CcODIGO AP-BIB-FO-06 VERSION- VIGENCIA 2014

UNIVERSIDAD SURCOLOMBIANA
GESTION DE BIBLIOTECAS

CARTA DE AUTORIZACION

CH NCh 7~~~
icontec ‘_’

50 9001
_J

L SHOBESE (SCERSTSS

PAGINA

Neiva, 31 de septiembre de 2022

Sefores

CENTRO DE INFORMACION Y DOCUMENTACION

UNIVERSIDAD SURCOLOMBIANA

Neiva

El (Los) suscrito(s):

Maicol Andres Garcia Rodriguez , con C.C. No 1075310787,

Gustavo Andres Medina Diaz, con C.C. No. 1075292739

Autor(es) de la tesis y/o trabajo de grado titulado SISTEMA EXPERTO PARA EL APOYO AL DIAGNOSTICO
MEDICO DE HIPERTENSION Y DIABETES A TRAVES DE MACHINE LEARNING, presentado y aprobado en
el afio 2022 como requisito para optar al titulo de INGENIERO ELECTRONICO;

Autorizo (amos) al CENTRO DE INFORMACION Y DOCUMENTACION de la Universidad Surcolombiana para
que, con fines académicos, muestre al pais y el exterior la produccion intelectual de la Universidad
Surcolombiana, a través de la visibilidad de su contenido de la siguiente manera:

Los usuarios puedan consultar el contenido de este trabajo de grado en los sitios web que administra la
Universidad, en bases de datos, repositorio digital, catalogos y en otros sitios web, redes y sistemas de
informacioén nacionales e internacionales “open access” y en las redes de informacién con las cuales tenga
convenio la Institucion.

Permita la consulta, la reproduccion y préstamo a los usuarios interesados en el contenido de este trabajo,
para todos los usos que tengan finalidad académica, ya sea en formato Cd-Rom o digital desde internet,
intranet, etc., y en general para cualquier formato conocido o por conocer, dentro de los términos
establecidos en la Ley 23 de 1982, Ley 44 de 1993, Decision Andina 351 de 1993, Decreto 460 de 1995 y
demas normas generales sobre la materia.

Contintio conservando los correspondientes derechos sin modificacion o restriccién alguna; puesto que, de
acuerdo con la legislacién colombiana aplicable, el presente es un acuerdo juridico que en ningun caso
conlleva la enajenacion del derecho de autor y sus conexos.

De conformidad con lo establecido en el articulo 30 de la Ley 23 de 1982 y el articulo 11 de la Decision Andina
351 de 1993, “Los derechos morales sobre el trabajo son propiedad de los autores”, los cuales son irrenunciables,
imprescriptibles, inembargables e inalienables.

Vigilada Mineducacion

La version vigente y controlada de este documento, solo podra ser consultada a través del sitio web Institucional www.usco.edu.co, link
Sistema Gestién de Calidad. La copia o impresion diferente a la publicada, sera considerada como documento no controlado y su uso
indebido no es de responsabilidad de la Universidad Surcolombiana.

http://www.usco.edu.co/

UNIVERSIDAD SURCOLOMBIANA
GESTION DE BIBLIOTECAS

CARTA DE AUTORIZACION

CcODIGO AP-BIB-FO-06 VERSION- VIGENCIA 2014

EL AUTOR/ESTUDIANTE: EL AUTOR/ESTUDIANTE:

SHCRENNE (SCERSTSS

PAGINA

Maicol Andres Garcia Rodriguez

Firma:

Maicol A. garcia

Vigilada Mineducacion
La version vigente y controlada de este documento, solo podra ser consultada a través del sitio web Institucional www.usco.edu.co, link
Sistema Gestién de Calidad. La copia o impresion diferente a la publicada, sera considerada como documento no controlado y su uso
indebido no es de responsabilidad de la Universidad Surcolombiana.

http://www.usco.edu.co/

UNIVERSIDAD SURCOLOMBIANA
GESTION DE BIBLIOTECAS
DESCRIPCION DE LA TESIS Y/O TRABAJOS DE GRADO

AP-BIB-FO-07 VERSION - VIGENCIA 2014

TiTULO COMPLETO DEL TRABAJO: SISTEMA EXPERTO PARA EL APOYO AL DIAGNOSTICO MEDICO DE
HIPERTENSION Y DIABETES A TRAVES DE MACHINE LEARNING

PGP @e
Ch KR K€ A~
icontec icontec icontec ‘ 1:Net y

PAGINA

CcODIGO

AUTOR O AUTORES:
Primero y Segundo Apellido Primero y Segundo Nombre
GARCIA RODRIGUEZ MAICOL ANDRES
MEDINA DIAZ GUSTAVO ANDRES

DIRECTOR Y CODIRECTOR TESIS:

Primero y Segundo Apellido Primero y Segundo Nombre
QUINTERO POLANCO JESUS DAVID
ASESOR (ES):

Primero y Segundo Apellido Primero y Segundo Nombre

PARA OPTAR AL TiTULO DE: Ingeniero Electrénico
FACULTAD: Ingenieria

PROGRAMA O POSGRADO: Ingenieria Electronica

CIUDAD: Neiva ANO DE PRESENTACION: 2022 NUMERO DE PAGINAS: 108

Vigilada Mineducacion
La version vigente y controlada de este documento, solo podra ser consultada a través del sitio web Institucional www.usco.edu.co, link
Sistema Gestién de Calidad. La copia o impresion diferente a la publicada, sera considerada como documento no controlado y su uso
indebido no es de responsabilidad de la Universidad Surcolombiana.

http://www.usco.edu.co/

UNIVERSIDAD SURCOLOMBIANA
GESTION DE BIBLIOTECAS

DESCRIPCION DE LA TESIS Y/O TRABAJOS DE GRADO

Tgp—
@@ @ Pay
icontec icontec icontec 3

PAGINA

CcODIGO

AP-BIB-FO-07 VERSION - VIGENCIA 2014

TIPO DE ILUSTRACIONES (Marcar con una X):

Diagramas X Fotografias X Grabaciones en discos____ llustraciones en general X Grabados__ Laminas____
Litografias Mapas___ Musica impresa__ Planos _ Retratos Sin ilustraciones___ Tablas o Cuadros X

SOFTWARE requerido y/o especializado para la lectura del documento:

MATERIAL ANEXO:

PREMIO O DISTINCION (En caso de ser LAUREADAS o Meritoria):

PALABRAS CLAVES EN ESPANOL E INGLES:

Espaiiol Inglés Espaiiol Inglés

1. API API 6. Predicciones Predictions

2. Framework Framework 7. Aplicacién mévil Mobile application
3. Django Django

4. Aprendizaje de maquina Machine learning

5. Algoritmos Algorithms

RESUMEN DEL CONTENIDO: (Maximo 250 palabras)

Se realizé la implementacién de un producto minimo viable del sistema experto para el
diagndstico de hipertension y diabetes con Machine Learning desarrollado en Python donde
se probaron diferentes métodos tradicionales para determinar cual se ajustaba mejor a los
datos y entregaba un mayor porcentaje de prediccion.

Se desarrollé una aplicacion web con el framework de Django que permite a los usuarios
realizar un proceso de diagnéstico a través de una interfaz grafica con diferentes formularios
que la hacen facil y agradable de utilizar, asi como también llevar un historial de las consultas
realizadas mediante la utilizacion del gestor de bases de datos PostgreSQL. Ademas, se

Vigilada Mineducacion
La version vigente y controlada de este documento, solo podra ser consultada a través del sitio web Institucional www.usco.edu.co, link
Sistema Gestién de Calidad. La copia o impresion diferente a la publicada, sera considerada como documento no controlado y su uso
indebido no es de responsabilidad de la Universidad Surcolombiana.

http://www.usco.edu.co/

UNIVERSIDAD SURCOLOMBIANA
GESTION DE BIBLIOTECAS

DESCRIPCION DE LA TESIS Y/O TRABAJOS DE GRADO

(@)

—
(@) @ m
icontec icontec icontec 3

acE

cODIGO PAGINA

AP-BIB-FO-07 VERSION - VIGENCIA 2014

utilizo la libreria Django Rest Framework para crear una APl que interactua e intercambia
informacion con una aplicacién mévil desarrollada en Android Studio.

La aplicacion movil permite a los usuarios registrarse, hacer un proceso de login y realizar
el proceso de diagndstico de hipertension y diabetes haciendo uso de la libreria Retrofit para
la comunicacion con la APL.

ABSTRACT: (Maximo 250 palabras)

The implementation of a minimum viable product of the expert system for the diagnosis of
hypertension and diabetes was carried out with Machine Learning developed in Python
where different traditional methods were tested to determine which one best fit the data and
delivered a higher percentage of prediction.

A web application was developed with the Django framework that allows users to carry out a
diagnostic process through a graphical interface with different forms that make it easy and
pleasant to use, as well as keeping a history of the queries made through the use of the
PostgreSQL database manager. In addition, the Django Rest Framework library was used to
create an API that interacts and exchanges information with a mobile application developed
in Android Studio.

The mobile application allows users to register, perform a login process and carry out the
hypertension and diabetes diagnosis process using the Retrofit library for communication
with the API.

APROBACION DE LA TESIS

Nombre Jurado: Martin Diomedes Bravo Obando

Firma:

Nombre Jurado: Johan Julian Molina Mosquera

Firma:

)\
{2
Vigilada Mineducacion

La version vigente y controlada de este documento, solo podra ser consultada a través del sitio web Institucional www.usco.edu.co, link
Sistema Gestién de Calidad. La copia o impresion diferente a la publicada, sera considerada como documento no controlado y su uso
indebido no es de responsabilidad de la Universidad Surcolombiana.

http://www.usco.edu.co/

SISTEMA EXPERTO PARA EL APOYO AL DIAGNOSTICO MEDICO DE
HIPERTENSION Y DIABETES A TRAVES DE MACHINE LEARNING

MAICOL ANDRES GARCIA RODRIGUEZ
GUSTAVO ANDRES MEDINA DIAZ

UNIVERSIDAD SURCOLOMBIANA
FACULTAD DE INGENIERIA
PROGRAMA DE INGENIERIA ELECTRONICA
NEIVA - HUILA
2022

SISTEMA EXPERTO PARA EL APOYO AL DIAGNOSTICO MEDICO DE
HIPERTENSION Y DIABETES A TRAVES DE MACHINE LEARNING

MAICOL ANDRES GARCIA RODRIGUEZ
GUSTAVO ANDRES MEDINA DIAZ

Trabajo de Grado Para Optar al Titulo de Ingeniero Electrénico

Director
Jesus David Quintero Polanco
Msc. TIC, Profundizacion en Telecomunicaciones

UNIVERSIDAD SURCOLOMBIANA
FACULTAD DE INGENIERIA
PROGRAMA DE INGENIERIA ELECTRONICA
NEIVA - HUILA
2022

Nota de aceptacion

Firma del presidente del jurado

Firma del jurado

Firma del jurado

Neiva, 29 de Junio de 2022

DEDICATORIA

Este trabajo de grado quiero dedicarselo a mis papas, a mi hermano, y novia quienes
me apoyaron moral y economicamente, también a esas personas que me dieron su voz
de aliento para seguir adelante.

Maicol Andrés Garcia Rodriguez

A Dios por bendecir mi camino, a mis padres que con mucho esfuerzo me apoyaron y
guiaron incondicionalmente para crecer personal y profesionalmente, a mis hermanas.
A familiares y amigos con quienes conté durante todo este proceso.

Gustavo Andrés Medina Diaz

AGRADECIMIENTOS

Al ingeniero electronico Jesus David Quintero quien nos guié como director de
tesis para desarrollar el proyecto y culminar de la mejor manera posible.

A la Facultad de Ingenieria de la Universidad Surcolombiana nuestra alma mater
y a todos los docentes quienes nos brindaron las herramientas necesarias para
prepararnos académicamente y adquirir los conocimientos que tenemos actualmente.

Finalmente a nuestros padres, familiares, amigos y a todas aquellas personas
gue nos apoyaron y pusieron un granito de arena para que este proyecto saliera
adelante.

CONTENIDO

INTRODUCCION
OBJETIVOS
2.1. OBJETIVO GENERAL
2.2. OBJETIVOS ESPECIFICOS
MARCO TEORICO
3.1. HIPERTENSION
3.2. DIABETES
3.3. SISTEMA EXPERTO
3.4. SISTEMA OPERATIVO ANDROID
3.5. MODELO VISTA CONTROLADOR (MVC)
3.6. MACHINE LEARNING
3.6.1. K-NEAREST-NEIGHBOR
3.6.2. ARBOLES DE DECISION
3.6.3. MAQUINAS DE VECTORES DE SOPORTE (SVM)
3.6.4. NAIVE BAYES
3.6.5. BOSQUES ALEATORIOS
3.7. PREPROCESAMIENTO DE DATOS
3.8. ANALISIS DE COMPONENTES PRINCIPALES (PCA)
3.9. POSTGRESQL
3.10. APIREST
3.11. DOCKER
3.12. KUBERNETES
3.13. AMAZON ELASTIC KUBERNETES SERVICE (EKS)
DESARROLLO ALGORITMO DE MACHINE LEARNING
4.1. BASES DE DATOS
4.1.1. Funcion de Pedigri de Diabetes
4.2. LIMPIEZAY PREPROCESAMIENTO DE LOS DATOS
4.2.1. Algoritmo de preprocesamiento PCA
4.3. ALGORITMO DE PREDICCION
DESARROLLO DEL SISTEMA EXPERTO

Pag

17
18
18
18
19
19
19
20
20
20
21
22
23
23
23
23
23
24
24
24
24
25
26
27
27
27
28
31
31
33

6.

5.1. DESARROLLO APLICACION WEB EN DJANGO
5.1.1. Configuracion inicial
5.1.2. Creacion de apps para el proyecto
5.1.3. Conexion base de datos
5.2. CREACION DE TABLAS DE DATOS EN DJANGO
5.2.1. Creacion de tabla usuarios
5.2.2. Creacion de tabla hipertensién
5.2.3. Creacion tabla diabetes
5.3. ENVIO Y RECEPCION DE INFORMACION DE BASES DE DATOS
5.4. CREACION DE VISTAS EN DJANGO
5.4.1. Vista Login
5.4.2. Vista Registro
5.4.3. Vista Inicio
5.4.4. Vista diagndstico hipertension
5.4.5. Vista diagnostico Diabetes
5.4.6. Vista Historial
5.5. CREACION DE CONTROLADORES EN DJANGO
5.5.1. Controlador Registro
5.5.2. Controlador Login
5.5.3. Controlador Inicio
5.5.4. Controlador Historial
5.5.5. Controlador Hipertension
5.5.6. Controlador Diabetes
5.6. RUTAS PAGINA WEB
5.6.1. Rutas usuario
5.6.2. Rutas Hipertension
5.6.3. Rutas Diabetes
5.7. CONTENERIZACION Y ALOJAMIENTO WEB MEDIANTE EKS DE AWS
5.7.1. Contenerizacion de aplicacion web
5.7.2. Alojamiento web mediante EKS de AWS
DESARROLLO APLICACION MOVIL
6.1. CONFIGURACION
6.1.1. Build.grade
6.1.2. AndroidManifest.xml

33
33
33
33
34
34
35
36
37
37
38
38
39
40
40
42
42
42
43
44
44
45
46
46
46
47
47
51
51
52
56
56
56
56

7.
8.
9.

10.

