vectores de soporte y
Naive Bayes, y las respuestas obtenidas para cada algoritmo son resumidas en la
siguiente tabla.
Tabla 1. Resultado Entrenamiento Algoritmos de predicción

Métodos de Machine Learning % Predicción Hipertensión % Predicción Diabetes

Árbol de decisión 0.94 0.89

Random Forest 0.96 0.88

KNN 0.98 0.90

Máquina de vectores de soporte
(SVC) 0.99 0.91

Naive Bayes 0.94 0.88

Luego de tener el algoritmo con mejor respuesta, se encapsula el algoritmo y se
exporta mediante la librería pickle de python, los cual mediante unos pocos comandos
nos permite generar un archivo con extensión pkl que contendrá nuestro algoritmo de
detección. Todo este proceso se hace con la intención de poder utilizar este algoritmo
generado en nuestra interfaz de usuario web, la cual tendrá un formulario para poder
ingresar los datos de entrada del algoritmo mediante un método POST, luego procesar
estos datos con el algoritmo y entregar el resultado del diagnóstico.

32



5. DESARROLLO DEL SISTEMA EXPERTO

En este capítulo se explicará el desarrollo del sistema experto, el cual consta de una
aplicación web y una aplicación móvil, la aplicación web se desarrolló bajo el framework
Django debido a su versatilidad, facilidad de trabajo y que su lenguaje de programación
base es Python 3, y se utilizó el entorno de desarrollo Visual Studio Code para construir
el proyecto. La aplicación móvil se desarrolló mediante el uso del entorno de desarrollo
integrado (IDE) ya que es el entorno oficial para el desarrollo de apps para dispositivos
Android.

5.1. DESARROLLO APLICACIÓN WEB EN DJANGO

5.1.1. Configuración inicial

Para trabajar con Django se debe tener instalado Python 3 con anterioridad, y luego
instalar la librería de Django mediante la línea de comando pip install Django==3.2.5
Esta línea depende de la versión que quieras instalar. Luego de eso, se crea el
proyecto mediante el comando django-admin startproject mysite, donde mysite es el
nombre del proyecto y luego se puede comprobar su funcionamiento mediante la
ejecución de un servidor local que viene con la librería, el comando a utilizar es python
manage.py runserver. Cuando se crea el proyecto se crea una carpeta de archivos que
se puede abrir en cualquier editor de código, en nuestro caso utilizamos Visual Studio
Code, y donde se puede empezar a programar nuestro proyecto.

5.1.2. Creación de apps para el proyecto

Luego de crear el proyecto es necesario crear aplicaciones para desarrollar cada una
de las partes importantes del proyecto, todo esto mediante el comando python
manage.py startapp myapp donde myapp es el nombre de la app. Para nuestro
proyecto creamos 3 apps, una para la creación de registro e inicio de sesión de
usuarios, otra para la parte del sistema que tiene que ver con Hipertensión y otra para
la parte de Diabetes.

5.1.3. Conexión base de datos

Para la base de datos utilizamos el gestor de base de datos Postgresql, el cual es fácil
de utilizar y frecuentemente utilizado con Django. Para la configuración y establecer
una conexión con la base de datos es necesario instalar la librería psycopg2 en Python

33



mediante el comando pip install psycopg2 y modificar el archivo settings.py del
proyecto de la siguiente manera:

Figura 5. Configuración base de datos en Django

Fuente: elaboración propia

Donde ENGINE equivale al motor o librería que se utiliza para realizar la conexión
(psycopg2), NAME es el nombre de la base de datos creada en PostgreSQL mediante
PgAdmin, USER y PASSWORD son credenciales para poder gestionar la base de
datos en PgAdmin, HOST equivale a la dirección IP del servidor, DATABASE_PORT es
el puerto de conexión con el gestor de base de datos.

5.2. CREACIÓN DE TABLAS DE DATOS EN DJANGO

Para la creación de las tablas necesarias para el proyecto se debe modificar el archivo
del proyecto models.py de cada app, y luego de eso realizar las migraciones en el CMD
mediante el comando python manage.py makemigrations y luego ejecutar el comando
python manage.py migrate. El archivo manage.py es el que contiene toda la
información de la ejecución del proyecto.

5.2.1. Creación de tabla usuarios

Hace referencia a los campos registrados en la tabla usuarios. Esta tabla contiene
información básica del usuario o paciente: id de tipo incremental (servirá como
identificador para relacionar la información con las otras tablas), nombre, apellido,
nombre de usuario, correo, contraseña, y confirmación de contraseña. Esta tabla se
crea en base a una clase predefinida en Django que se extiende de
django.contrib.auth.models la cual tiene por nombre User, y para importar esta clase se

34



escribe from django.contrib.auth.models import User. Está clase contiene otros campos
aparte de los mencionados anteriormente, los cuales son last_login que es un campo
tipo datetime autogenerado que indica la fecha del último login del usuario, is_stack
que indica si el usuario puede entrar al admin site de Django, is_active indica si el
usuario es considerado activo, is_superuser que indica si el usuario tiene todos los
permisos.

Tabla 2. Campos por defecto del modelo Login

Campo: Tipo de dato:
username Charfield

First_name Charfield
Last_name Charfield

Email Emailfield
password Passwordfield
Is_stack Booleano
Is_active Booleano

Is_superuser Booleano
Last_login Datefield

Date_joined Datefield

5.2.2. Creación de tabla hipertensión

Hace referencia a los campos registrados en la tabla hipertensión. Esta tabla contiene
información de los datos necesarios para el diagnóstico de hipertensión de cada
paciente, donde el campo id de tipo incremental servirá como identificador para
relacionarla con la información de las demás tablas, edad en años del paciente, el
peso en kilogramos , la presión arterial sistólica que presente el paciente, el índice de
masa corporal el cual se haya con la altura y peso del paciente, y por último el
usuario_id el cual es el indicador del paciente el cual esté realizando el diagnóstico.
La información del servicio se divide en dos tablas relacionadas para manejar la
información más ordenada y segmentada: rutas e imágenes.

Figura 6. Código tabla hipertensión

35



Fuente: elaboración propia

5.2.3. Creación tabla diabetes

Hace referencia a los campos registrados en la tabla diabetes. Esta tabla contiene
información de los datos necesarios para el diagnóstico de diabetes de cada paciente,
donde el campo id de tipo incremental servirá como identificador para relacionarla con
la información de las demás tablas, edad en años del paciente, la presión arterial
sistólica que presente el paciente, el espesor de la piel, la insulina, el índice de masa
corporal el cual se haya con la altura y peso del paciente, la función de pedigrí de
diabetes mencionada anteriormente, y por último el usuario_id el cual es el indicador
del paciente el cual esté realizando el diagnóstico.

Figura 7. Código tabla diabetes

Fuente: elaboración propia

36



Figura 8. Relación de tablas base de datos

Fuente: elaboración propia

5.3. ENVÍO Y RECEPCIÓN DE INFORMACIÓN DE BASES DE DATOS

Mediante la gestión de los modelos y controladores que provee Django se realizan
consultas y se insertan registros en la base de datos. Para realizar la comunicación con
la base de datos en el caso del sistema de registro y autenticación de usuarios se
realiza con la ayuda de Django y su libreria auth, la cual permite crear usuarios en la
base de datos y realizar las validaciones correspondientes a la autenticación de
usuario en el proceso de login.

5.4. CREACIÓN DE VISTAS EN DJANGO

Se realizó la creación de las vistas para la aplicación web, comenzando por la vista de
login, la cual contiene un formulario para ingresar los datos de usuario y contraseña,
una vista de registro con su respectivo formulario y botón, una vista principal llamada
home, la cual nos muestra un menú con las opciones de login, registro, diagnóstico de
hipertensión y diabetes, y por último las vistas necesarias para realizar el diagnóstico
de hipertensión y diabetes.

37



5.4.1. Vista Login

Para la vista login, se realizó un formulario que contiene los datos de usuario el cual
hace referencia al id de usuario registrado al crear la cuenta y la respectiva contraseña.
luego se tiene el botón de recuerdame que permite almacenar los datos del usuario
para cuando intente ingresar de nuevo y un botón para enviar los datos y realizar la
respectiva validación de credenciales, en caso de que las credenciales sean
incorrectas se generará un error que aparecerá en pantalla. al final aparecerá un
enlace que permitirá registrarse en caso de no tener una cuenta, que nos redirigirá a la
vista Registro.

Figura 9. Vista login de la aplicación web

Fuente: elaboración propia

5.4.2. Vista Registro

La vista registro contiene un formulario con los diferentes campos necesarios para que
una persona pueda registrarse en la página web, los campos son usuario, email,
nombres, apellidos, contraseña y el campo confirmar contraseña, campos típicos
utilizados en cualquier sistema de registros. Al final de la página se encuentra el botón
enviar, que enviará los datos para su respectiva validación cómo por ejemplo que el id
no se encuentre ya registrado en el sistema, el email sea correcto y la contraseña sea
adecuada.

38



Figura 10. Vista registro de la aplicación web

Fuente: elaboración propia

5.4.3. Vista Inicio

La página de inicio contiene la barra de menú superior con sus respectivas opciones
cómo inicio, hipertensión, diabetes y los botones de iniciar sesión y registrate. luego se
trabaja un poco el diseño de la página con un slide y botones que llevan a diferentes
vistas.

Figura 11. Vista Inicio de la aplicación web

39



Fuente: elaboración propia

5.4.4. Vista diagnóstico hipertensión

En esta vista se encuentra el formulario con todos los datos requeridos para realizar el
diagnóstico de hipertensión y un botón de enviar para realizar la validación de los datos
y la redirección a los resultados.

Figura 12. Vista diagnóstico hipertensión de la aplicación web

Fuente: elaboración propia

5.4.5. Vista diagnóstico Diabetes

Para diabetes se crearon varias vistas con diferentes formularios que contienen todos
los datos requeridos para realizar el diagnóstico de diabetes y un botón de enviar para
realizar la validación de los datos y la redirección a los resultados.

40



Figura 13. Vista diagnostico diabetes de la aplicación web

Fuente: elaboración propia

41



Figura 14. Vista resultado diabetes de la aplicación web

Fuente: elaboración propia

5.4.6. Vista Historial

La vista historial mostrará todos los diagnósticos hechos por un usuario, ya sea de
hipertensión o diabetes, los datos se mostrarán en una tabla con todos los campos
registrados. Para mostrar estos datos se realizó una consulta a la base de datos.

Figura 15. Vista login de la aplicación web

Fuente: elaboración propia
42



5.5. CREACIÓN DE CONTROLADORES EN DJANGO

Contienen la lógica para el manejo de las peticiones del sistema, y la logica utilizada
para la visualización de las vistas y demás procesos que se realicen en éstas. Los
controladores se encuentran o se realizan en el archivo views.py creado
automáticamente a la hora de crear el proyecto de Django.

5.5.1. Controlador Registro

● Maneja la lógica proveniente de la vista Registro, valida los
datos del formulario y se comunica con la base de datos
para realizar el guardado de los datos, además de realizar la
renderización del código en HTML para visualizar el
contenido en la vista.

Figura 16. Controlador registro usuario página web

Fuente: elaboración propia

El método form_valid recibe los valores del formulario y realiza una validación de ellos
para comprobar que los datos ingresados sean correctos, si la validación falla, se
muestran mensajes de error en pantalla, además de eso autentica al usuario y lo
redirige a la página de inicio.

43



5.5.2. Controlador Login

Para este controlador se extiende de la clase LoginView de la librería de autenticación
de Django que permite obtener el formulario de login y realizar el proceso de
autenticación del usuario, y también se encarga de renderizar el template con código
HTML de la vista Login.