6.2. VISTAS
6.2.1. Vista login
6.2.2. Vista Home
6.2.3. Vista Hipertension
6.2.4. Vista Diabetes
6.2.5. Vista Registro

6.3. COMUNICACION POR RETROFIT PARA CONSUMIR API

CONCLUSIONES

RECOMENDACIONES

REFERENCIAS
ANEXOS

56
56
58
60
63
65
67
69
71
72
76

LISTA DE FIGURAS

Pag
Figura 1. Diagrama vista controlador (MVC). (imagen de [14]) 21
Figura 2. Maneras de desplegar aplicaciones. 25
Figura 3. Tipos de datos de cada columna de base de datos 29
Figura 4. Sumatoria de valores null por columna. 30
Figura 5. Configuracion base de datos en Django 34
Figura 6. Cddigo tabla hipertension 35
Figura 7. Cddigo tabla diabetes 36
Figura 8. Relacion de tablas base de datos 37
Figura 9. Vista login de la aplicacion web 38
Figura 10. Vista registro de la aplicacion web 39
Figura 11. Vista Inicio de la aplicacién web 39
Figura 12. Vista diagndstico hipertension de la aplicacion web 40
Figura 13. Vista diagnostico diabetes de la aplicacion web 41
Figura 14. Vista resultado diabetes de la aplicacién web 41
Figura 15. Vista login de la aplicacion web 42
Figura 16. Controlador registro usuario pagina web 43
Figura 17. Controlador login usuario pagina web 43
Figura 19. Controlador historial pagina web 44
Figura 20. Controlador diagnéstico hipertension pagina web 45
Figura 21. Controlador diagndstico diabetes pagina web 46
Figura 22. Rutas usuario pagina web 47
Figura 23. Rutas diagndstico hipertension pagina web 47
Figura 24. Rutas diagndstico diabetes pagina web 48
Figura 25. Librerias para la creacion del API 48
Figura 26. Archivo Serializers para la creacion del API 49
Figura 27. Serializer diabetes para la API 49

Figura 28. Método para la crear una peticion POST y poder diagnosticar diabetes 50
Figura 29. Logica de respuesta de la API para el método de diagnosticar diabetes 50

Figura 30.
Figura 31.
Figura 32.
Figura 33.
Figura 34.
Figura 35.
Figura 36.
Figura 37.
Figura 38.
Figura 39.
Figura 40.
Figura 41.
Figura 42.
Figura 43.
Figura 44.
Figura 45.
Figura 46.
Figura 47.
Figura 48.
Figura 49.
Figura 50.
Figura 51.
Figura 52.
Figura 53.
Figura 54.
Figura 55.
Figura 56.
Figura 57.
Figura 58.

82

Figura 59.

83

Figura 60.

Cadigo archivo Dockerfile para la contenerizacion de la aplicacién 51
Politicas o permisos para el Rol que maneja el cluster 52
Politicas o permisos para el Rol que maneja los worker-nodes 52
Imagen Cluster EKS creado 53
Cddigo YAML para el despliegue del deployment en kubernetes 54
Cddigo YAML para el despliegue del servicio en kubernetes 54
Cddigo YAML para el despliegue de base de datos en kubernetes 55
Vista login app 57
Validacion de ingreso app 58
Vista servicio app 59
Menu desplegable 60
Ejemplo vistas diagnostico hipertension App Mévil 61
Vista recopilacion datos hipertension 62
Vista resultado diagndstico hipertension 62
Ejemplo vistas diagnoéstico diabetes App Movil 63
Vista recopilacion datos diabetes 64
Vista resultado diagndstico diabetes 65
Vista registro de la aplicacion movil 66
Validacién de campos del registro 67
Caddigo creacion de cliente retrofit 68
Cadigo interfaz para la comunicacion con los endpoints del API 68
Caddigo Algoritmo en Machine Learning en Python parte 1 76
Caodigo Algoritmo en Machine Learning en Python parte 2 77
Caddigo Python preprocesamiento datos parte 1 77
Caodigo Python preprocesamiento datos parte 2 78
Caddigo Python preprocesamiento datos parte 3 79
Caodigo Settings.py Django parte 1 80
Caddigo Settings.py Django parte 2 81
Caodigo Archivo Views.py (controlador) para diagnosticar hipertension parte 1
Cadigo Archivo Views.py (controlador) para diagnosticar hipertension parte 2

Caodigo Archivo Views.py (controlador) para el login y registro parte 1 84

Figura 61.
Figura 62.
Figura 63.
Figura 64.
Figura 65.
Figura 66.
Figura 67.
Figura 68.
Figura 69.
Figura 70.
Figura 71.
Figura 72.
Figura 73.
Figura 74.
Figura 75.

Cadigo Archivo Views.py (controlador) para el login y registro parte 2
Cddigo HTML base de la pagina web

Cadigo para crear el formulario que se muestra en la pagina web parte 1
Cddigo para crear el formulario que se muestra en la pagina web parte 2
Codigo HTML de vista donde se muestra el resultado en pagina web
Caddigo vista login aplicacién moévil parte 1

Cadigo vista login aplicacion movil parte 2

Caddigo vista login aplicacién movil parte 3

Cadigo vista Registro aplicaciéon movil parte 1

Caddigo vista Registro aplicacion maovil parte 2

Cadigo vista Registro aplicacion mévil parte 3

Caddigo vista Menu aplicacion movil parte 1

Caodigo vista Menu aplicacion movil parte 2

Caddigo vista Menu aplicacion movil parte 3

Cadigo vista formulario Edad aplicacion movil

LISTA DE ANEXOS

Pag
Anexo A. Cdédigo Algoritmo en Machine Learning en Python
82
Anexo B. Cédigo Django 86
Anexo C. Légica frontend (Django) 88

Anexo D. Légica aplicacion mévil 93

GLOSARIO

API: Interfaz de programacién de aplicaciones que contiene un conjunto de funciones y
procedimientos para realizar una o varias funciones con el fin de ser utilizadas por otro
software.

APP: abreviatura de la palabra inglesa Application. Es una aplicaciéon de software que
realiza funciones especificas y trabaja en diversos dispositivos como teléfonos, relojes
inteligentes, tablets e incluso televisores.

FRAMEWORK: esquema de trabajo para desarrollar e implementar software en
diversos lenguajes de programacion.

HTTP: protocolo de transferencia de hipertexto el cual permite la transferencia de datos
y navegacion en la web.

JSON: notacion de objetos de JavaScript, formato de intercambio de datos que permite
transferir informacion entre cliente y servidor.

METODO: funcién que contiene un conjunto de instrucciones, las cuales se ejecutan
cuando se llame a dicha funcion.

Middleware: software que provee un mecanismo para filtrar las peticiones HTTP de una
aplicacion.

Postgresql : Es un sistema de gestion de bases de datos relacional orientado a objetos
y de cddigo abierto, publicado bajo la licencia PostgreSQL.

Django: Es un framework de desarrollo web de cddigo abierto que se encuentra escrito
en Python y que respeta el patrén de diseiio conocido como modelo—vista—controlador.

REST: transferencia de estados representacional, es una arquitectura que permite
realizar la comunicacién entre cliente y servidor basado en el protocolo HTTP, lo cual
permite obtener y generar datos u operaciones que se entregan en formatos como el
JSON.

Retrofit: Retrofit es un cliente de servidores REST para Android y Java desarrollado por
Square, muy simple y muy facil de aprender. Permite hacer peticiones al servidor tipo
GET, POST, PUT, PATCH, DELETE y HEAD.

Docker: Docker es un sistema operativo (o runtime) para contenedores. Proporciona un
conjunto sencillo de comandos que puede utilizar para crear, iniciar o detener
contenedores.

Kubernetes: Kubernetes es una plataforma portable y extensible de cédigo abierto para
administrar cargas de trabajo y servicios. Kubernetes facilita la automatizacion y la
configuracion declarativa.

RESUMEN

Se realiz6 la implementacién de un producto minimo viable del sistema experto para el
diagnostico de hipertension y diabetes con Machine Learning desarrollado en Python
donde se probaron diferentes métodos tradicionales para determinar cual se ajustaba
mejor a los datos y entregaba un mayor porcentaje de prediccion.

Se desarrollé una aplicacion web con el framework de Django que permite a los
usuarios realizar un proceso de diagnéstico a través de una interfaz grafica con
diferentes formularios que la hacen facil y agradable de utilizar, asi como también llevar
un historial de las consultas realizadas mediante la utilizacion del gestor de bases de
datos PostgreSQL. Ademas, se utilizé la libreria Django Rest Framework para crear
una APl que interactia e intercambia informacion con una aplicacién movil
desarrollada en Android Studio.

La aplicacion movil permite a los usuarios registrarse, hacer un proceso de login y
realizar el proceso de diagnostico de hipertension y diabetes haciendo uso de la libreria
Retrofit para la comunicacion con la API.

PALABRAS CLAVE

API, framework, aprendizaje de maquina, Django, algoritmos, predicciones, aplicacion
movil.

ABSTRACT

The implementation of a minimum viable product of the expert system for the diagnosis
of hypertension and diabetes was carried out with Machine Learning developed in
Python where different traditional methods were tested to determine which one best fit
the data and delivered a higher percentage of prediction.

A web application was developed with the Django framework that allows users to carry
out a diagnostic process through a graphical interface with different forms that make it
easy and pleasant to use, as well as keeping a history of the queries made through the
use of the PostgreSQL database manager. In addition, the Django Rest Framework
library was used to create an API that interacts and exchanges information with a
mobile application developed in Android Studio.

The mobile application allows users to register, perform a login process and carry out
the hypertension and diabetes diagnosis process using the Retrofit library for
communication with the API.

KEYWORDS:

API, framework, Machine Learning, Django, algorithms, predictions, mobile application.

1. INTRODUCCION

En la dltima década, las enfermedades de hipertensién y diabetes han sido una de las
principales causas de muertes a nivel mundial, ya que son pocas las personas que
poseen estas enfermedades y son conscientes de padecerlas, esto se debe a
deficiencias en el sistema de salud en cuanto a no llevar a cabo campanas de
prevencion, informacion y acciones de autocuidado para conservar la salud y vida.
Tanto la hipertension y la diabetes son enfermedades que generan multiples
complicaciones como: problemas cardiovasculares, dafio a las arterias, nervios, dano
en los organos, en los ojos, extremidades, entre otros. Por lo que es de gran
importancia tomar medidas de autocuidado.

Teniendo en cuenta lo anterior, en la actualidad algunas organizaciones vy
universidades, han desarrollado diferentes proyectos que facilitan el diagndstico médico
de enfermedades de hipertension y diabetes. Proyectos que se han enfocado en
diagnosticar solo una de estas enfermedades con porcentajes de precision bajas.

Debido a esto, se desarrollo un sistema experto que facilita el diagndstico de las dos
enfermedades en una misma aplicacion, utilizando métodos de pre-procesamientos y
algoritmos de Machine Learning que permiten mejorar el porcentaje de precision de
diagndstico. De igual forma se uso el framework Django, que permite simplificar el
desarrollo de sitios web complejos y facilita la implementacion de la Api Rest Full
Django (DRF), logrando la comunicacién entre los pacientes mediante la App Android
creada y las peticiones HTTP con la pagina web.

17

2. OBJETIVOS

2.1. OBJETIVO GENERAL

Desarrollo de un sistema experto para el apoyo al diagnéstico médico de enfermedades
de hipertension y diabetes a través de Machine Learning.

2.2. OBJETIVOS ESPECIFICOS

e Investigar el estado del arte de los diferentes algoritmos de Machine
Learning y pre-procesamiento para la prediccion de enfermedades de
hipertension y diabetes.

e Realizar el algoritmo de Machine Learning para la prediccion de
enfermedades de hipertensién y diabetes.

e Desarrollar el sistema experto mediante el disefio del modelo vista
controlador MVC de la aplicacion nativa y la aplicacion web.

e Realizar la validacion de los aplicativos web y movil, junto con la precisiéon
del algoritmo de aprendizaje desarrollado, y elaborar el documento final.

18

3. MARCO TEORICO

3.1. HIPERTENSION

La hipertensién, muy conocida como presion arterial alta, es un trastorno muy
frecuente que afecta a un tercio de la poblacién adulta, donde los vasos sanguineos
presentan una tensién permanentemente alta, lo que puede dafarlos. La presién
arterial es la fuerza que produce la sangre contra las paredes de los vasos(arterias)
al ser bombeadas por el corazén. Una de las caracteristicas de la hipertension es
gue no presenta sintomas claros, por ello se le conoce como el “asesino silencioso”
y puede tardar mucho tiempo en manifestarse, de igual forma presenta uno de los
factores de riesgos cardiovasculares mas prevalentes.

En adultos la presién arterial normal cuando el corazén late (presion sistolica) es de
120 mm Hg y cuando el corazon esta relajado (presion diastdlica) es de 80 mm Hg.
La presiéon arterial se considera alta cuando la presion sistélica es mayor o igual a
140 mm Hg y/o la presion diastélica es mayor o igual a 90 mm Hg. La hipertension
es la causa prevenible mas importante de enfermedades cardiovasculares del
mundo y si no es controlada puede provocar un ensanchamiento en el corazon,
infarto de miocardio, insuficiencia cardiaca, dafos en las arterias, dilatacion en el
ventriculo izquierdo, accidente isquémico transitorio, insuficiencia renal, dafio en los
vasos sanguineos de los ojos, coroidopatia y neuropatia optica. Los efectos de la
hipertension para la salud se pueden empeorar por otros factores como lo es una
dieta poco saludable, el consumo de tabaco, la inactividad fisica, el uso nocivo de
alcohol, la diabetes, la obesidad y el colesterol alto [8].

3.2. DIABETES

La diabetes es una enfermedad incurable que se produce porque el pancreas no
genera suficiente insulina o el cuerpo no utiliza de manera eficiente la insulina que
produce. La insulina es una hormona generada por el pancreas. La cual se encarga del
mantenimiento de los valores exactos de glucosa en la sangre. La insulina permite que
la glucosa sea capaz de ingresar al organismo y llegue al interior de las células, para
transformarse en energia y funcionen de manera adecuada los musculos y tendones.

La diabetes se puede presentar en diferentes tipos: diabetes tipo 1, diabetes tipo 2 y
diabetes gestacional. La diabetes tipo 1, se le diagnostica a nifios y jévenes. Se
produce debido a que el cuerpo no genera insulina porque el sistema inmunitario
destruye cada una de las células del pancreas. Por lo tanto, estas personas tienen que
usar insulina todos los dias para poder vivir. La diabetes tipo 2, puede aparecer en

19

cualquier edad y es el tipo mas comun de diabetes. Se produce porque el cuerpo no
genera o no usa la insulina adecuadamente. La diabetes gestacional, se presenta en
algunas mujeres en embarazo y desaparece en la mayoria de los casos cuando nazca
el bebé [9].

3.3. SISTEMA EXPERTO

Es un sistema basado en computadoras, interactivas y confiables. Que usa
conocimiento de un area de aplicacion compleja y actia como un consultor experto
para los usuarios finales. También, Proporcionan soluciones a problemas muy
especificos al hacer inferencias iguales a la de los humanos sobre los conocimientos
especificos. Los sistemas expertos se identifican por el alto nivel de experiencia que
proporciona precision, eficiencia y resolucion imaginativas de problemas [10].