Figura 17. Controlador login usuario página web

Fuente: elaboración propia

5.5.3. Controlador Inicio

El controlador Inicio se extiende de la clase TemplateView de la librería
django.views.generic, la cual se encarga de renderizar el template con código HTML de
la vista de Inicio asignando el valor de template_name.

5.5.4. Controlador Historial

El controlador Historial maneja la lógica para poder traer los registros de la base de
datos para el usuario donde mostrará sus consultas realizadas y resultados, para ello
es necesario importar los modelos en el controlador y luego realizar la correspondiente
consulta para traer los registros filtrando de acuerdo al usuario y ordenando los datos,
además de realizar el proceso de renderización del template con código HTML de la
vista Historial  y enviar los datos obtenidos en la consulta para su visualización.

Figura 19. Controlador historial página web

44



Fuente: elaboración propia

45



5.5.5. Controlador Hipertensión

El controlador Hipertensión cuenta con dos métodos, uno se encarga de renderizar el
template con código HTML de la vista de diagnóstico hipertensión, el cual contiene el
formulario con todos los datos necesarios para el diagnóstico, y el otro método se
encargará de implementar la lógica para cuando se haga click en el botón diagnosticar
de la vista, los datos del formulario serán enviados mediante un método POST y este
método recibirá los datos del formulario, transformara el dato al tipo de dato
correspondiente, luego de eso se utilizará el algoritmo realizado en machine learning, el
cual se importará mediante la sentencia joblib de la librería sklearn, para realizar el
proceso de diagnóstico ingresando los datos al algoritmo y con el comando predict
arrojar el resultado.Luego se procede a guardar los resultados y datos en la base de
datos y se renderiza un nuevo template donde se mostrarán los resultados obtenidos y
los datos mediante una tabla, además de las consultas anteriormente realizadas por el
usuario.

Figura 20. Controlador diagnóstico hipertensión página web

46



Fuente: elaboración propia
5.5.6. Controlador Diabetes

El controlador de Diabetes cuenta con varios métodos que se encargan de renderizar
los templates con código HTML de las vistas de diabetes que contienen los formularios
con todos lo campos necesarios para el diagnóstico y un botón para pasar a una nueva
vista hasta llegar a la vista resultados la cual contiene el código para hacer uso del
algoritmo realizado en machine learning, el cual se importará mediante la sentencia
joblib de la librería sklearn, para realizar el proceso de diagnóstico ingresando los datos
al algoritmo y con el comando predict arrojar el resultado. Luego se procede a guardar
los resultados y datos en la base de datos y se renderiza un nuevo template donde se
mostrarán los resultados obtenidos y los datos mediante una tabla, además de las
consultas anteriormente realizadas por el usuario.

Figura 21. Controlador diagnóstico diabetes página web

Fuente: elaboración propia

5.6. RUTAS PAGINA WEB

Las rutas se encargan de hacer el direccionamiento cuando se realiza una petición
HTTP, y se encargan de llamar al controlador en cada ruta.
En esta sección se encuentra el direccionamiento que se relaciona con cada
controlador para dar respuestas a las peticiones realizadas por el sistema.

5.6.1. Rutas usuario

47



Las rutas contenidas en usuario llaman al controlador de usuario y realizan las
peticiones de la página web para registrar nuevo usuario, inicio de sesión de usuario,
obtener su información, guardar un nuevo registro, el historial y todas las rutas
necesarias para actualizar la contraseña del usuario.

Figura 22. Rutas usuario página web

Fuente: elaboración propia

5.6.2. Rutas Hipertensión

Las rutas contenidas en Hipertensión son todas las necesarias para poder realizar el
diagnóstico de hipertensión, de las cuales tenemos el formulario donde se ingresan los
datos y la ruta del resultado del diagnóstico.

Figura 23. Rutas diagnóstico hipertensión página web

Fuente: elaboración propia

5.6.3. Rutas Diabetes

Las rutas contenidas en Diabetes llaman al controlador de diabetes y realizan las
peticiones de la página web para realizar el diagnóstico de diabetes, que incluyen las
peticiones del formulario para cada campo y la ruta del resultado del diagnóstico.

48



Figura 24. Rutas diagnóstico diabetes página web

Fuente: elaboración propia

4.7. CONFIGURACIÓN PARA LA CREACIÓN API

La creación APIs REST es fundamental en nuestra aplicación WEB, ya que permite
que se ejecuten operaciones con nuestra aplicación móvil, por medio de los métodos
HTTP(GET, POST, PUT, DELETE). Para crear nuestra APIs REST debemos descargar
e instalar un framework llamado Django Rest Framework.

Figura 25. Librerías para la creación del API

Fuente: elaboración propia

Para poder ejecutar los datos debemos serializarlos creando un archivo llamado
serializer.py en la carpeta de la aplicación que vamos a utilizar, en este caso en la

49



carpeta de Diabetes, es importante importar del framework de REST los serializers y
los modelos de los cuales se van a serializar nuestros datos.

Figura 26. Archivo Serializers para la creación del API

Luego se crea la Clase DiabetesSerializer en la cual se colocan todos los campos que
se van a serializar en este caso son los siguientes:

Figura 27. Serializer diabetes para la API

Fuente: elaboración propia

50



Después se crean varias instancias las cuales si todas están correctas se guardan.
En el archivo llamado api.py de la carpeta diabetes se realiza el código encargado de la
predicción en este caso de diabetes. Utilizando el método POST el cual permite crear
recursos, luego se serializa los datos requeridos y se llaman.

Figura 28. Método para la crear una petición POST y poder diagnosticar
diabetes

Fuente: elaboración propia

Para lograr realizar la predicción de diabetes se carga el método realizado en Machine
Learning, método que se puede observar en la linea de codigo numero 30, en la linea
de codigo número 31 se percibe como se carga el algoritmo utilizado para el
preprocesamiento llamado Análisis de Componentes Principales, por medio de la línea
34 podemos realizar la predicción de diabetes siendo un cero no diabetes y un uno que
si presenta diabetes.