3.4. SISTEMA OPERATIVO ANDROID

Android es una plataforma de software para dispositivos moviles que incorpora un
sistema Operativo y aplicaciones de base. También mezcla herramientas y aplicaciones
que estan vinculadas a una distribucién Linux para dispositivos moéviles y es de cédigo
abierto, donde se pueden crear aplicaciones para plataformas usando el SDK de
Android para dispositivos maéviles [11].

3.5. MODELO VISTA CONTROLADOR (MVC)

El modelo vista controlador (MVC) es un patron de arquitectura de software que separa
una aplicacién en tres componentes fundamentales, los cuales son el Modelo, la Vista y
el Controlador, que se trabajan de forma independiente, permitiendo que la aplicacion
sea mucho mas facil de desarrollar y mas organizada. Muchos frameworks modernos
implementan MCV para la arquitectura, de los cuales podemos mencionar AngularJS,
Ruby on Rails y Django [12].

En el caso especifico de Django, a pesar de que sigue en teoria el patrén MVC, en éste
el Controlador, "C" es manejada por el mismo framework y la parte mas importante se
produce en los modelos, las plantillas y las vistas, Django es conocido como un
Framework MTV [13]. Donde MTV significa:

M de "Model" (Modelo), la capa de acceso a la base de datos.
20

T significa "Template" (Plantilla), la capa de presentacion.

V significa "View" (Vista), la capa de la l6gica de negocios. Esta capa contiene la I6gica
que accede al modelo y la delega a la plantilla apropiada.

La razéon de que se utiice MVC es que permite separar los componentes de una
aplicacién, esto quiere decir que, al momento de modificar una parte del codigo, esto
no afecta a otra parte del mismo. Por ejemplo, si se llega a modificar la base de datos,
solo se debe modificar el modelo ya que representa la estructura légica de los datos en
una aplicacion. Siendo un puente de comunicacion entre el controlador, la base de
datos y la vista. El controlador es el encargado de aceptar y controlar las solicitudes
que hace el usuario, encargandose de solicitar los datos al modelo y, por ultimo, toma
la vista adecuada para mostrar los datos al usuario. La vista en cambio es la
representacion visual de los datos, esto quiere decir que va todo lo que tenga que ver
con la interfaz grafica, todo esto se puede observar de una forma mas clara en la
figura 1 [14].

Figura 1. Diagrama vista controlador (MVC). (imagen de [14])

Saliciid

| ®

FedLrn

reElum

21

3.6. MACHINE LEARNING

Machine Learning o aprendizaje automatico, es una de las ramas de la inteligencia
artificial que se encarga de crear sistemas que permitan a las maquinas o
computadores aprender, sin la necesidad de estar expresamente programadas para
ello. Lo que resulta una habilidad indispensable para hacer, no solo sistemas
inteligentes, sino también auténomos, y capaces de identificar patrones entre los datos
para poder hacer predicciones. Machine Learning tiene un aspecto iterativo importante
porque a medida que los modelos son expuestos a nuevos datos, éstos pueden
adaptarse de forma independiente. Aprenden de calculos previos para producir
decisiones y resultados confiables y repetibles. Es una ciencia que no es nueva — pero
gue ha cobrado un nuevo impulso.

El aprendizaje automatico tiene una amplia gama de aplicaciones, incluyendo motores
de busqueda, diagndsticos médicos, deteccion de fraude en el uso de tarjetas de
crédito, anadlisis del mercado de valores, clasificacion de secuencias de ADN,
reconocimiento del habla y del lenguaje escrito, juegos y robdtica.

¢ Por qué es importante Machine Learning?, Con el aprendizaje automatico es posible
producir modelos de manera rapida y automatica que puedan analizar datos mas
grandes y complejos y producir resultados mas rapidos y precisos — incluso en una
escala muy grande. Y con la construccién de modelos precisos, una organizacion tiene
una mejor oportunidad de identificar oportunidades rentables — o de evitar riesgos
desconocidos [15].

Métodos de Machine Learning: Dos de los métodos de aprendizaje basado en maquina
mas ampliamente adoptados son aprendizaje supervisado y aprendizaje no
supervisado — pero existen también otros métodos de machine Learning.

Los algoritmos de aprendizaje supervisado producen una funcién que establece una
correspondencia entre las entradas y las salidas deseadas del sistema. Un ejemplo de
este tipo de algoritmo es el problema de clasificacion, donde el sistema de aprendizaje
trata de etiquetar (clasificar) una serie de vectores utilizando una entre varias
categorias (clases). La base de conocimiento del sistema esta formada por ejemplos de
etiquetados anteriores [16].

El aprendizaje no supervisado se utiliza contra datos que no tienen etiquetas historicas.
No se da la "respuesta correcta" al sistema. El algoritmo debe descubrir lo que se
muestra. El objetivo es explorar los datos y encontrar alguna estructura en su interior
[16]. El sistema tiene que ser capaz de reconocer patrones para poder etiquetar las
nuevas entradas.

Técnicas de clasificacion: existen diferentes técnicas o algoritmos que nos permiten
clasificar unos datos de entrada de acuerdo a unas etiquetas de salida, entre las
técnicas se encuentran arboles de decisién, maquinas de soporte vectorial, bosques
aleatorios, redes bayesianas, entre otros.

22

3.6.1. K-NEAREST-NEIGHBOR

K vecinos mas cercanos es un algoritmo de clasificacién de tipo supervisado de
machine learning. El cual simplemente busca en las observaciones mas cercanas a la
que se esta tratando de predecir y clasifica el punto de interés basado en la mayoria de
datos que le rodean. Este algoritmo por ser uno de los mas basicos y esenciales en
machine learning es muy implementando en el reconocimiento de patrones, sistema de
recomendacion, mineria de datos, plataforma de contenido digital y deteccién de
intrusos. [23]

3.6.2. ARBOLES DE DECISION

Arboles de decisién es un algoritmo de clasificacién de tipo supervisado de machine
learning. El cual esta estructurado como un diagrama de flujo que permite la toma de
decisiones. El algoritmo esta constituido por diferentes tipos de nodos, donde un nodo
interno representa una caracteristica, la rama representa una regla de decisién y cada
nodo hoja representa el resultado. [24]

3.6.3. MAQUINAS DE VECTORES DE SOPORTE (SVM)

Maquinas de vectores de soporte es un algoritmo que se puede usar para regresion y
clasificacion de tipo supervisado. Este algoritmo con dos o mas clases de datos
etiquetados, actia como un clasificador trazando un hiperplano éptimo que separa
todas las clases, siendo el hiperplano el limite de decision [25].

3.6.4. NAIVE BAYES

Naive Bayes es un algoritmo de clasificacién de tipo supervisado de machine learning.
Este algoritmo proporciona una forma en la que se puede calcular la probabilidad de
una hipétesis dado un conocimiento previo [26].

3.6.5. BOSQUES ALEATORIOS

Bosques Aleatorios es un algoritmo de clasificacién de tipo supervisado de machine
learning. Este algoritmo implementa conjuntos de arboles de decision los cuales
permiten que distintos arboles vean diferentes porciones de datos, logrando que ningun
arbol vea todos los datos de entrenamiento [27]. Esto proporciona que cada arbol se
entrene con una gran variedad de datos de un mismo problema. De esta forma, al
combinar todos los resultados, unos errores se compensan con otros, logrando una
prediccidn que generaliza mejor.

3.7. PREPROCESAMIENTO DE DATOS

El preprocesamiento de datos es un paso fundamental en la mineria de datos. Siendo
una etapa esencial del proceso de descubrimiento de informacién. Ya que muchos de
23

los datos no estan limpios, presentando ausencia de informacion clave, valores
atipicos, entre otros.

La imperfeccion en la limpieza de datos es uno de los grandes problemas que permiten
que se presenten resultados erroneos en los algoritmos de clasificacién. En el
preprocesamiento se realizan algunas de las siguientes tareas:

Corregir inconsistencias

Identificar y eliminar datos que se pueden considerar un ruido
Rellenar valores faltantes

Resolver redundancia

3.8. ANALISIS DE COMPONENTES PRINCIPALES (PCA)

El analisis de componentes principales es una técnica para disminuir la dimension del
conjunto de datos, esto quiere decir que sirve para encontrar las causas de la
variabilidad de un conjunto de datos y ordenarlas por importancia. EI ACP permite
representar los datos originales, en una especie de dimensién inferior del espacio
original, mientras limita al maximo la pérdida de informacion [29]

3.9. POSTGRESQL

PostgreSQL es un sistema de gestion de base de datos relacional y esta orientado a
objetos, siendo multiplataforma y open source.

3.10.API REST

APl REST es un método de arquitectura de desarrollo Web que se apoya en HTTP, y
que a través de los métodos HTTP (GET, POST, PUT, DELETE) se puede implementar
para ejecutar operaciones con los datos de cualquier aplicacion, permitiendo gozar de
las ventajas como lo es: facilitar el desarrollo del frontend, crear arquitecturas
orientadas a servicios y exponer datos a otros programas.

3.11. DOCKER

El sistema de software de Tl llamado "Docker" es la tecnologia de organizacién en
contenedores que posibilita la creacion y el uso de los contenedores de Linux®.

Con Docker, podra utilizar los contenedores como maquinas virtuales muy livianas y
modulares, y obtendra la flexibilidad necesaria para crearlos, implementarlos, copiarlos
y trasladarlos de un entorno a otro, lo cual le permite optimizar sus aplicaciones para la
nube.

Existen dos diferentes maneras de desplegar aplicaciones, una antigua y una nueva.

24

Figura 2. Maneras de desplegar aplicaciones.

The old way: Applications on host The new way: Deploy containers

App App

Libraries Libraries

App App

Libraries
Libraries Libraries

Heawyweight, non-portable Small and fast, portable
Relies on OS package manager Uses OS-level virtualization

Fuente: Tomado de la pagina oficial de Kubernetes [33]

La Manera Antigua de desplegar aplicaciones era instalarlas en un servidor usando el
administrador de paquetes del sistema operativo y la Manera Nueva es desplegar
contenedores basados en virtualizacion a nivel del sistema operativo, en vez del
hardware. Estos contenedores estan aislados entre ellos y con el servidor anfitrion:
tienen sus propios sistemas de archivos, no ven los procesos de los demasy el uso de
recursos puede ser limitado [33].

Entre los beneficios de usar contenedores estan:

e Agil creacion y despliegue de aplicaciones: Mayor facilidad y eficiencia al crear
imagenes de contenedor en vez de maquinas virtuales

e Desarrollo, integraciéon y despliegue continuo: Permite que la imagen de
contenedor se construya y despliegue de forma frecuente y confiable, facilitando
los rollbacks pues la imagen es inmutable

e Aislamiento de recursos: Hace el rendimiento de la aplicacion mas predecible

e Utilizacidén de recursos: Permite mayor eficiencia y densidad

3.12. KUBERNETES

Kubernetes es una plataforma portable y extensible de codigo abierto para administrar
cargas de trabajo y servicios. Kubernetes facilita la automatizacién y la configuracion
declarativa. Tiene un ecosistema grande y en rapido crecimiento. El soporte, las

25

herramientas y los servicios para Kubernetes estan ampliamente disponibles. Es muy
usado para la orquestaciéon de contenedores [33].

3.13. AMAZON ELASTIC KUBERNETES SERVICE (EKS)

Amazon Elastic Kubernetes Service (Amazon EKS) es un servicio de contenedores
administrado para ejecutar y escalar aplicaciones Kubernetes en la nube o en las
instalaciones [35].

26

4. DESARROLLO ALGORITMO DE MACHINE LEARNING

En este capitulo se explicara el desarrollo del algoritmo de Machine Learning que se
encargara de la predicciéon de hipertension y diabetes, esto mediante el uso de la
interfaz de escritorio Anaconda Navigator que permite iniciar aplicaciones y administrar
facilmente paquetes, entornos como Spyder y JupyterLab, y canales de conda sin usar
lineas de comandos, y bajo el lenguaje de programacion Python 3 que cuenta con
licencia de codigo abierto y permite su utilizacion en cualquier situacion y costo.

4.1. BASES DE DATOS

Para el desarrollo del algoritmo, se utilizaron dos bases de datos de uso libre con fines
académicos, que contienen datos que son necesarios para la prediccion tanto de
hipertension como de diabetes, la base de datos utilizada para la prediccion de
hipertension fue obtenida de la pagina web Datos Abiertos de Colombia, y la base de
datos utilizada para diabetes es la Pima Indians Diabetes Database (PIDD) la cual ha
sido ampliamente utilizada y estudiada en el diagndstico de diabetes.

Entre las columnas necesarias para la prediccion de hipertensién estan la edad (Afios),
presion arterial sistélica (mm Hg), indice de masa corporal (IMC), Peso (Kg), y los
Atributos necesarios para la prediccion de diabetes estan la edad (afos), presion
arterial sistdlica (mm Hg), espesor de piel (mm), insulina (mg/dl), indice de masa
corporal (IMC) y la funcion de pedigri de diabetes (FPD). La funcion de pedigri de
diabetes es como su nombre lo dice una funcién creada por un grupo de investigadores
Smith et al. en su trabajo Using the ADAP Learning Algorithm to Forecast the Onset of
Diabetes Mellitus [21], la cual utiliza datos de los antecedentes familiares del paciente
como el parentesco del familiar, la edad a la cual fue diagnosticado el familiar entre
otros.

4.1.1. Funcion de Pedigri de Diabetes

Consiste en una funcidbn que puntia la probabilidad de diabetes segun los
antecedentes familiares de acuerdo a la historia y relacion genética con el paciente. La
funcién de pedigri de diabetes (DPF en inglés) fue desarrollada por Smith et al. [21] y
proporciona una medida de la influencia genética esperada de los parientes afectados y
no afectados sobre el eventual riesgo de diabetes del paciente. La funcién del pedigri
de la diabetes se representa de la siguiente forma:

YK (88—ADM)+20
DPF = =
§Kj(ALcj—14)+50

27

Donde,

i hace referencia a todos los parientes, que han desarrollado diabetes hasta la
fecha del examen del paciente.

j hace referencia a todos los parientes, que no han desarrollado diabetes hasta la
fecha del examen del paciente.

Kx es el porcentaje de genes compartidos por el pariente. Y equivale a:

0.500 cuando el pariente es padre o hermano completo, 0.250 cuando el
pariente es medio hermano, abuelo, tia o tio, y 0.125 cuando el pariente es mitad
tia o mitad tio.

ADML, es la edad en afnos del familiar cuando se le diagnostico diabetes.
ALC], es la edad en afos del familiar que no ha sido diagnosticado con diabetes.

Las constantes 88 y 14 representan las edades maxima y minima en

qué familiares de los pacientes generalmente desarrollan diabetes. Y 50 y 20 son
valores para ajustar los resultados de la funcién

4.2. LIMPIEZAY PREPROCESAMIENTO DE LOS DATOS

Para comenzar el desarrollo nuestro algoritmo de Machine Learning es necesario
realizar una limpieza y preprocesamiento de los datos con los que vamos a trabajar.
Para realizar la limpieza primero se debe importar todas las librerias con las que se
trabajara para realizar este proceso, entre las librerias que usamos estan Pandas, y
numpy las cuales nos sirven para manipular y analizar los datos como arreglos y
dataframes, Otras librerias utilizadas estan la libreria para visualizar los resultados de
mediante graficas como matplotlib y seaborn, y librerias para Machine Learning como
Scikit-learn.

Luego de importar las librerias se procede a cargar los datos con los que se va a
trabajar a nuestro entorno de trabajo el cual es JupyterLab, y ya que nuestros datos se
encuentran en un archivo CSV la tarea de cargar los datos resulta bastante facil, solo
es necesario utilizar el comando de la libreria pandas “read_csv(nombrearchivo.csv)”.
Luego de haber cargado la base de datos, podemos proceder a analizar el tipo de dato
de cada columna y una breve descripcidn sobre ellos mediante el comando dtypes y
decribe().

28

Figura 3. Tipos de datos de cada columna de base de datos

data_h.dtypes

Edad (afios) inted
Grupo de edad object
Genero inted
Etnia object
Zona object
Escolaridad intes
Fumador Activeo ochject
sDiabetes? ohject
Hipertensidn Arterial Sistemica object
HT& + DM object
Clasificacion de Diabetes o del ultimeo estado de Glicemia intéd
Complicaciones y Lesiones en Crgano Blanco ohject
fntecedentes Fliar Enfermedad Coronaria object
Tension SISTOLICA intes
Tension DIASTOLICA intéd
HTA COMPENSADCS object
Colesterol Total inted
Colesterol HOL object
Triglicerides ochject
Colesterecl LOL object
CALCULD DE RIESGO DE Framingham (% a 1@ afios) object
Clasificacién de RCY Global object
Glicemia de ayuno floates
Perimetro Abdominal tloates
Clasificacién perimetro abdeminal object
Peso intes
Talla intes
IHC intéd

Fuente: elaboracién propia

Se comprueba el tipo de datos de cada columna y se separan para poder observar la
cantidad de columnas de tipo numérico y categorico. Estos primeros pasos se realizan
para ambos datasets, el de hipertension y diabetes, y a continuacién se pueden
observar como funcionan:

Ahora vamos a comenzar a realizar la limpieza de los datos, primero comprobando la
cantidad de valores nulos presentes entre los datos, analizando cada columna,
eliminando las columnas con mayor numero de valores nulos, ya que no aportan
valores suficientes con los cuales trabajar, y también se procede a eliminar todas las
columnas que no aportan nada a nuestro desarrollo, pero se encuentran presentes en
el dataset. Para eliminar los valores nulos se utiliza el comando dropna que permite
eliminar valores de archivos dataframe. Aquellas columnas que tengan un numero
pequefio de datos nulos fueron rellenados con el valor medio para cada columna, y
luego se puede comprobar si aun existen valores nulos y suma la cantidad mediante el
cédigo data_h.isnull().any().sum(), como se muestra a continuacion:

29

Figura 4. Sumatoria de valores null por columna.

data_h.i=null().sum()

Mum . a
subject _ID e
Sex(M/F)]
Age(year) e
Height(cm) a
Weight(kg) a
Systolic Blood Pressure{mmHg) a
Diastolic Blood Pressure{mmHg) a
Heart Rate(b/m) e
BMI (kg/m~2) 2
Hypertension a
Diabetes 181
cerebral infarction 199
cerebrovascular disease 194
dtype: inte4

Fuente: elaboracién propia

Luego, se completaran los campos nulos hallados utilizando la media de cada columna
respectivamente, y para los datos de tipo categoricos se tomo la decision de eliminar
las filas que contengan datos nulos para evitar que estos tengan un efecto negativo en
nuestro algoritmo.

Utilizando el componente preprocessing de la libreria Sklearn se importé
LabelEncoder(), la cual es una funcién de esta libreria que nos permite realizar una
codificacion de las variables categéricas presentes en la tabla por variables numéricas ,
por ejemplo para la salida de hipertension sera 0 si la variable es NO y 1 si la variable
es Sl. Este proceso se realiza para las variables categéricas necesarias para la
realizacion del algoritmo. Luego de esto, se procede a observar la correlacion presente
en todos los atributos en relacion con los datos de salida y determinar qué variables
tienen una mayor relacion. Por lo cual los atributos utiles y que fueron elegidos para la
realizacion de nuestro algoritmo fueron la edad, la presién arterial sistélica, altura, peso,
indice de Masa Corporal (IMC).

Se observaron los datos de la salida de nuestra base de datos los cuales se utilizaran
para realizar el entrenamiento, y se construy6 una grafica con python que nos permitira
observar la cantidad filas que presentan hipertension, ya sea prehipertension,

30

hipertension en etapa 1, o hipertension en etapa 2, y las filas que no presentan
hipertension en nuestra base de datos.

4.2.1. Algoritmo de preprocesamiento PCA

Luego de la limpieza de los datos de entrada se utilizara el algoritmo de
preprocesamiento Principal Component Analysis o PCA, por sus siglas en inglés, que
nos permite combinar variables de entrada de una manera especifica y eliminar
algunas variables menos importantes. Este algoritmo se puede importar en python
mediante la libreria de sklearn, mediante el comando from sklearn.decomposition
import PCA, después de esto se llama el numero de componentes que utilizara el
algoritmo para entregar el resultado, y para finalizar utilizamos fit_transform para
transformar nuestros datos mediante PCA, y quedando todo listo para realizar el
entrenamiento de nuestro algoritmo de deteccion de hipertension o diabetes.

4.3. ALGORITMO DE PREDICCION

Después de realizar todo el preprocesamiento anterior, los datos se encuentran listos
para poder entrenar el algoritmo, y lo primero que vamos a hacer sera crear un arreglo
que tendra los atributos de entrada y un arreglo que tendra los valores de salida, luego
se procede a dividir los datos en datos de entrenamiento y en datos de test. Los datos
de entrenamiento seran utilizados para entrenar nuestro algoritmo de machine learning
y de esa manera obtener un resultado, por otra parte, los datos de test seran utilizados
para comprobar el correcto funcionamiento del algoritmo entrenado y la precisidon
correspondiente.

El comando para dividir los datos es train_test_split, importado de la libreria sklearn de
la siguiente manera, los parametros utilizados en este comando son el arreglo de
entrada, el arreglo de salida, test_size que indica el tamafio de los datos de test que
retorna el comando, y random_state, que es un valor que se usa basicamente para que
cada vez que se ejecute el comando test_train_split se obtenga el mismo conjunto de
datos de entrenamiento y de test.

Luego, se procede a importar el algoritmo a utilizar desde la libreria sklearn, se crea el
algoritmo y se varian sus parametros de entrada para poder obtener la mejor respuesta
posible, y luego se entrena el algoritmo mediante el arreglo de datos de entrenamiento.

Después, se utiliza la funcion predict, que utilizara el algoritmo entrenado y los datos de
entrada de test para predecir la salida, la cual sera hipertension y diabetes. los datos
que entrega como resultado este comando se utilizara para obtener el porcentaje de
precision del algoritmo, se utilizara la salida predecida y la salida de test, y se evalua en
qué no se cumple que ambas salidas tengan igual valor.

31

Todo este proceso se realizara para diferentes algoritmos de machine learning, y asi
obtener el mejor resultado para nuestro conjunto de datos, los algoritmos evaluados
son Arboles de decision, Random Forest, KNN, Maquina de vectores de soporte y
Naive Bayes, y las respuestas obtenidas para cada algoritmo son resumidas en la
siguiente tabla.

Tabla 1. Resultado Entrenamiento Algoritmos de prediccién

M¢étodos de Machine Learning % Prediccion Hipertension % Prediccion Diabetes
Arbol de decision 0.94 0.89
Random Forest 0.96 0.88
KNN 0.98 0.90
i\é{i;lg)ina de vectores de soporte 0.99 0.91
Naive Bayes 0.94 0.88

Luego de tener el algoritmo con mejor respuesta, se encapsula el algoritmo y se
exporta mediante la libreria pickle de python, los cual mediante unos pocos comandos
nos permite generar un archivo con extensioén pkl que contendra nuestro algoritmo de
deteccion. Todo este proceso se hace con la intencion de poder utilizar este algoritmo
generado en nuestra interfaz de usuario web, la cual tendra un formulario para poder
ingresar los datos de entrada del algoritmo mediante un método POST, luego procesar
estos datos con el algoritmo y entregar el resultado del diagndstico.

32

5. DESARROLLO DEL SISTEMA EXPERTO

En este capitulo se explicara el desarrollo del sistema experto, el cual consta de una
aplicacién web y una aplicacion movil, la aplicacién web se desarroll6 bajo el framework
Django debido a su versatilidad, facilidad de trabajo y que su lenguaje de programacion
base es Python 3, y se utilizé el entorno de desarrollo Visual Studio Code para construir
el proyecto. La aplicacion movil se desarroll6 mediante el uso del entorno de desarrollo
integrado (IDE) ya que es el entorno oficial para el desarrollo de apps para dispositivos
Android.

5.1. DESARROLLO APLICACION WEB EN DJANGO
5.1.1. Configuracioén inicial

Para trabajar con Django se debe tener instalado Python 3 con anterioridad, y luego
instalar la libreria de Django mediante la linea de comando pip install Django==3.2.5

Esta linea depende de la versidbn que quieras instalar. Luego de eso, se crea el
proyecto mediante el comando django-admin startproject mysite, donde mysite es el
nombre del proyecto y luego se puede comprobar su funcionamiento mediante la
ejecucion de un servidor local que viene con la libreria, el comando a utilizar es python
manage.py runserver. Cuando se crea el proyecto se crea una carpeta de archivos que
se puede abrir en cualquier editor de cédigo, en nuestro caso utilizamos Visual Studio
Code, y donde se puede empezar a programar nuestro proyecto.

5.1.2. Creacion de apps para el proyecto

Luego de crear el proyecto es necesario crear aplicaciones para desarrollar cada una
de las partes importantes del proyecto, todo esto mediante el comando python
manage.py startapp myapp donde myapp es el nombre de la app. Para nuestro
proyecto creamos 3 apps, una para la creacion de registro e inicio de sesién de
usuarios, otra para la parte del sistema que tiene que ver con Hipertensién y otra para
la parte de Diabetes.

5.1.3. Conexion base de datos

Para la base de datos utilizamos el gestor de base de datos Postgresql, el cual es facil
de utilizar y frecuentemente utilizado con Django. Para la configuracion y establecer
una conexion con la base de datos es necesario instalar la libreria psycopg2 en Python

33

mediante el comando pip install psycopg2 y modificar el archivo settings.py del
proyecto de la siguiente manera:

Figura 5. Configuracion base de datos en Django

DATABASES = {
‘default’: {
"EMGIME®: 'django.db.backends.postgresgql psycopg?’,
"MAME': 'hipertensiondiabetes',
"USER": ‘"postgres’,

"PASSWORD®: "admin®,
"HOST': '127.8.8.1°,
"DATABASE PORT': "5432°,

Fuente: elaboracién propia

Donde ENGINE equivale al motor o libreria que se utiliza para realizar la conexion
(psycopg2), NAME es el nombre de la base de datos creada en PostgreSQL mediante
PgAdmin, USER y PASSWORD son credenciales para poder gestionar la base de
datos en PgAdmin, HOST equivale a la direccion IP del servidor, DATABASE_PORT es
el puerto de conexion con el gestor de base de datos.

5.2. CREACION DE TABLAS DE DATOS EN DJANGO

Para la creacion de las tablas necesarias para el proyecto se debe modificar el archivo
del proyecto models.py de cada app, y luego de eso realizar las migraciones en el CMD
mediante el comando python manage.py makemigrations y luego ejecutar el comando
python manage.py migrate. El archivo manage.py es el que contiene toda la
informacion de la ejecucion del proyecto.

5.2.1. Creacion de tabla usuarios

Hace referencia a los campos registrados en la tabla usuarios. Esta tabla contiene
informacion basica del usuario o paciente: id de tipo incremental (servira como
identificador para relacionar la informacion con las otras tablas), nombre, apellido,
nombre de usuario, correo, contrasena, y confirmacion de contrasena. Esta tabla se
crea en base a una clase predefinida en Django que se extiende de
django.contrib.auth.models la cual tiene por nombre User, y para importar esta clase se

34

escribe from django.contrib.auth.models import User. Esta clase contiene otros campos
aparte de los mencionados anteriormente, los cuales son last_login que es un campo
tipo datetime autogenerado que indica la fecha del ultimo login del usuario, is_stack
que indica si el usuario puede entrar al admin site de Django, is_active indica si el
usuario es considerado activo, is_superuser que indica si el usuario tiene todos los
permisos.

Tabla 2. Campos por defecto del modelo Login

Campo: Tipo de dato:
username Charfield
First name Charfield
Last name Charfield

Email Emailfield
password Passwordfield

Is stack Booleano
Is active Booleano

Is superuser Booleano
Last login Datefield
Date joined Datefield

5.2.2. Creacion de tabla hipertensiéon

Hace referencia a los campos registrados en la tabla hipertensién. Esta tabla contiene
informacion de los datos necesarios para el diagndstico de hipertensién de cada
paciente, donde el campo id de tipo incremental servira como identificador para
relacionarla con la informacion de las demas tablas, edad en afos del paciente, el
peso en kilogramos , la presion arterial sistdlica que presente el paciente, el indice de
masa corporal el cual se haya con la altura y peso del paciente, y por ultimo el
usuario_id el cual es el indicador del paciente el cual esté realizando el diagndstico.

La informacién del servicio se divide en dos tablas relacionadas para manejar la
informacion mas ordenada y segmentada: rutas e imagenes.

Figura 6. Codigo tabla hipertension
=, on_delete=models .CASCADE)
» decimal_ places=2)

x_digits=5, decimal_plac

resultad Field{max_ length=24, null =

35

Fuente: elaboracién propia
5.2.3. Creacion tabla diabetes

Hace referencia a los campos registrados en la tabla diabetes. Esta tabla contiene
informacion de los datos necesarios para el diagnéstico de diabetes de cada paciente,
donde el campo id de tipo incremental servird como identificador para relacionarla con
la informacién de las demas tablas, edad en anos del paciente, la presién arterial
sistdlica que presente el paciente, el espesor de la piel, la insulina, el indice de masa
corporal el cual se haya con la altura y peso del paciente, la funcion de pedigri de
diabetes mencionada anteriormente, y por ultimo el usuario_id el cual es el indicador
del paciente el cual esté realizando el diagndstico.

Figura 7. Codigo tabla diabetes

21s.CASCADE, null=

presion_arterial =

espesor_piel = 1 (a , max_digits=5, decimal places=2)
» decimal_places=2)
max digits=5, decimal places=2)
pedigr i; d] ', max_digits=5, decimal places=2)

edad =

Fuente: elaboracién propia

36

Figura 8. Relacion de tablas base de datos

hipertension_hipertension

id SERIAL
presion s MUMERIC|53)

exlad INTEGER

ime HUMERIC[52)

peso INTEGER

usuario_id INTEGER A—

esulado CHARACTER VARYING[24)

diabetes_diabetes

id SERIAL

glucosa_plasmatica INTEGER EriT oy

presion_arterial INTEGER W SERIAL

espesor_piel HUMERIC [5.2] password CHARACTER WVARYING([128]

insulina HUMERIC(52] Bstbogin - TIMESTAMP{E WITH TIME ZOHNE

mnc HUMERIC [53) is_superuser BOOLEAN

pedigri diabetes HUMERIC[53] wsername CHARACTER VARYING(150]

edad INTEGER, first_name CHARACTER VARYING(150)

user_id INTEGER. Al last_name CHARACTER VARYING(150]
amail CHARACTER VARYING[254)
is_staff BOOLEAN

B_active BOOLEAM
date_joined TIMESTAMP[E WITH TIME ZOMNE

Fuente: elaboracién propia

5.3. ENVIO Y RECEPCION DE INFORMACION DE BASES DE DATOS

Mediante la gestion de los modelos y controladores que provee Django se realizan
consultas y se insertan registros en la base de datos. Para realizar la comunicacion con
la base de datos en el caso del sistema de registro y autenticacién de usuarios se
realiza con la ayuda de Django y su libreria auth, la cual permite crear usuarios en la
base de datos y realizar las validaciones correspondientes a la autenticacién de
usuario en el proceso de login.