51



Figura 29. Lógica de respuesta de la API para el método de diagnosticar
diabetes

Fuente: elaboración propia

5.7. CONTENERIZACIÓN Y ALOJAMIENTO WEB MEDIANTE EKS DE AWS

El siguiente paso a seguir una vez se haya terminado el desarrollo de la aplicación
web, es realizar realizar la publicación o alojamiento web de la misma, para lo cual se
hará uso una tecnología relativamente nueva que se llama docker y se encarga de
realizar la contenerización o encapsulamiento de esta aplicación sin la necesidad de
tener en cuenta factores externos cómo el sistema operativo y demás , sino que solo se
tiene en cuenta las librerías y código de aplicación que se van a contenerizar. La
aplicación se encapsula en una imagen, la cual será publicada en docker-hub, un
repositorio de imágenes docker, y luego se utilizará Kubernetes para realizar la
orquestación del contenedor creado para la aplicación, se hará uso del servicio de
Amazon Web Services (AWS) que se llama Amazon Elastic Kubernetes Service (EKS)
para poder desplegar los kubernetes en la infraestructura de AWS y así poder acceder
a través de una url a la aplicación mediante internet.

5.7.1. Contenerización de aplicación web

Para realizar la contenerización de la aplicación se debe tener instalado el software de
Docker en el computador como requisito previo, se debe crear un archivo Dockerfile en
el cual se debe escribir los comandos necesarios empezando por importar la imagen

52



base sobre la cual se va construir nuestra aplicación que en nuestro caso será python.
Luego se setean algunas variables de entorno necesarias para que la imagen funcione
correctamente, se define el directorio donde almacenarán los archivos en el contenedor
y también se ejecuta el comando run para instalar todas la librerías que son necesarias
para la aplicación. Por último se expone el puerto por el cual se podrá acceder a la
aplicación y se ejecuta el comando para ejecutar el servidor de Django.

Figura 30. Código archivo Dockerfile para la contenerización de la aplicación

Fuente: elaboración propia

Para crear la imagen de docker, se debe ejecutar este archivo Dockerfile mediante el
comando Docker build . -t nombre:versión, luego de crear la imagen se debe subir al
repositorio en Docker-hub, para lo cual se debe tener primeramente una cuenta en
Docker-hub y estar logueado, luego con el comando docker push nombre:versión se
sube la imagen al repositorio.

5.7.2. Alojamiento web mediante EKS de AWS

Luego de haber creado la imagen docker de la aplicación se procede a realizar el
despliegue mediante Kubernetes en EKS de AWS. Primero, se tiene que tener una
cuenta en AWS, luego se deben crear los roles de IAM que vamos a utilizar para
realizar el manejo del cluster que vamos a crear en EKS. Se crean dos roles, uno que
se encargará de realizar el manejo del cluster y otro que se encargará del manejo de
los worker-nodes que se usarán en el despliegue, se le deben asignar los siguientes
permisos en los roles.

53



Figura 31. Políticas o permisos para el Rol que maneja el cluster

Fuente: elaboración propia

Figura 32. Políticas o permisos para el Rol que maneja los worker-nodes

Fuente: elaboración propia

Luego de crear los roles se procede a crear el cluster y los nodos de trabajo
necesarios para poder desplegar la aplicación. Se debe ejecutar el siguiente comando
aws eks update-kubeconfig --region region-code --name my-cluster en el cmd para
poder emparejar de manera local con el cluster creado.

54



Figura 33. Imagen Cluster EKS creado

Fuente: elaboración propia

Una vez emparejado el cluster, se deben crear los archivos YAML que se ejecutarán
para poder realizar el despliegue de la aplicación en kubernetes. Es importante
mencionar que es necesario crear un despliegue de kubernetes también para la base
de datos de Postgresql. En los archivos YAML es necesario colocar el nombre de la
imagen que se utilizará en el despliegue, el puerto que se expondrá, las variables de
entorno y el tipo de servicio que puede ser NodePort, LoadBalancer, entre otros.
Para el despliegue se tiene que crear un deployment y un service, ambos son
necesarios para el correcto funcionamiento de la aplicación desplegada, el deployment
se encarga de crear el pod o contenedor de la aplicación y la reiniciará mediante un
componente que se llama replicaset en casó de que llegue a fallar. El service es el
encargado de exponer la aplicación a través de un puerto.
Para ejecutar el archivo YAML y realizar el despliegue se debe ejecutar el comando
kubectl apply -f nombrearchivo.yaml.

55



Figura 34. Código YAML para el despliegue del deployment en kubernetes

Fuente: elaboración propia

Figura 35. Código YAML para el despliegue del servicio en kubernetes

Fuente: elaboración propia

56



El archivo YAML para el despliegue de la base de datos postgres es el siguiente:
Figura 36. Código YAML para el despliegue de base de datos en kubernetes

Fuente: elaboración propia

57



58



6. DESARROLLO APLICACIÓN MÓVIL

En este capítulo se explicará la creación de la aplicación móvil, la cual se realizó en el
entorno de desarrollo Android Studio (véase anexo F) ya que es la herramienta oficial
de Google para desarrollar aplicaciones para su sistema operativo.

6.1. CONFIGURACIÓN

6.1.1. Build.grade

Se importan las librerías del proyecto, tales como retrofit para realizar el consumo de la
api mediante http, gson para convertir json a objetos y viceversa y demás librerías
predeterminadas de java para android studio. Además de recalcar que la aplicación es
desarrollada en la versión 26 de SDK.

6.1.2. AndroidManifest.xml

Se realiza la configuración principal del proyecto, como la declaración de las Activities
(login, registro, y la actividad de diagnóstico que consta de las dos operaciones
hipertensión y diabetes), se configuran los permisos de acceso a internet y además se
ajusta el nombre y logo de la aplicación.

6.2. VISTAS

6.2.1. Vista login

Corresponde al activity principal para el logueo del taxista. Esta vista se muestra en
pantalla completa, contiene el logo de la aplicación, los campos usuario y contraseña,
un botón para iniciar sesión y un botón para ir hacía la vista de registro.