5.4. CREACION DE VISTAS EN DJANGO

Se realiz6 la creacion de las vistas para la aplicacion web, comenzando por la vista de
login, la cual contiene un formulario para ingresar los datos de usuario y contrasena,
una vista de registro con su respectivo formulario y botdn, una vista principal llamada
home, la cual nos muestra un menu con las opciones de login, registro, diagnéstico de
hipertension y diabetes, y por ultimo las vistas necesarias para realizar el diagnostico
de hipertension y diabetes.

37

5.4.1. Vista Login

Para la vista login, se realizé un formulario que contiene los datos de usuario el cual
hace referencia al id de usuario registrado al crear la cuenta y la respectiva contrasena.
luego se tiene el botdn de recuerdame que permite almacenar los datos del usuario
para cuando intente ingresar de nuevo y un boton para enviar los datos y realizar la
respectiva validacion de credenciales, en caso de que las credenciales sean
incorrectas se generara un error que aparecera en pantalla. al final aparecera un
enlace que permitira registrarse en caso de no tener una cuenta, que nos redirigira a la
vista Registro.

Figura 9. Vista login de la aplicacion web

[niciar Sesion

Usuario

O Recuerdame
Enviar

No tienes una cuenta? Registrate

¢Olvidaste tu contrasena?

Fuente: elaboracién propia
5.4.2. Vista Registro

La vista registro contiene un formulario con los diferentes campos necesarios para que
una persona pueda registrarse en la pagina web, los campos son usuario, email,
nombres, apellidos, contrasefia y el campo confirmar contrasefia, campos tipicos
utilizados en cualquier sistema de registros. Al final de la pagina se encuentra el boton
enviar, que enviara los datos para su respectiva validacion como por ejemplo que el id
no se encuentre ya registrado en el sistema, el email sea correcto y la contrasena sea
adecuada.

38

Figura 10. Vista registro de la aplicacion web

INICIO HIPERTENSION DIABETES Inicia Sesién Registrate

Registrate

Usuario
Email
Nombre
Apellidos
Contrasena

Confirma tu Contrasefia
Fuente: elaboracién propia
5.4.3. Vista Inicio

La pagina de inicio contiene la barra de menu superior con sus respectivas opciones
cémo inicio, hipertensioén, diabetes y los botones de iniciar sesion y registrate. luego se
trabaja un poco el disefio de la pagina con un slide y botones que llevan a diferentes
vistas.

Figura 11. Vista Inicio de la aplicacion web

INICIO HIPERTENSION DIABETES Inicia Sesién Registrate

Continuar

< W

39

Fuente: elaboracién propia
5.4.4. Vista diagnodstico hipertension

En esta vista se encuentra el formulario con todos los datos requeridos para realizar el
diagndstico de hipertension y un botdn de enviar para realizar la validacion de los datos
y la redireccion a los resultados.

Figura 12. Vista diagnostico hipertension de la aplicacion web

INICIO HIPERTENSION DIABETES Hola. maicol | =

Ingresa los siguientes datos:
Edad:

Ingresa tu Edad

Indice de Masa Corporal IMC(kg /m™2):

Ingresa tu IMC

Peso(kg):

Ingresa tu peso

Presion arterial sistolica:

Ingresa tu presion sistolica

Enviar

Fuente: elaboracién propia
5.4.5. Vista diagnéstico Diabetes

Para diabetes se crearon varias vistas con diferentes formularios que contienen todos
los datos requeridos para realizar el diagnostico de diabetes y un botén de enviar para
realizar la validacién de los datos y la redireccion a los resultados.

40

Figura 13. Vista diagnostico diabetes de la aplicacion web

INICIO DIAGNOSTICAR HIPERTENSION DIABETES

Diagnosticar Diabetes

Ingrese los siguientes datos por favor.

GLUCOSA PLASMATIC A

$

DIAGNOSTICAR HIPERTENSION DIABETES

Diagnosticar Diabetes
PRESICON ARTERIAL:

11y :

Continuar

Fuente: elaboracién propia

41

Figura 14. Vista resultado diabetes de la aplicacion web

Tus resultados son: Diabetico

Estados:

Presion arterial elevada: 146

IMC no se encuentra en un rango de valores normales: 26

Recomendaciones:

Se recomienda realizar ejercicios al menos 30 minutos al dfa, Reducir la cantidad de alcohol y cafeina que consumes.
Se recomienda tener una mejor dieta y mantener un buen control de su concentracion de az(car en sangre.

Establece horarios al comer. Recuerda que el 50% de tu plato debe ser de verduras, el 25% de proteinas y el otro 25% de carbohidratos.

Resultados Anteriores:

Glucosa Plasmatica Presion Arterial Espesor de Piel Insulina IMC Pedigri Diabetes Edad

0O 123 146 5,00 133,00 26,00 048 23

Fuente: elaboracion propia
5.4.6. Vista Historial

La vista historial mostrara todos los diagndésticos hechos por un usuario, ya sea de
hipertension o diabetes, los datos se mostraran en una tabla con todos los campos
registrados. Para mostrar estos datos se realizé una consulta a la base de datos.

Figura 15. Vista login de la aplicacion web

INICIO HIPERTENSION DIABETES Hola, maicol | =

Tu Historial

© 2017-2021 Company, Inc. - Privacy - Terms Back to top

Fuente: elaboracién propia
42

5.5. CREACION DE CONTROLADORES EN DJANGO

Contienen la l6gica para el manejo de las peticiones del sistema, y la logica utilizada
para la visualizacion de las vistas y demas procesos que se realicen en éstas. Los
controladores se encuentran o se realizan en el archivo views.py creado
automaticamente a la hora de crear el proyecto de Django.

5.5.1. Controlador Registro

e Maneja la logica proveniente de la vista Registro, valida los
datos del formulario y se comunica con la base de datos
para realizar el guardado de los datos, ademas de realizar la
renderizacion del cdédigo en HTML para visualizar el
contenido en la vista.

Figura 16. Controlador registro usuario pagina web

torm_valid(self, form):

e parte, si 21 formulario es
form. save()

usuario = form.cleaned_data.get(

password = form.cleaned_data.get)

usuario = authenticate(username=usuar password=password)
login(.request, usuario)

Fuente: elaboracién propia

El método form_valid recibe los valores del formulario y realiza una validacion de ellos
para comprobar que los datos ingresados sean correctos, si la validacién falla, se
muestran mensajes de error en pantalla, ademas de eso autentica al usuario y lo
redirige a la pagina de inicio.

43

5.5.2. Controlador Login

Para este controlador se extiende de la clase LoginView de la libreria de autenticacion
de Django que permite obtener el formulario de login y realizar el proceso de
autenticacion del usuario, y también se encarga de renderizar el template con cédigo
HTML de la vista Login.

Figura 17. Controlador login usuario pagina web

from django.contrib.auth.views import LoginView

form_class=LoginForm
template name

Fuente: elaboracién propia

5.5.3. Controlador Inicio

El controlador Inicio se extiende de la clase TemplateView de la libreria
django.views.generic, la cual se encarga de renderizar el template con codigo HTML de
la vista de Inicio asignando el valor de template_name.

5.5.4. Controlador Historial

El controlador Historial maneja la légica para poder traer los registros de la base de
datos para el usuario donde mostrara sus consultas realizadas y resultados, para ello
es necesario importar los modelos en el controlador y luego realizar la correspondiente
consulta para traer los registros filtrando de acuerdo al usuario y ordenando los datos,
ademas de realizar el proceso de renderizacion del template con codigo HTML de la
vista Historial y enviar los datos obtenidos en la consulta para su visualizacion.

Figura 19. Controlador historial pagina web

def historial(request):
usuariop=User.objects.get(username=request.user)
consulta=Hipertension.objects.filter(usuario=usuariop).order_by("-id")

return render{request, "ususz hi al.html", {"consultas":consultal)

Fuente: elaboracién propia

45

5.5.5. Controlador Hipertension

El controlador Hipertension cuenta con dos métodos, uno se encarga de renderizar el
template con cédigo HTML de la vista de diagndstico hipertension, el cual contiene el
formulario con todos los datos necesarios para el diagndstico, y el otro método se
encargara de implementar la légica para cuando se haga click en el boton diagnosticar
de la vista, los datos del formulario seran enviados mediante un método POST y este
meétodo recibira los datos del formulario, transformara el dato al tipo de dato
correspondiente, luego de eso se utilizara el algoritmo realizado en machine learning, el
cual se importara mediante la sentencia joblib de la libreria sklearn, para realizar el
proceso de diagnostico ingresando los datos al algoritmo y con el comando predict
arrojar el resultado.Luego se procede a guardar los resultados y datos en la base de
datos y se renderiza un nuevo template donde se mostraran los resultados obtenidos y
los datos mediante una tabla, ademas de las consultas anteriormente realizadas por el
usuario.

Figura 20. Controlador diagndstico hipertensiéon pagina web

buscar(request):
if equest.POST ["edad” request.POST ["presions” request . POST imc” reguest.POST

usuariop=User.objects. get (username=request.user)
presions=request.POST ['presions']
edad=request.POST ["edad’]

imc=request.POST [1
peso=request.POST ["peso’]

modelo= load

¥=np.array([[edadp, pesop, presionsp ,imcp]])
transfor

datos=Hipertension{usuario=usuariop,presion_s=presions, edad=edad, imc=imc, peso=pesop, resultado=Resultado)
datos.savel)
consulta=Hipertension.objects.filter (usuario=usuariop).order_by("-id")

46

Fuente: elaboracién propia
5.5.6. Controlador Diabetes

El controlador de Diabetes cuenta con varios métodos que se encargan de renderizar
los templates con cédigo HTML de las vistas de diabetes que contienen los formularios
con todos lo campos necesarios para el diagnéstico y un boton para pasar a una nueva
vista hasta llegar a la vista resultados la cual contiene el cédigo para hacer uso del
algoritmo realizado en machine learning, el cual se importara mediante la sentencia
joblib de la libreria sklearn, para realizar el proceso de diagndstico ingresando los datos
al algoritmo y con el comando predict arrojar el resultado. Luego se procede a guardar
los resultados y datos en la base de datos y se renderiza un nuevo template donde se
mostraran los resultados obtenidos y los datos mediante una tabla, ademas de las
consultas anteriormente realizadas por el usuario.

Figura 21. Controlador diagndstico diabetes pagina web

request.POST ['presion-arterial request.POST ['espes piel request.POST ['insulina’ request.POST ["imc™]):

1

ucosap, presion_arterial=presionp,espesor_piel=espesorp, insulina=insulinap, imc=imcp, pedigri_diabetes=pedigrep, edad=edadp)

.Filter{user-usuariop).order_by("-id"}

Fuente: elaboracién propia
5.6. RUTAS PAGINA WEB

Las rutas se encargan de hacer el direccionamiento cuando se realiza una peticidén
HTTP, y se encargan de llamar al controlador en cada ruta.

En esta seccion se encuentra el direccionamiento que se relaciona con cada
controlador para dar respuestas a las peticiones realizadas por el sistema.

5.6.1. Rutas usuario

47

Las rutas contenidas en usuario llaman al controlador de usuario y realizan las
peticiones de la pagina web para registrar nuevo usuario, inicio de sesién de usuario,
obtener su informacioén, guardar un nuevo registro, el historial y todas las rutas
necesarias para actualizar la contrasefna del usuario.

Figura 22. Rutas usuario pagina web

urlpatterns = [

re_path
re_path
re_path
re_path
re_path('h
re_path("',
re_path
path

path('
re_path

i ¥
path{ 'rese one’, PasswordResetCompl iew(template_name='usuarios/restore-pass/password_reset_complete.html®),

]

Fuente: elaboracién propia
5.6.2. Rutas Hipertensién

Las rutas contenidas en Hipertension son todas las necesarias para poder realizar el
diagndstico de hipertension, de las cuales tenemos el formulario donde se ingresan los
datos y la ruta del resultado del diagnostico.

Figura 23. Rutas diagnostico hipertension pagina web

urlpatterns = |[

views.buscar, name=
, HipertensionAPI.

Fuente: elaboracidn propia
5.6.3. Rutas Diabetes

Las rutas contenidas en Diabetes llaman al controlador de diabetes y realizan las
peticiones de la pagina web para realizar el diagndstico de diabetes, que incluyen las
peticiones del formulario para cada campo y la ruta del resultado del diagndstico.

48

Figura 24. Rutas diagnostico diabetes pagina web

urlpatterns

/' ,views _Espesorpiel, name=
yviews.Insulina, name="insulina™)
ews . Imc, name="1imc"),
/* ,views.pedigreel, name='
sviews.pedigree2, name

sviews.pedigree3, name
,views.pedigreed, name
/" ,views . pedigree5, name="ped
views.edad, name="edad"),
f* ,views.resultado, name="Resultado™),
diabe/", DiabetesAPI.as view(), name

Fuente: elaboracidn propia

4.7. CONFIGURACION PARA LA CREACION API

La creacion APIs REST es fundamental en nuestra aplicacion WEB, ya que permite
que se ejecuten operaciones con nuestra aplicacion movil, por medio de los métodos
HTTP(GET, POST, PUT, DELETE). Para crear nuestra APIs REST debemos descargar
e instalar un framework llamado Django Rest Framework.

Figura 25. Librerias para la creacion del API
from rest framework.response import Response
from .serializers import DiabetesSerializer
from rest framework.views import APIView

from rest framework import status, viewsets
from joblib import load
import numpy as np

Fuente: elaboracidn propia

Para poder ejecutar los datos debemos serializarlos creando un archivo llamado
serializer.py en la carpeta de la aplicacion que vamos a utilizar, en este caso en la

49

carpeta de Diabetes, es importante importar del framework de REST los serializers y
los modelos de los cuales se van a serializar nuestros datos.

Figura 26. Archivo Serializers para la creacion del API

serializers.py X

PythonTesis-main > diabete

om rest framework impc serializers, status

from django.contrib.auth.models import User
from .models import Diabetes

Luego se crea la Clase DiabetesSerializer en la cual se colocan todos los campos que
se van a serializar en este caso son los siguientes:

Figura 27. Serializer diabetes para la API

DiabetesSerializer(serializers.Serializer):
id = serializers.ReadonlyField()
resultado = serializers.ReadonlyField()
user = serializers.CharfField()
glucosa_plasmatica = serializers.CharField()
presion_arterial = serializers.CharField()
espesor_piel = serializers.CharField()
insulina = serializers.CharField()
imc = serializers.CharField()
pedigri_diabetes = serializers.CharField()
edad= serializers.CharField()

create(self, validate data):

instance = Diabetes()

usuariop = validate_data.get('user")
instance.user=User.objects.get(username=usuariop)
instance.glucosa plasmatica = validate data.get(’
instance.presion_arterial = validate data.get('pr
instance.espesor piel = validate data.get(’
instance.insulina = validate_data.get('insuli
instance.imc = validate data.get(imc")
instance.pedigri_diabetes = validate data.get('pe
instance.edad = validate data.get('edad’)

instance.save()
return instance

Fuente: elaboracion propia

50

Después se crean varias instancias las cuales si todas estan correctas se guardan.