59



Figura 37. Vista login app

Fuente: elaboración propia

Se debe llenar los dos campos que aparecen en la vista y luego presionar el botón
iniciar sesión, el cual llamará a un evento que primeramente realizará la validación de
los campos y luego intentará realizar el proceso de logueo del usuario llamando a la api
realizada en django con la ayuda de la librería de retrofit. Si los campos se envían
vacíos se muestra un mensaje informando indicando que son requeridos.

60



Figura 38. Validación de ingreso app

Fuente: elaboración propia

El proceso autenticación se realiza mediante la comunicación con la api, está validará
si las credenciales son correctas o incorrectas, en caso de ser correctas enviará los
datos del usuario logueado y un token de autenticación que se guardaran en la
aplicación para cuando el usuario entre después de cerrar la aplicación la sesión
permanezca activa y se procederá a lanzar la actividad principal del diagnostico que
tiene una primera vista de home. En caso de que las credenciales sean incorrectas la
API enviará un mensaje de error que se mostrará en forma de pop-up en la vista de
login.

61



6.2.2. Vista Home

Esta vista hace parte del activity diagnóstico que muestra una pantalla de inicio junto
con un menú desplegable que contiene las demás vistas. Esta vista muestra un
mensaje que invita a la persona a hacer uso de la aplicación para poder diagnosticarse.

Figura 39. Vista servicio app

Fuente: elaboración propia

En el lado superior izquierdo de la vista se encuentra el botón del menú desplegable
que contiene las opciones de hipertensión, diabetes para proceder al diagnóstico, y la
opción de cerrar sesión, que finaliza la sesión del usuario y nos retorna a la vista del
login.

62



Figura 40. Menú desplegable

Fuente: elaboración propia

6.2.3. Vista Hipertensión

Esta vista se muestra cuando se presiona la opción hipertensión en el menú, contiene
un botón que llamará una secuencia de vistas, cada una con un formulario en el cual el
usuario deberá ingresar un dato pedido en un input para poder continuar, en caso de
enviar el campo vacío se desplegará un error que indicará que el campo es necesario
para poder continuar.

63



Figura 41. Ejemplo vistas diagnóstico hipertensión App Móvil

Fuente: elaboración propia

Una vez se hayan llenado todos los formularios en el flujo, se presenta una vista que
recopila todos los datos ingresados para que el usuario pueda validar si son correctos y
preparar estos datos para enviarlos a la API con ayuda de la librería de retrofit. La vista
contiene un botón que llama al evento que realizará la comunicación con el API, que en
caso de responder exitosamente recibirá el resultado del diagnóstico y llamará a una
nueva vista que contendrá este resultado. En caso de que se presente un error en la
conexión con el API se retornará el error y se informará al usuario mediante un pop-up.

64



Figura 42. Vista recopilación datos hipertensión

Fuente: elaboración propia

En la respuesta del diagnóstico se muestra el resultado, el estado de los valores
presentes en el usuario cómo por ejemplo si el paciente presenta una presión arterial
elevada o valor de imc irregular, además de algunas recomendaciones que pueden ser
útiles para el usuario con la finalidad de ayudar a mejorar la condición de salud en la
que se encuentra.

Figura 43. Vista resultado diagnóstico hipertensión

65



Fuente: elaboración propia

6.2.4. Vista Diabetes

Esta vista hace parte del activity del diagnóstico y se muestra cuando se presiona la
opción diabetes en el menú, contiene un botón que llamará una secuencia de vistas,
cada una con un formulario en el cual el usuario deberá ingresar un dato pedido en un
input para poder continuar y que son necesarios para realizar el diagnóstico de
diabetes, en caso de enviar el campo vacío se desplegará un error que indicará que el
campo es necesario para poder continuar.

Figura 44. Ejemplo vistas diagnóstico diabetes App Móvil

Fuente: elaboración propia

66



Una vez se hayan llenado todos los formularios en el flujo, se presenta una vista que
recopila todos los datos ingresados para que el usuario pueda validar si son correctos y
preparar estos datos para enviarlos a la API con ayuda de la librería de retrofit. La vista
contiene un botón que llama al evento que realizará la comunicación con el API, que en
caso de responder exitosamente recibirá el resultado del diagnóstico y llamará a una
nueva vista que contendrá este resultado. En caso de que se presente un error en la
conexión con el API se retornará el error y se informará al usuario mediante un pop-up.

Figura 45. Vista recopilación datos diabetes

Fuente: elaboración propia

En la respuesta del diagnóstico se muestra el resultado, el estado de los valores
presentes en el usuario cómo por ejemplo si el paciente presenta un valor elevado de
glucosa plasmática, presión arterial elevada o un valor de insulina irregular, además de
algunas recomendaciones que pueden ser útiles para el usuario con la finalidad de
ayudar a mejorar la condición de salud en la que se encuentra.

67



Figura 46. Vista resultado diagnóstico diabetes

Fuente: elaboración propia

6.2.5. Vista Registro

Corresponde al activity para realizar el registro de un nuevo usuario en la aplicación.
Esta vista se muestra en pantalla completa, contiene los campos usuario, nombre,
apellidos, email y contraseña y un botón para enviar los datos y registrarse.

68



Figura 47. Vista registro de la aplicación móvil

Fuente: elaboración propia

Cuando se presione el botón de registrarse, se llamará un evento el cual primero
validará que los campos enviados no se encuentren vacíos, de lo contrario enviará un
mensaje de error indicando que los campos son requeridos, luego de eso, enviará los
campos a la API creada en django con la ayuda de la librería de retrofit, donde se
validará que no haya un usuario con el mismo nombre ya creado en la base de datos.
Si el usuario ya ha sido creado con anterioridad, el API responde un mensaje de error
indicando que ese usuario ya existe en la base de datos y que por favor ingrese uno
diferente. Si el usuario no existe, se guardan los campos en la base de datos y se envía
un mensaje al usuario indicando que la cuenta fue creada con éxito.

69



Figura 48. Validación de campos del registro

Fuente: elaboración propia

6.3. COMUNICACIÓN POR RETROFIT PARA CONSUMIR API

Para la comunicación con la API se utilizó la librería retrofit que funciona como cliente
HTTP para Android y Java, para hacer uso de la librería es necesario importarla en el
gradle y luego crear un cliente de retrofit que recibe cómo parámetro de entrada la url
base de la API.

70



Figura 49. Código creación de cliente retrofit

Fuente: elaboración propia

Además de eso se debe crear una interfaz, donde se debe estipular los métodos HTTP
para poder realizar el consumo de cada uno de los endpoints de la API, y también se
deben crear funciones con los campos que van en cada petición hacía la API.

Figura 50. Código interfaz para la comunicación con los endpoints del API

71



Fuente: elaboración propia

72



7. CONCLUSIONES

Con este proyecto se logró diseñar e implementar un sistema experto que permite
predecir si una persona presenta diabetes y/o hipertensión a través de un algoritmo de
machine learning con un porcentaje de predicción de 92,4% para diabetes y 98,9%
para hipertensión, y a través de una interfaz gráfica fácil de utilizar e intuitiva, la cual
fue hecha en django y en android studio, permite a sus usuarios registrarse, llevar un
historial de sus diagnósticos y varios formularios que permiten ingresar datos y recibir
resultados fácil y rápidamente. Esta aplicación puede tener diferentes usos, ya sea
para llevar un control de tus datos y diagnósticos teniendo en cuenta que existe un
porcentaje de error en la aplicación, cómo también ser utilizada con ayuda de un
experto de la salud y que funcione como un apoyo para poder llegar a un resultado
confiable y rápido.

La creación de la API rest es una implementación muy importante para cualquier
sistema ya que se pueden hacer peticiones HTTP desde el servidor hacia el cliente o
viceversa sin importar el lenguaje de programación utilizado. En este caso, por ejemplo,
se realizan peticiones desde JAVA (Android) y Python (Django) utilizando una sola
estructura de control para realizar el intercambio de datos mediante la librería Django
Rest Framework y la librería de android retrofit para realizar el consumo fácilmente.

De acuerdo a los resultados obtenidos relacionados con el algoritmo de predicción, el
método que mejor se ajustó a los datos de entrada utilizados en la creación del
algoritmo fue Máquinas de Vectores de Soporte a comparación de los demás métodos
utilizados. El porcentaje de predicción obtenido para los algoritmos de hipertensión y
diabetes fue aceptable, aunque se debe tener en cuenta que el algoritmo no es 100%
confiable, sino que se tiene un porcentaje de error y se debe tener en cuenta a la hora
de ejecutar el diagnóstico.

La aplicación móvil permitió realizar las operaciones de diagnóstico, inicio de sesión y
registro desde la comodidad de un dispositivo móvil al que fácilmente cualquier persona
tiene acceso hoy en día, con una interfaz gráfica sencilla e intuitiva que permite
registrar información que será intercambiada con la API hecha en django mediante el
protocolo de comunicación http y la librería retrofit. La aplicación hace un buen uso API
y de estas herramientas de integración que nos permiten la comunicación entre
servicios con el fin de brindar un producto útil para sus usuarios.

La página web permite al usuario acceder a la información del usuario de una forma
sencilla y visualmente agradable. Se puede consultar el historial del usuario donde se
muestran los datos y el resultado del diagnóstico, así cómo también realizar el proceso

73



de diagnóstico de hipertensión y diabetes. La página web fue hecha en el Framework
Django ya que éste se encuentra basado en el Lenguaje de programación python, lo
cual nos facilitó el tema de añadir el algoritmo hecho con machine learning con la
librería de sk-learn de python.

74



8. RECOMENDACIONES

Aunque el proyecto es ambicioso, se pueden realizar varias mejoras que permiten
optimizar tanto la interfaz gráfica cómo el algoritmo de predicción para obtener un
producto mucho más estructurado, tales como:

Se realizaron las pruebas de construcción del algoritmo en diferentes métodos de
machine learning que se consideran clásicos, sin embargo, existen varios tipos de
métodos de machine learning que deberían ser considerados para obtener un mejor
ajuste de los datos y porcentaje de predicción como lo son las redes neuronales y los
Modelos Ensemble que presentan mejoras en la respuesta de predicción.

Para la aplicación móvil se pueden realizar varias mejoras en tema de diseño y estética
de la aplicación, cómo por ejemplo hacer uso de tecnologías relativamente nuevas
cómo el SDK Flutter que permite desarrollar interfaces de una forma sencilla y con una
mayor estética.

Otro tema a mejorar para un futuro es mejorar la estructura responsive de la aplicación
web que aún no se encuentra ajustada para que sea atractiva para los usuarios que
acceden desde un dispositivo móvil a la aplicación web.

Los temas relacionados a seguridad de la aplicación no fueron estudiados a fondo para
este proyecto y pueden ser mejorados en el futuro, se realizó un sistema de inicio de
sesión y todos los datos son enviados mediante métodos post que utilizan un token
CSRF que brinda seguridad a la hora de enviar datos en el formulario HTML, pero al
ser datos de tipo sensible y de carácter médico en necesario tener un nivel alto de
seguridad de los datos que se ajusten a los parámetros y leyes internacionales de
protección de datos. Se propone como mejora implementar un sistema de doble factor
de autenticación para poder acceder a la aplicación.
Además de la seguridad de las aplicaciones, también es necesario mejorar la seguridad
de la API creada, para que no cualquiera pueda realizar una conexión con nuestra API,
sino que también exista un factor de autorización para realizar el envío de peticiones

75



9. REFERENCIAS

[1] Las 10 principales causas de defunción. (s. f.). Recuperado 26 de abril de 2020, de
https://www.who.int/es/news-room/fact-sheets/detail/the-top-10-causes-of-death