En el archivo llamado api.py de la carpeta diabetes se realiza el cddigo encargado de la
prediccidon en este caso de diabetes. Utilizando el método POST el cual permite crear
recursos, luego se serializa los datos requeridos y se llaman.

Figura 28. Método para la crear una peticion POST y poder diagnosticar
diabetes

def post(self,request):
serializer = DiabetesSerializer(data = request.data)
if serializer.is valid():
diabetes = serializer.save()

glucosap = diabetes.glucosa plasmatica
presionp = diabetes.presion_arterial
espesorp = diabetes.espesor piel
insulinap = diabetes.insulina

imcp = diabetes.imc

pedigrep = diabetes.pedigri_diabetes
edadp = diabetes.edad

glucosap = int(glucosap)

presionp = int(presionp)

espesorp = int(espesorp)

insulinap = int(insulinap)

imcp = float(imcp)

pedigrep = float(pedigrep)

edadp = int(edadp)

Fuente: elaboracidn propia

Para lograr realizar la prediccion de diabetes se carga el método realizado en Machine
Learning, método que se puede observar en la linea de codigo numero 30, en la linea
de codigo numero 31 se percibe como se carga el algoritmo utilizado para el
preprocesamiento llamado Analisis de Componentes Principales, por medio de la linea
34 podemos realizar la prediccion de diabetes siendo un cero no diabetes y un uno que
si presenta diabetes.

51

Figura 29. Loégica de respuesta de la APl para el método de diagnosticar
diabetes

modelo= load("d y
pca= load("d /pca_)
X=np.array([[@, glucosap, presionp, espesorp, insulinap,imcp, pedigrep, edadp]])
X_pca=pca.transform(X)
y = modelo.predict(X pca)
if (y == @):
Resultado="No diabetico”
elif(y==1):
Resultado="Diabetico"

diabetes.resultado=Resultado

return Response(serializer.data, status = status.HTTP_ 201 CREATED)

eturn Response(serializer.errors, status = status.HTTP_408@ BAD REQUEST)

Fuente: elaboracién propia

5.7. CONTENERIZACION Y ALOJAMIENTO WEB MEDIANTE EKS DE AWS

El siguiente paso a seguir una vez se haya terminado el desarrollo de la aplicacion
web, es realizar realizar la publicacion o alojamiento web de la misma, para lo cual se
hara uso una tecnologia relativamente nueva que se llama docker y se encarga de
realizar la contenerizacion o encapsulamiento de esta aplicacion sin la necesidad de
tener en cuenta factores externos como el sistema operativo y demas , sino que solo se
tiene en cuenta las librerias y codigo de aplicacion que se van a contenerizar. La
aplicacion se encapsula en una imagen, la cual sera publicada en docker-hub, un
repositorio de imagenes docker, y luego se utilizara Kubernetes para realizar la
orquestacion del contenedor creado para la aplicacion, se hara uso del servicio de
Amazon Web Services (AWS) que se llama Amazon Elastic Kubernetes Service (EKS)
para poder desplegar los kubernetes en la infraestructura de AWS y asi poder acceder
a través de una url a la aplicacion mediante internet.

5.7.1. Contenerizacion de aplicacién web

Para realizar la contenerizacion de la aplicacion se debe tener instalado el software de
Docker en el computador como requisito previo, se debe crear un archivo Dockerfile en
el cual se debe escribir los comandos necesarios empezando por importar la imagen

52

base sobre la cual se va construir nuestra aplicaciéon que en nuestro caso sera python.
Luego se setean algunas variables de entorno necesarias para que la imagen funcione
correctamente, se define el directorio donde almacenaran los archivos en el contenedor
y también se ejecuta el comando run para instalar todas la librerias que son necesarias
para la aplicacion. Por ultimo se expone el puerto por el cual se podra acceder a la
aplicacién y se ejecuta el comando para ejecutar el servidor de Django.

Figura 30. Cédigo archivo Dockerfile para la contenerizacion de la aplicacion

n:3.7.13-bullseye

MY PYTHONDONTWRITEBYTECODE=1
MEUFFERED=1

Fuente: elaboracidn propia

Para crear la imagen de docker, se debe ejecutar este archivo Dockerfile mediante el
comando Docker build . -t nombre:version, luego de crear la imagen se debe subir al
repositorio en Docker-hub, para lo cual se debe tener primeramente una cuenta en
Docker-hub y estar logueado, luego con el comando docker push nombre:version se
sube la imagen al repositorio.

5.7.2. Alojamiento web mediante EKS de AWS

Luego de haber creado la imagen docker de la aplicacion se procede a realizar el
despliegue mediante Kubernetes en EKS de AWS. Primero, se tiene que tener una
cuenta en AWS, luego se deben crear los roles de IAM que vamos a utilizar para
realizar el manejo del cluster que vamos a crear en EKS. Se crean dos roles, uno que
se encargara de realizar el manejo del cluster y otro que se encargara del manejo de
los worker-nodes que se usaran en el despliegue, se le deben asignar los siguientes
permisos en los roles.

53

Figura 31. Politicas o permisos para el Rol que maneja el cluster

Politicas de permisos o Simular

Afiadir permisos w

1 ©

Nombre de la politica & Tipo Descripcion

AmazonEKSClusterPolicy Administrada por AWS This policy provides Kubernt
3

Fuente: elaboracién propia

Figura 32. Politicas o permisos para el Rol que maneja los worker-nodes

Permisos Relaciones de confianza Etiquetas Access Advisor Revocar las sesiones
Politicas de permisos o Simular
Afiadir permisos ¥
1 CJ
Nombre de la politica & Tipo Descripcion

AmazonEKSWorkerNodePolicy Administrada por AWS This policy allows Amaz
AmazonEC2ContainerRegistryReadOnly Administrada por AWS Provides read-only acce
AmazonEKS_CNI_Policy Administrada por AWS This policy provides the

»

Fuente: elaboracién propia

Luego de crear los roles se procede a crear el cluster y los nodos de trabajo
necesarios para poder desplegar la aplicacion. Se debe ejecutar el siguiente comando
aws eks update-kubeconfig --region region-code --name my-cluster en el cmd para

poder emparejar de manera local con el cluster creado.

54

Figura 33. Imagen Cluster EKS creado
hiperdiabet

¥ Informacion del claster informacicn

Version de Kubernetes Informacién Estado Proveedor
1.22 @ Eliminando EKS

Recursos Informdtica Redes Complementos Autenticacién Registro H >

Detalles

Punto de enlace del servidor de la API URL del proveedor de OpenlD Connect Creado
https://ASCES3E2D498E1B860139A41 https://oidc.eks.us-east- June 23, 2022, 19:08 (UTC-05:00)

Fuente: elaboracién propia

Una vez emparejado el cluster, se deben crear los archivos YAML que se ejecutaran
para poder realizar el despliegue de la aplicacion en kubernetes. Es importante
mencionar que es necesario crear un despliegue de kubernetes también para la base
de datos de Postgresql. En los archivos YAML es necesario colocar el nombre de la
imagen que se utilizara en el despliegue, el puerto que se expondra, las variables de
entorno y el tipo de servicio que puede ser NodePort, LoadBalancer, entre otros.

Para el despliegue se tiene que crear un deployment y un service, ambos son
necesarios para el correcto funcionamiento de la aplicacién desplegada, el deployment
se encarga de crear el pod o contenedor de la aplicacion y la reiniciard mediante un
componente que se llama replicaset en casé de que llegue a fallar. El service es el
encargado de exponer la aplicacion a través de un puerto.

Para ejecutar el archivo YAML vy realizar el despliegue se debe ejecutar el comando
kubectl apply -f nombrearchivo.yaml.

95

Figura 34. Cédigo YAML para el despliegue del deployment en kubernetes

Fuente: elaboracién propia

Figura 35. Codigo YAML para el despliegue del servicio en kubernetes

Fuente: elaboracién propia

56

El archivo YAML para el despliegue de la base de datos postgres es el siguiente:
Figura 36. Codigo YAML para el despliegue de base de datos en kubernetes

Fuente: elaboracién propia

57

58

6. DESARROLLO APLICACION MOVIL

En este capitulo se explicara la creacion de la aplicacion mévil, la cual se realizé en el
entorno de desarrollo Android Studio (véase anexo F) ya que es la herramienta oficial
de Google para desarrollar aplicaciones para su sistema operativo.

6.1. CONFIGURACION
6.1.1. Build.grade

Se importan las librerias del proyecto, tales como retrofit para realizar el consumo de la
api mediante http, gson para convertir json a objetos y viceversa y demas librerias
predeterminadas de java para android studio. Ademas de recalcar que la aplicacion es
desarrollada en la version 26 de SDK.

6.1.2. AndroidManifest.xml

Se realiza la configuracion principal del proyecto, como la declaracién de las Activities
(login, registro, y la actividad de diagndstico que consta de las dos operaciones
hipertension y diabetes), se configuran los permisos de acceso a internet y ademas se
ajusta el nombre y logo de la aplicacion.

6.2. VISTAS
6.2.1. Vista login

Corresponde al activity principal para el logueo del taxista. Esta vista se muestra en
pantalla completa, contiene el logo de la aplicacion, los campos usuario y contrasena,
un botdn para iniciar sesidon y un botdn para ir hacia la vista de registro.

59

Figura 37. Vista login app

NUMERO DE TDENTIFICACION

CONTRASERA

INICIAR SESION

REGISTRARSE

Fuente: elaboracion propia

Se debe llenar los dos campos que aparecen en la vista y luego presionar el botdn
iniciar sesion, el cual llamara a un evento que primeramente realizara la validacién de
los campos y luego intentara realizar el proceso de logueo del usuario llamando a la api
realizada en django con la ayuda de la libreria de retrofit. Si los campos se envian
vacios se muestra un mensaje informando indicando que son requeridos.

60

Figura 38. Validacion de ingreso app

CONTRASENA

REGISTRARSE

INICIAR SESTON

Fuente: elaboracion propia

El proceso autenticacion se realiza mediante la comunicacion con la api, esta validara
si las credenciales son correctas o incorrectas, en caso de ser correctas enviara los
datos del usuario logueado y un token de autenticacion que se guardaran en la
aplicacion para cuando el usuario entre después de cerrar la aplicacidon la sesion
permanezca activa y se procedera a lanzar la actividad principal del diagnostico que
tiene una primera vista de home. En caso de que las credenciales sean incorrectas la
API enviara un mensaje de error que se mostrara en forma de pop-up en la vista de
login.

61

6.2.2. Vista Home

Esta vista hace parte del activity diagnostico que muestra una pantalla de inicio junto
con un menu desplegable que contiene las demas vistas. Esta vista muestra un
mensaje que invita a la persona a hacer uso de la aplicacion para poder diagnosticarse.

Figura 39. Vista servicio app

DIAGNOSTICO DE HIPERTENSION Y DTABETES

INGRESA TUS DATOS Y DIAGNOSTICATE CON NUESTRA APL EN
HIPERTENSTON Y DIABETES. PODRAS TENER UNA TDEA DE COMO
SEENCUENTRA TU ESTADO DE SALUD FACILMENTE GRACIAS A UN
ALGORTTMO DE PREDICCTON.

HIPERTENSION DIABETES

MIPERTENS10Y g5 Tabo

Fuente: elaboracidn propia

En el lado superior izquierdo de la vista se encuentra el botén del menu desplegable
que contiene las opciones de hipertension, diabetes para proceder al diagndstico, y la
opcion de cerrar sesidn, que finaliza la sesion del usuario y nos retorna a la vista del
login.

62

Figura 40. Menu desplegable

Home

Hipertension

Diabetes

Cuenta

Cerrar sesion

Fuente: elaboracién propia
6.2.3. Vista Hipertension

Esta vista se muestra cuando se presiona la opcién hipertension en el menu, contiene
un botén que llamara una secuencia de vistas, cada una con un formulario en el cual el
usuario debera ingresar un dato pedido en un input para poder continuar, en caso de
enviar el campo vacio se desplegara un error que indicara que el campo es necesario
para poder continuar.

63

Figura 41. Ejemplo vistas diagnostico hipertension App Movil

Buanros afos 11enes @ @CuAL s 10 PEs {6):

B i

SICATENTE SIGUIENTE

BIENVENTOO A NUESTRD STSTEMA DE DLAGNDSTICO
DA CLICK EN COMENTAR.

COMENTAR

Fuente: elaboracién propia

Una vez se hayan llenado todos los formularios en el flujo, se presenta una vista que
recopila todos los datos ingresados para que el usuario pueda validar si son correctos y
preparar estos datos para enviarlos a la API con ayuda de la libreria de retrofit. La vista
contiene un botdn que llama al evento que realizara la comunicacion con el API, que en
caso de responder exitosamente recibira el resultado del diagnostico y llamara a una
nueva vista que contendra este resultado. En caso de que se presente un error en la
conexién con el API se retornara el error y se informara al usuario mediante un pop-up.

64

Figura 42. Vista recopilacion datos hipertension

INC: 24

PRESTON ARTERTAL: 101

Fuente: elaboracién propia

En la respuesta del diagndstico se muestra el resultado, el estado de los valores
presentes en el usuario como por ejemplo si el paciente presenta una presion arterial
elevada o valor de imc irregular, ademas de algunas recomendaciones que pueden ser
utiles para el usuario con la finalidad de ayudar a mejorar la condicion de salud en la
que se encuentra.

Figura 43. Vista resultado diagnostico hipertension

EL RESULTADO DE TU DIAGNOSTLCO ES:

HIPERTENSION ESTADO 1

ESTADOS:

Presion arterial elevada: 180

normales: 29

RECOMENDACTONES:

Se recomienda redlizar ejercicios al menos 3¢

Reducir la cantidad de alcohol

ina mejor dieta y mantene

u concentracién de azicar er

65

Fuente: elaboracién propia
6.2.4. Vista Diabetes

Esta vista hace parte del activity del diagndstico y se muestra cuando se presiona la
opcion diabetes en el menu, contiene un botéon que llamara una secuencia de vistas,
cada una con un formulario en el cual el usuario debera ingresar un dato pedido en un
input para poder continuar y que son necesarios para realizar el diagndstico de
diabetes, en caso de enviar el campo vacio se desplegara un error que indicara que el
campo es necesario para poder continuar.

Figura 44. Ejemplo vistas diagnostico diabetes App Movil

@[UM H -I|_| "‘]L‘l[[iE Hr'll] |‘| {-U;.PUFUFIF. |I-|lr'|:.:'i |PM]["'[:”(|'I TGOS FLASMATICA |LH[1|'|J| j.'

INu3EA T CLUCD3

&

SICULENTE
SICULENTE

BLERYERLON & HUESTRA ELS 204 DF DLARIEST LG

[CLLLK R CIMEN AR

COMINIAL

= e 3| S *

X) N TSN LA AL OF 15 T LALES (U NI TLEMEN
@CUAL ES T BRESTON AYTERLAL SLSTALICA (MATHE): (CHGRESE COMARITDS FAMTLLARES TIEHES (PADRES, DIARETES.

ANUELDS, HERMANDE, TIOS): AL
140 "

i FC LD ML
Faira =

SILALEMIE s
(Y TAEHCS ANYCCEDEHIES EAMLLLAAES LE DIAGCAES i
FEHPECL LA L

B lre -

bl -

[ENTHETR]

SIGULENTE
THEZHTEECD s ILLA =

[ENTHETE]

i

PALSHTESCD AL &
Alzuale

Fuente: elaboracion propia

66

Una vez se hayan llenado todos los formularios en el flujo, se presenta una vista que
recopila todos los datos ingresados para que el usuario pueda validar si son correctos y
preparar estos datos para enviarlos a la APl con ayuda de la libreria de retrofit. La vista
contiene un botén que llama al evento que realizara la comunicacion con el API, que en
caso de responder exitosamente recibira el resultado del diagndstico y llamara a una
nueva vista que contendra este resultado. En caso de que se presente un error en la
conexion con el API se retornara el error y se informara al usuario mediante un pop-up.

Figura 45. Vista recopilacion datos diabetes

GLUCOSA: 129

PRESTON: 140

ESPESOR PIEL: 6

INSULINA: 100

IMC: 28

PEDIGRT DIABETES: 0.19370k6001542615

EDAD: 24

ENVIAR

Fuente: elaboracién propia

En la respuesta del diagndstico se muestra el resultado, el estado de los valores
presentes en el usuario cdmo por ejemplo si el paciente presenta un valor elevado de
glucosa plasmatica, presion arterial elevada o un valor de insulina irregular, ademas de
algunas recomendaciones que pueden ser utiles para el usuario con la finalidad de
ayudar a mejorar la condicién de salud en la que se encuentra.

67

Figura 46. Vista resultado diagndstico diabetes

= DIMETES -

EL RESULTADO DE TU DIAGNOSTICO ES:

DIABETICO

ESTADOS:

CGlucosa plasmatica elevada : 128

RECOMENDACTONES:

Se recomienda realizar ejercicios al menos 30
minutos al dia, Reducir la cantidad de alcohol v
cafeina que consumes.

Se recomienda tener una mejor dieta Y manrener

un buen conirol ae su conceniracion ae azucar en

sangre.

Fuente: elaboracién propia
6.2.5. Vista Registro

Corresponde al activity para realizar el registro de un nuevo usuario en la aplicacion.
Esta vista se muestra en pantalla completa, contiene los campos usuario, nombre,
apellidos, email y contrasefia y un botdn para enviar los datos y registrarse.

68

Figura 47. Vista registro de la aplicacion movil

REGISTRATE

Nowste

APELLTDO
USERNAME

EMATL

CONTRASERA

REGISTRARSE

Fuente: elaboracién propia

Cuando se presione el boton de registrarse, se llamara un evento el cual primero
validara que los campos enviados no se encuentren vacios, de lo contrario enviara un
mensaje de error indicando que los campos son requeridos, luego de eso, enviara los
campos a la API creada en django con la ayuda de la libreria de retrofit, donde se
validara que no haya un usuario con el mismo nombre ya creado en la base de datos.
Si el usuario ya ha sido creado con anterioridad, el API responde un mensaje de error
indicando que ese usuario ya existe en la base de datos y que por favor ingrese uno
diferente. Si el usuario no existe, se guardan los campos en la base de datos y se envia
un mensaje al usuario indicando que la cuenta fue creada con éxito.

69

Figura 48. Validacion de campos del registro

REGISTRATE MALLUL

NOMBRE ANDRES

MALCOLL

APELLTDO

MATICOLANDRES3@GMATL.COM
USERNAME

REGISTRARSE

EMALL

r-t y u i

i ha sid d e
| El usuario ya ha sido creado] | A

REGISTRARSE

X ¢ v b n m &

Fuente: elaboracion propia

6.3. COMUNICACION POR RETROFIT PARA CONSUMIR API

Para la comunicacion con la API se utilizé la libreria retrofit que funciona como cliente
HTTP para Android y Java, para hacer uso de la libreria es necesario importarla en el
gradle y luego crear un cliente de retrofit que recibe cémo parametro de entrada la url
base de la API.

70

Figura 49. Coédigo creacion de cliente retrofit

public class fetrofitClient {
privete static Retrofit retrofit = mull;

public static Retrofit getClient(String baselrl) £
if [retrofit==mull) {
retrofit = new Retrofit.Builder()
.baselrl{baselrl)
.addConverterFactory (GeonConverterFactory . creote(])
Jbuild();
}

return retrofit;

Fuente: elaboracion propia

Ademas de eso se debe crear una interfaz, donde se debe estipular los métodos HTTP
para poder realizar el consumo de cada uno de los endpoints de la API, y también se
deben crear funciones con los campos que van en cada peticion hacia la API.

Figura 50. Cédigo interfaz para la comunicacién con los endpoints del API

public static final String BASE_URL = "http:/ 192 .168.1.6:80008/";

APOST("http: /192, 166.1.6:8000 /vsers Login/™)
Call<Affiliate> legin(QEcdy LeginBody loginBodyl;

JPDET(“http: /1602 . 168.1.6: 8000/ api fcreate_user/™)

ormlrlEncoded

Call<Post> sawvePosti{OF

"firgt_name") String firstname,
"Last_mame™) 5tring lastname,
"uzername") String vsername,

"email™) String email,

"password") String password);

APDET("http: /102, 168.1. 6: 8000/ api /create_hipe/™]
gFormUrlEncoded

Call<Hipertension> sawvehipertension{QF

usuario™) 5tring wsuario,

Ld("™

ld("presion_s") S5tring presion_s,
("edad") String edad,

d{"peso™) String peso,
gField("imc™) String imc);
UPOET("http:- 102 . 168.1. 680008 /api fecreate_diabe/ ™)

gFormUrlEncoded

Call<Diabetes> sawvediabetes(@Field("user") String user,

"glucosa_plasmatica™) 5tring glucosa_plasmatica,
"presion_arterial”) String presion_arterial,
"espesor_piel") S5tring espesor_piel,

"imsulina") String insulina,

"imc") String imc,

"pedigri_diasbetes") String pedigri_diabetes,
"edad") 5tring edad);

71

Fuente: elaboracién propia

72

7. CONCLUSIONES

Con este proyecto se logré disefiar e implementar un sistema experto que permite
predecir si una persona presenta diabetes y/o hipertension a través de un algoritmo de
machine learning con un porcentaje de predicciéon de 92,4% para diabetes y 98,9%
para hipertension, y a través de una interfaz grafica facil de utilizar e intuitiva, la cual
fue hecha en django y en android studio, permite a sus usuarios registrarse, llevar un
historial de sus diagnésticos y varios formularios que permiten ingresar datos y recibir
resultados facil y rapidamente. Esta aplicacién puede tener diferentes usos, ya sea
para llevar un control de tus datos y diagndsticos teniendo en cuenta que existe un
porcentaje de error en la aplicacion, como también ser utilizada con ayuda de un
experto de la salud y que funcione como un apoyo para poder llegar a un resultado
confiable y rapido.

La creacion de la API rest es una implementacidn muy importante para cualquier
sistema ya que se pueden hacer peticiones HTTP desde el servidor hacia el cliente o
viceversa sin importar el lenguaje de programacion utilizado. En este caso, por ejemplo,
se realizan peticiones desde JAVA (Android) y Python (Django) utilizando una sola
estructura de control para realizar el intercambio de datos mediante la libreria Django
Rest Framework y la libreria de android retrofit para realizar el consumo facilmente.

De acuerdo a los resultados obtenidos relacionados con el algoritmo de prediccion, el
método que mejor se ajustdé a los datos de entrada utilizados en la creacién del
algoritmo fue Maquinas de Vectores de Soporte a comparaciéon de los demas métodos
utilizados. El porcentaje de prediccion obtenido para los algoritmos de hipertension y
diabetes fue aceptable, aunque se debe tener en cuenta que el algoritmo no es 100%
confiable, sino que se tiene un porcentaje de error y se debe tener en cuenta a la hora
de ejecutar el diagnostico.

La aplicacion moévil permitio realizar las operaciones de diagndstico, inicio de sesion y
registro desde la comodidad de un dispositivo movil al que facilmente cualquier persona
tiene acceso hoy en dia, con una interfaz grafica sencilla e intuitiva que permite
registrar informacién que sera intercambiada con la API hecha en django mediante el
protocolo de comunicacion http y la libreria retrofit. La aplicaciéon hace un buen uso API
y de estas herramientas de integracibn que nos permiten la comunicacion entre
servicios con el fin de brindar un producto util para sus usuarios.

La pagina web permite al usuario acceder a la informacién del usuario de una forma
sencilla y visualmente agradable. Se puede consultar el historial del usuario donde se
muestran los datos y el resultado del diagndstico, asi como también realizar el proceso

73

de diagndstico de hipertension y diabetes. La pagina web fue hecha en el Framework
Django ya que éste se encuentra basado en el Lenguaje de programacion python, lo
cual nos facilité el tema de anadir el algoritmo hecho con machine learning con la
libreria de sk-learn de python.

74

8. RECOMENDACIONES

Aunque el proyecto es ambicioso, se pueden realizar varias mejoras que permiten
optimizar tanto la interfaz grafica como el algoritmo de prediccién para obtener un
producto mucho mas estructurado, tales como:

Se realizaron las pruebas de construccidn del algoritmo en diferentes métodos de
machine learning que se consideran clasicos, sin embargo, existen varios tipos de
métodos de machine learning que deberian ser considerados para obtener un mejor
ajuste de los datos y porcentaje de prediccion como lo son las redes neuronales y los
Modelos Ensemble que presentan mejoras en la respuesta de prediccién.

Para la aplicacion movil se pueden realizar varias mejoras en tema de disefio y estética
de la aplicacion, como por ejemplo hacer uso de tecnologias relativamente nuevas
cémo el SDK Flutter que permite desarrollar interfaces de una forma sencilla y con una
mayor estética.

Otro tema a mejorar para un futuro es mejorar la estructura responsive de la aplicacion
web que aun no se encuentra ajustada para que sea atractiva para los usuarios que
acceden desde un dispositivo movil a la aplicacion web.

Los temas relacionados a seguridad de la aplicacion no fueron estudiados a fondo para
este proyecto y pueden ser mejorados en el futuro, se realizé un sistema de inicio de
sesion y todos los datos son enviados mediante métodos post que utilizan un token
CSRF que brinda seguridad a la hora de enviar datos en el formulario HTML, pero al
ser datos de tipo sensible y de caracter médico en necesario tener un nivel alto de
seguridad de los datos que se ajusten a los parametros y leyes internacionales de
proteccion de datos. Se propone como mejora implementar un sistema de doble factor
de autenticacion para poder acceder a la aplicacion.

Ademas de la seguridad de las aplicaciones, también es necesario mejorar la seguridad
de la API creada, para que no cualquiera pueda realizar una conexion con nuestra API,
sino que también exista un factor de autorizacion para realizar el envio de peticiones

75

9. REFERENCIAS

[1] Las 10 principales causas de defuncion. (s. f.). Recuperado 26 de abril de 2020, de
https://www.who.int/es/news-room/fact-sheets/detail/the-top-10-causes-of-death

[2] Morales, J., (2017, mayo 19). OPS/OMS Colombia - Dia Mundial de la Hipertensién
2017: Conoce tus numeros | OPS/OMS. Pan American Health Organization / World
Health Organization.

https://www.paho.org/col/index.php?option=com_content&view=article&id=2752:dia-mu
ndial-de-la-hipertension-2017-conoce-tus-numeros&Iltemid=487

[3] Diabetes. (s. f). Recuperado 26 de abrii de 2020, de
https://www.who.int/es/news-room/fact-sheets/detail/diabetes

[4] Cayon, A. (2017, mayo 11). OPS/OMS | Dia Mundial de la Hipertension 2017:
Conoce tus numeros. Pan American Health Organization / World Health
Organization.

https://www.paho.org/hg/index.php?option=com_content&view=article&id=13257:dia-mu
ndial-de-la-hipertension-2017-conoce-tus-numeros<emid=42345&lang=es

[5] Ministerio de salud. (17 de Mayo de 2017). Minsalud. Dia mundial de la hipertensién
arterial. Obtenido de Minsalud:
https://www.minsalud.gov.co/Paginas/Colombia-enfrenta-epidemia-de-enfermedade
s-cardiovasculares-y-diabetes.aspx

[6] OMS | Informe mundial sobre la diabetes. (s/f). WHO; World Health Organization.
Recuperado el 23 de abril de 2020, de http://www.who.int/diabetes/global-report/es/

[7] Sociedad Colombiana de Cardiologia y Cirugia Cardiovascular (SCC), Capitulo de
Hipertension arterial, jcuales son las cifras normales?. Recuperado el 23 de abril
de 2020, de
http://scc.org.co/wp-content/uploads/2018/04/Hipertensi%C3%B3n-arterial-cu%C3
%A1les-son-las-cifras-normales-Dr-Luis-Moya.pdf

[8] OMS | Preguntas y respuestas sobre la hipertension. (s. f.). WHO. Recuperado 21
de febrero de 2020, de http://www.who.int/features/qa/82/es/

[9] Diabetes: Tratamiento, sintomas, causas y prevencion. (2009, febrero 18).
CuidatePlus. https://cuidateplus.marca.com/enfermedades/digestivas/diabetes.html

76

[10] Los sistemas expertos—Inteligencia Artificial. (s. f.). Recuperado 26 de abril de
2020, de
https://sites.google.com/site/proyectointeligenciaartificial/indice/los-sistemas-experto
s

[11] Diego, E. A. (12 de Junio de 2019). Monografias. Obtenido de Monografias :
https://www.monografias.com/trabajos101/sistema-operativo-android/sistema-opera
tivo-android.shtml

[12]MVC (Model, View, Controller) explicado. (s. f.). Recuperado 19 de septiembre de
2019, de CddigoFacilito website:
https://codigofacilito.com/articulos/mvc-model-view-controller-explicado

[13] El patréon de disefio MTV (ElI libro de Django 1.0). (s/f). Recuperado el 26 de abril
de 2020, de
https://uniwebsidad.com/libros/django-1-0/capitulo-5/el-patron-de-diseno-mtv

[14] Qué es el modelo vista controlador (MVC) y como funciona. (s. f.). Recuperado 19
de septiembre de 2019, de
https://articulosvirtuales.com/articles/educacion/que-es-el-modelo-vista-controlador-
mvc-y-como-funciona

[15] “Machine learning”: ¢qué es y como funciona? (s/f). Recuperado el 21 de febrero
de 2020, de https://www.bbva.com/es/machine-learning-que-es-y-como-funciona/

[16] Aprendizaje automatico: Qué es y por qué es importante | SAS. (s/f). Recuperado
el 21 de febrero de 2020, de
https://www.sas.com/es_co/insights/analytics/machine-learning.html#machine-learni
ng-importance

[17] May, O. A. C., Koo, J. J. P, Kinani, J. M. V., & Encalada, M. A. Z. (2018).
CONSTRUCCION DE UN MODELO DE PREDICCION PARA APOYO AL
DIAGNOSTICO DE DIABETES (CONSTRUCTION OF A PREDICTION MODEL TO
SUPPORT THE DIABETES DIAGNOSIS). Pistas Educativas, 40(130).
http://www.itc.mx/ojs/index.php/pistas/article/view/1805

[18] LaFreniere, D., Zulkernine, F., Barber, D., & Martin, K. (2016). Using machine
learning to predict hypertension from a clinical dataset. 2016 IEEE Symposium

Series on Computational Intelligence (SSCI), 1-7.
https://doi.org/10.1109/SSCI.2016.7849886

a4

[19] Rawat, V., & Suryakant. (2019). A Classification System for Diabetic Patients with
Machine Learning Techniques. https://doi.org/10.33889/ijmems.2019.4.3-057