[2] Morales, J., (2017, mayo 19). OPS/OMS Colombia - Día Mundial de la Hipertensión
2017: Conoce tus números | OPS/OMS. Pan American Health Organization / World
Health Organization. 

https://www.paho.org/col/index.php?option=com_content&view=article&id=2752:dia-mu
ndial-de-la-hipertension-2017-conoce-tus-numeros&Itemid=487

[3] Diabetes. (s. f.). Recuperado 26 de abril de 2020, de
https://www.who.int/es/news-room/fact-sheets/detail/diabetes

[4] Cayon, A. (2017, mayo 11). OPS/OMS | Día Mundial de la Hipertensión 2017:
Conoce tus números. Pan American Health Organization / World Health
Organization. 

https://www.paho.org/hq/index.php?option=com_content&view=article&id=13257:dia-mu
ndial-de-la-hipertension-2017-conoce-tus-numeros&Itemid=42345&lang=es

[5] Ministerio de salud. (17 de Mayo de 2017). Minsalud. Dia mundial de la hipertensión
arterial. Obtenido de Minsalud:
https://www.minsalud.gov.co/Paginas/Colombia-enfrenta-epidemia-de-enfermedade
s-cardiovasculares-y-diabetes.aspx

[6] OMS | Informe mundial sobre la diabetes. (s/f). WHO; World Health Organization.
Recuperado el 23 de abril de 2020, de http://www.who.int/diabetes/global-report/es/

[7] Sociedad Colombiana de Cardiología y Cirugía Cardiovascular (SCC), Capítulo de
Hipertensión arterial, ¿cuáles son las cifras normales?. Recuperado el 23 de abril
de 2020, de
http://scc.org.co/wp-content/uploads/2018/04/Hipertensi%C3%B3n-arterial-cu%C3
%A1les-son-las-cifras-normales-Dr-Luis-Moya.pdf

[8] OMS | Preguntas y respuestas sobre la hipertensión. (s. f.). WHO. Recuperado 21
de febrero de 2020, de http://www.who.int/features/qa/82/es/

[9] Diabetes: Tratamiento, síntomas, causas y prevención. (2009, febrero 18).
CuidatePlus. https://cuidateplus.marca.com/enfermedades/digestivas/diabetes.html

76



[10] Los sistemas expertos—Inteligencia Artificial. (s. f.). Recuperado 26 de abril de
2020, de
https://sites.google.com/site/proyectointeligenciaartificial/indice/los-sistemas-experto
s

[11] Diego, E. A. (12 de Junio de 2019). Monografias. Obtenido de Monografias :
https://www.monografias.com/trabajos101/sistema-operativo-android/sistema-opera
tivo-android.shtml

[12]MVC (Model, View, Controller) explicado. (s. f.). Recuperado 19 de septiembre de
2019, de CódigoFacilito website:
https://codigofacilito.com/articulos/mvc-model-view-controller-explicado

[13] El patrón de diseño MTV (El libro de Django 1.0). (s/f). Recuperado el 26 de abril
de 2020, de
https://uniwebsidad.com/libros/django-1-0/capitulo-5/el-patron-de-diseno-mtv

[14] Qué es el modelo vista controlador (MVC) y como funciona. (s. f.). Recuperado 19
de septiembre de 2019, de
https://articulosvirtuales.com/articles/educacion/que-es-el-modelo-vista-controlador-
mvc-y-como-funciona

[15] “Machine learning”: ¿qué es y cómo funciona? (s/f). Recuperado el 21 de febrero
de 2020, de https://www.bbva.com/es/machine-learning-que-es-y-como-funciona/

[16] Aprendizaje automático: Qué es y por qué es importante | SAS. (s/f). Recuperado
el 21 de febrero de 2020, de
https://www.sas.com/es_co/insights/analytics/machine-learning.html#machine-learni
ng-importance

[17] May, O. A. C., Koo, J. J. P., Kinani, J. M. V., & Encalada, M. A. Z. (2018).
CONSTRUCCIÓN DE UN MODELO DE PREDICCIÓN PARA APOYO AL
DIAGNÓSTICO DE DIABETES (CONSTRUCTION OF A PREDICTION MODEL TO
SUPPORT THE DIABETES DIAGNOSIS). Pistas Educativas, 40(130).
http://www.itc.mx/ojs/index.php/pistas/article/view/1805

[18] LaFreniere, D., Zulkernine, F., Barber, D., & Martin, K. (2016). Using machine
learning to predict hypertension from a clinical dataset. 2016 IEEE Symposium
Series on Computational Intelligence (SSCI), 1–7.
https://doi.org/10.1109/SSCI.2016.7849886

77



[19] Rawat, V., & Suryakant. (2019). A Classification System for Diabetic Patients with
Machine Learning Techniques. https://doi.org/10.33889/ijmems.2019.4.3-057

[20] Chatrati, S. P., Hossain, G., Goyal, A., Bhan, A., Bhattacharya, S., Gaurav, D., &
Tiwari, S. M. (2020). Smart home health monitoring system for predicting type 2
diabetes and hypertension. Journal of King Saud University - Computer and
Information Sciences. https://doi.org/10.1016/j.jksuci.2020.01.010

[21] Smith, J. W., Everhart, J. E., Dickson, W. C., Knowler, W. C., & Johannes, R. S.
(1988). Using the ADAP Learning Algorithm to Forecast the Onset of Diabetes
Mellitus. Proceedings of the Annual Symposium on Computer Application in Medical
Care, 261-265. Tomado de
https://www.personal.kent.edu/~mshanker/personal/Zip_files/sar_2000.pdf

[22] ANACONDA NAVIGATOR. (s.f.). Anaconda Navigator (Versión 1.6.9) [Entorno de
desarrollo Python]. [Consultado: 12 de Febrero de 2019].
https://www.anaconda.com/products/individual

[23] Algoritmo k-Nearest Neighbor | Aprende Machine Learning. (s. f.). Recuperado 30 
de junio de 2022, de
https://www.aprendemachinelearning.com/clasificar-con-k-nearest-neighbor-ejemplo
-en-python/

[24] Árbol de decisión en Machine Learning (Parte 1)—Sitiobigdata.com. (s. f.).
Recuperado 30 de junio de 2022, de
https://sitiobigdata.com/2019/12/14/arbol-de-decision-en-machine-learning-parte-1/#

[25] Máquinas de Vector Soporte (Support Vector Machines, SVMs). (s. f.). Recuperado
30 de enero de 2022, de
https://www.cienciadedatos.net/documentos/34_maquinas_de_vector_soporte_sup
port_vector_machines

[26] Brownlee, J. (2016, abril 10). Naive Bayes for Machine Learning. Machine Learning
Mastery. https://machinelearningmastery.com/naive-bayes-for-machine-learning/

[27] Random Forest (Bosque Aleatorio): Combinando árboles - IArtificial.net. (2019,
junio 10). https://www.iartificial.net/random-forest-bosque-aleatorio/

[28] Calidad de datos en minería de datos a través del preprocesamiento. (s. f.).
Recuperado 30 de junio de 2022, de
https://blog.powerdata.es/el-valor-de-la-gestion-de-datos/calidad-de-datos-en-mineri
a-de-datos-a-traves-del-preprocesamiento

[29] Análisis de Componentes Principales (ACP). (s. f.). XLSTAT, Your data analysis
solution. Recuperado 30 de junio de 2022, de

78

https://doi.org/10.1016/j.jksuci.2020.01.010
https://machinelearningmastery.com/naive-bayes-for-machine-learning/
https://www.iartificial.net/random-forest-bosque-aleatorio/


https://www.xlstat.com/es/soluciones/funciones/analisis-de-componentes-principale
s-acp

[30] ¿Qué es PostgreSQL? - Para qué sirve, Características e Instalación. (s. f.).
Recuperado 30 de junio de 2022, de
https://blog.infranetworking.com/servidor-postgresql/

[31] Sistema Operativo Android. (s. f.). Recuperado 30 de junio de 2022, de
https://www.monografias.com/trabajos101/sistema-operativo-android/sistema-opera
tivo-android

[32] ¿Qué es y como crear un API REST en Django? (s. f.). Recuperado 30 de junio de
2022, de
https://platzi.com/clases/26-backend-online/1062-que-es-y-como-crear-un-api-rest-e
n-django/?utm_source=google&utm_medium=cpc&utm_campaign=17418244234&
utm_adgroup=&utm_content=&gclid=Cj0KCQjwntCVBhDdARIsAMEwACnn213Vsq
V88Z_vYPCr4B27QOZejPrOXWu1HjEDTBpRy9v8sx-AFt8aAqYPEALw_wcB&gclsr
c=aw.ds

[33] ¿Qué es Kubernetes? (s. f.). Kubernetes. Recuperado 30 de junio de 2022, de
https://kubernetes.io/es/docs/concepts/overview/what-is-kubernetes/

[34] ¿Qué es Docker? (s. f.). Recuperado 30 de junio de 2022, de
https://www.redhat.com/es/topics/containers/what-is-docker

[35] Servicio de Kubernetes administrado – Amazon EKS – Amazon Web Services. (s.
f.). Amazon Web Services, Inc. Recuperado 30 de junio de 2022, de
https://aws.amazon.com/es/eks/

[36] Pima Indians Diabetes Database. (s. f.). Recuperado 30 de junio de 2022, de
https://www.kaggle.com/datasets/uciml/pima-indians-diabetes-database

79

https://aws.amazon.com/es/eks/


10. ANEXOS

Debido a la cantidad de código que contiene el proyecto Python, Django y Android
Studio, se recomienda dirigirse al siguiente enlace de Google Drive y descargar la
totalidad del código fuente:
https://drive.google.com/drive/folders/1IEmS3-FWOdu4C-nDwC8_khKZWRX7Mynb?us
p=sharing. A continuación, se detalla una lista de anexos que contiene el código fuente
básico y a grandes rasgos del proyecto.

Anexo A. Código Algoritmo en Machine Learning en Python

Figura 51. Código Algoritmo en Machine Learning en Python parte 1

80



Figura 52. Código Algoritmo en Machine Learning en Python parte 2

Figura 53. Código Python preprocesamiento datos parte 1

81



Figura 54. Código Python preprocesamiento datos parte 2

82



Figura 55. Código Python preprocesamiento datos parte 3

Anexo B. Código Django

83



Figura 56. Código Settings.py Django parte 1

84



Figura 57. Código Settings.py Django parte 2

85



Figura 58. Código Archivo Views.py (controlador) para diagnosticar hipertensión
parte 1

86



Figura 59. Código Archivo Views.py (controlador) para diagnosticar hipertensión
parte 2

87



Figura 60. Código Archivo Views.py (controlador) para el login y registro parte 1

88



Figura 61. Código Archivo Views.py (controlador) para el login y registro parte 2

Anexo C. Lógica frontend (Django)

89



Figura 62. Código HTML base de la página web

90



Figura 63. Código para crear el formulario que se muestra en la página web
parte 1

91



Figura 64. Código para crear el formulario que se muestra en la página web
parte 2

92



Figura 65. Código HTML de vista donde se muestra el resultado en página web

93



Anexo D. Lógica aplicación móvil

Figura 66. Código vista login aplicación móvil parte 1

94



Figura 67. Código vista login aplicación móvil parte 2

95



Figura 68. Código vista login aplicación móvil parte 3

96



Figura 69. Código vista Registro aplicación móvil parte 1

97



Figura 70. Código vista Registro aplicación móvil parte 2

98



Figura 71. Código vista Registro aplicación móvil parte 3

99



Figura 72. Código vista Menú aplicación móvil parte 1

100



Figura 73. Código vista Menú aplicación móvil parte 2

101



Figura 74. Código vista Menú aplicación móvil parte 3

102



Figura 75. Código vista formulario Edad aplicación móvil

103