[20] Chatrati, S. P., Hossain, G., Goyal, A., Bhan, A., Bhattacharya, S., Gaurav, D., &
Tiwari, S. M. (2020). Smart home health monitoring system for predicting type 2
diabetes and hypertension. Journal of King Saud University - Computer and
Information Sciences. https://doi.org/10.1016/j.jksuci.2020.01.010

[21] Smith, J. W., Everhart, J. E., Dickson, W. C., Knowler, W. C., & Johannes, R. S.
(1988). Using the ADAP Learning Algorithm to Forecast the Onset of Diabetes
Mellitus. Proceedings of the Annual Symposium on Computer Application in Medical
Care, 261-265. Tomado de
https://www.personal.kent.edu/~mshanker/personal/Zip_files/sar_2000.pdf

[22] ANACONDA NAVIGATOR. (s.f.). Anaconda Navigator (Version 1.6.9) [Entorno de
desarrollo Python]. [Consultado: 12 de Febrero de 2019].
https://www.anaconda.com/products/individual

[23] Algoritmo k-Nearest Neighbor | Aprende Machine Learning. (s. f.). Recuperado 30
de junio de 2022, de
https://www.aprendemachinelearning.com/clasificar-con-k-nearest-neighbor-ejemplo
-en-python/

[24] Arbol de decision en Machine Learning (Parte 1)—Sitiobigdata.com. (s. f.).
Recuperado 30 de junio de 2022, de
https://sitiobigdata.com/2019/12/14/arbol-de-decision-en-machine-learning-parte-1/#

[25] Maquinas de Vector Soporte (Support Vector Machines, SVMs). (s. f.). Recuperado
30 de enero de 2022, de
https://www.cienciadedatos.net/documentos/34 _maquinas_de vector_soporte _sup
port_vector_machines

[26] Brownlee, J. (2016, abril 10). Naive Bayes for Machine Learning. Machine Learning
Mastery. https://machinelearningmastery.com/naive-bayes-for-machine-learning/

[27] Random Forest (Bosque Aleatorio): Combinando arboles - |Artificial.net. (2019,
junio 10). https://www.iartificial.net/random-forest-bosque-aleatorio/

[28] Calidad de datos en mineria de datos a través del preprocesamiento. (s. f.).
Recuperado 30 de junio de 2022, de
https://blog.powerdata.es/el-valor-de-la-gestion-de-datos/calidad-de-datos-en-mineri
a-de-datos-a-traves-del-preprocesamiento

[29] Analisis de Componentes Principales (ACP). (s. f.). XLSTAT, Your data analysis
solution. Recuperado 30 de junio de 2022, de

78

https://doi.org/10.1016/j.jksuci.2020.01.010
https://machinelearningmastery.com/naive-bayes-for-machine-learning/
https://www.iartificial.net/random-forest-bosque-aleatorio/

https://www.xlIstat.com/es/soluciones/funciones/analisis-de-componentes-principale
s-acp

[30] ¢Qué es PostgreSQL? - Para qué sirve, Caracteristicas e Instalacion. (s. f.).
Recuperado 30 de junio de 2022, de
https://blog.infranetworking.com/servidor-postgresql/

[31] Sistema Operativo Android. (s. f.). Recuperado 30 de junio de 2022, de
https://www.monografias.com/trabajos101/sistema-operativo-android/sistema-opera
tivo-android

[32] ¢ Qué es y como crear un APl REST en Django? (s. f.). Recuperado 30 de junio de
2022, de
https://platzi.com/clases/26-backend-online/1062-que-es-y-como-crear-un-api-rest-e
n-django/?utm_source=google&utm_medium=cpc&utm_campaign=17418244234&
utm_adgroup=&utm_content=&gclid=Cj0KCQjwntCVBhDdARISAMEWACNN213Vsq
V88Z_vYPCr4B27Q0ZejPrOXWu1HJEDTBpRy9v8sx-AFt8aAqYPEALw_wcB&gclsr
c=aw.ds

[33] (Qué es Kubernetes? (s. f.). Kubernetes. Recuperado 30 de junio de 2022, de
https://kubernetes.io/es/docs/concepts/overview/what-is-kubernetes/

[34] ¢Qué es Docker? (s. f.). Recuperado 30 de junio de 2022, de
https://www.redhat.com/es/topics/containers/what-is-docker

[35] Servicio de Kubernetes administrado — Amazon EKS — Amazon Web Services. (s.
f.). Amazon Web Services, Inc. Recuperado 30 de junio de 2022, de
https://aws.amazon.com/es/eks/

[36] Pima Indians Diabetes Database. (s. f.). Recuperado 30 de junio de 2022, de
https://www.kaggle.com/datasets/uciml/pima-indians-diabetes-database

79

https://aws.amazon.com/es/eks/

10. ANEXOS

Debido a la cantidad de cddigo que contiene el proyecto Python, Django y Android
Studio, se recomienda dirigirse al siguiente enlace de Google Drive y descargar la
totalidad del cédigo fuente:
https://drive.google.com/drive/folders/1IEmS3-FWOdu4C-nDwC8_khKZWRX7Mynb?us
p=sharing. A continuacion, se detalla una lista de anexos que contiene el codigo fuente
basico y a grandes rasgos del proyecto.

Anexo A. Cédigo Algoritmo en Machine Learning en Python

Figura 51. Coédigo Algoritmo en Machine Learning en Python parte 1

omposition
port accuracy score, roc_auc_score

n el data

from sklearn.model selection impor

resultado=[8.8]

80

Figura 52. Cédigo Algoritmo en Machine Learning en Python parte 2

W, random_state=18)

n_matrix

matriz = confusion_| [st, y_pred)
print(’]

Figura 53. Codigo Python preprocesamiento datos parte 1

[1]: #importando Librerias
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
import seaborn as sns
from sklearn import decomposition
from sklearn.preprocessing import LabelEncoder

data_h.describe()

Num. subject ID Agelyear) Height(cm) Weight{kg) Pr:iz‘::;;i:n:? Pr[:i;:lts{i:ni:tg: Rate;jinr; BEMI{kg/m"2)

count 219.000000 219.000000 219.000000 219.000000 219.000000 219.000000 219.000000 219.000000 219.000000
mean 110.000000 156.598174 57.168950 161.228311 60.191781 127945205 71849315 73.639260 23107215
std 63364028 101.604347 15874327 8.2 11.88630 11.111203 10.738874 4.004302
min 1.000000 2.000000 21.000000 145.000000 36.000000 80.000000 42,000000 52,000000 14.690000
25% 55500000 85.500000 48000000 155000000 52500000 113.500000 64,000000 66,000000 20.550000
50% 110.000000 152.000000 58000000 160.000000 &0.000000 26.000000 70.000000 73.000000 22.600000
T5% 164.500000 214.500000 67.500000 167.000000 ©6.500000 139.000000 78.000000 80.000000 25.000000
max 212.000000 419.000000 86.000000 196000000 103.000000 182.000000 107.000000 106.000000 37.460000

81

Figura 54. Cédigo Python preprocesamiento datos parte 2

[35]: # Agrupando columnas por tipo de datos
tipos = data_h.columns.to_series().groupby{data_h.dtypes).groups

Armando Lista de columnas categoricas
ctext = tipos[np.dtype('object")]
len(ctext) # cantidaod de columnas con dotos categdricos.

i
(]
Ln

[36]: # Armando Llista de columnas numéricas
columnas = data_h.columns # listo de todas las columnas
cnum = list(set({columnas) - set{ctext))
len{cnum}

[37]: # Completando valores faltantas datos cuantititavos
for ¢ in cnum:
mean = data_h[c].mean()
data_h[c] = data_h[c].fillna(mean}

[38]: # Completando valores faltantas datos categdricos
for ¢ in ctext:
mode = data_h[c].mode()[8]
data_h[c] = data_h[c].fillna(mode)

[39]: # Controlando que no hayan valores foltantes
data_h.isnull().any().any()

[39]: False

82

Figura 55. Cédigo Python preprocesamiento datos parte 3

[42]: data_h
data_h
data_h
data_h
data_h
data_h
data_h
data_h
data_h

data_h.
data_h.
data_h.
data_h.
data_h.
data_h.
data_h.
data_h.
data_h.

replace(' Female' ,@)

replace('Male",1)

replace('Mormal’ ,@)
replace(' Prehypertension’,1)
replace('Stage 1 hypertension’,2)
replace('Stage 2 hypertension', 3)
replace('Diabetes’, 1)
replace('Type 2 Diabetes", 2)
replace(',"',".")

[44]: |sns.countplot(data_h.Hypertension)
#sns. countplot(kill.manner_of death)
plt.title("Hipertension",color = 'blue’,fontsize=15%)
plt.show()

Hipertension

Anexo B. Cédigo Django

1 2 3
Hypertension

83

Figura 56. Codigo Settings.py Django parte 1

ALLOWED HOST

INSTALLED APPS = |
.contrib.admin’,

84

Figura 57. Coédigo Settings.py Django parte 2

os.environ.get
‘db* ,
'DATABASE_PORT " :

85

Figura 58. Codigo Archivo Views.py (controlador) para diagnosticar hipertension
parte 1

uscar{request) |
(request.POST [“edad’ .POST ["presions” request.POST ["imc' request. POST

usuariop=User.objects.get(username=request.user)

presions=request.POST ['presions']
edad=request.POST ["edad’]
imc=request.POST ["imc"]
peso=request.POST ['f

modelo= load{’hipertension/modelo/m

onsp ,imcp] 1)

i, edad=edad, dimc=imc, pe , resultado=Resultado)

J.order_by(

recomendaciones = []
estados = []
5 =8

86

Figura 59. Codigo Archivo Views.py (controlador) para diagnosticar hipertension
parte 2

atos.presion
estados. append("Presion £ "+iatos.presio

. estados. append (" MC

datos.presion_s) »128

usuariop=4 j (username=request.
consulta=Hipertension.objects.filter (usuari i order_by

1 render(request, “hi on/res do y {"resul =" :Resultado, :) =" rrecomendaciones, "

87

Figura 60. Codigo Archivo Views.py (controlador) para el login y registro parte 1

form_class = SignUpForm

form_valid(self, form):

form.sav

usuario = form.cleaned data.get(
password = form.cleaned_data.get

usuario = awthenticate ord=password]

consulta_diabetes = Diabetes.objects.filter(

1 render({request, rconsulta_diabetes})

88

Figura 61. Codigo Archivo Views.py (controlador) para el login y registro parte 2

django. core il nd_mail, BadHeaderError

django. http import
djang: t FasswordResetForm
port User
render_to_string

password_reset_form
if password_reset_: L
word_reset_form. cleaned_data[

word_reset_form})

Anexo C. Logica frontend (Django)

89

Figura 62. Codigo HTML base de la pagina web

Diabetes

{{ user.username

endif ¥}

90

Figura 63. Codigo para crear el formulario que se muestra en la pagina web
parte 1

, widget=Forms.TextInput

ywidget=Forms. TextInput

ywidget=Forms.EmailInput

ignlpForm,

for fieldname in ["username’,
.fields[fieldname].help

wordInput (

model = User
fields

91

Figura 64. Codigo para crear el formulario que se muestra en la pagina web
parte 2

et=Forms. TextInput (att
et=Forms. PasswordInput (attr

s "*hkwargs)

» widget=Forms.EmailInput(attrs

model
fields

newW_passwordl = JCharfield{widget=Forms. TextInput{att

NEW_pPa55Wor

model
fields =

92

Figura 65. Codigo HTML de vista donde se muestra el resultado en pagina web

Tus resultados son: {{ resultados }}

1}
r estado in estados X}
{{ estado }}

ndfor £}
% endif X}

{% for recomendacion in recomendaciones X}
{{ recomendacion }}

{% endfor %}
% endif X}

Resultados Anteriores:

;3 Plasmatica
in Arterial
de Piel

IMC

Pedigri Diabetes
Edad

{%¥ for consulta in consultas X}

id= [{ cons] 3 'f:;'FE= checkbax"

{Irnncnlta.elurnsa nlasmatirall

93

Anexo D. Légica aplicacion movil

Figura 66. Codigo vista login aplicacion movil parte 1

private void sttemptlogini) {

mFloatlabellUserId. setError (null);
mFloatlabelPassword. setError(null];

String vserld = mlserIdView.getText().toString(];

String password = mPasswordView.getText().to5tring();

boolean cencel = false;

View focusView = mull;

ff Check for o volid posseord, If the vser entered one.

if (TextUtils. isEmptylpassword)) {
mFLoatlabelPassword. setError(getStringlR. string. error_field_required)];
focusView = mFlostlabelPassword;
cancel = true;

} else if (lisPasswordValid(password)) {
mFloatlabelPassword . setError{get5StringlR. string. error_invalid_possword)] ;
focusView = mFlostlabelPassword;

cancel = true;

£ Werificor =1 el ID tiene contenido.
if (TextUtils.isEmptyluserId)) {
mFloatlabelllserld. setError{get5tring(R. string. error_field_reguired));
focusView = mFlostlabellserId;
cancel = true;
} else if (lisUserIdvalid{uvserId)) {
mFloatLabelllserId. setError{get5tring(R.string. error_invalid_wser_id));
focusView = mFlostlabellserId;

cancel = true;

94

Figura 67. Codigo vista login aplicacién movil parte 2

if (cancel) {
{4 There mos an error; don't ottempt login ond focws the first
¢/ form field mzth on error.
focusView. reguestFocus(d;

} oelse {

/# Mostror el indicodor de corgo y luego inicior lo peticion osincrong.

showProgress(true) ;

Call<Affilizte> loginCall = mSaludMockApi.logini{new LoginBody(userId, password));
LloginCall.engueve (mew Callback<Affiliate=() {
diverride
public void onResponse(Call<Affiliaste> call, Response<Affiliate> response) 4
'/ Mpstror progreso

showProgress(false);

if (!response.isSvccessful()) {
String error = "Ha ocurride un error. Contacte &l administrador”;
if [response.errorBody() Responsslody

.comtentTypel] Med

.subtypel) String

cequals("json™)) {
ApiError apiError = ApiError.fromResponseBody(response.errorBody(]]);

error = aplError.getMessage();
/fLlog.d("LoginActivity”, opiError.getDeveloperMessoge());
} oelse {

try 4
/¢ Reportor cousos de error no relocionode con lo APT
Log.d{ t=3° "LoginActivity”, response.errorBody().stringl(l);

} catch (IDException e) {
e.primtStackTracel);

]
¥
showLoginError(error) ;
return;

95

Figura 68. Codigo vista login aplicacion movil parte 3

SessionPrefs.get(LoginActivity.this) . saveAffiliate(response. body(]]);
vsuario = response.body() toStringl();

'/ Ir o Lo citos medicos

showAppoLmtmentsScreen(]);

diverride

public woid onFailure(Call<Affiliste> call, Throwable t) {
showProgress [(falseld;
showlLoginError(t. getMessage());

Hi;

private boolean isUserldValid(S5tring vserld) { return userId.length() = 4; }
private boolean isPasswordVelid(5tring password) { return password.lemgth() = &4; T

private woid showProgress(boolean show) |
mProgressView. setVisibility(show ¥ View VISIBLE : View_ GONE);

imt visibility = show ? View.GONME : View WISIBLE;
mLoginFormView. setVisibility(visibility);
private woid showAppointmentsScreen() {

Bundle bundle = new Bundle();
Imtemt inmtemt = mew Imtent(packagelon

: text this, MainActivity.class);
bundle . put5tring(“vsvario™, wsuario);

imtent . putExtras (bundle) ;

startActivity(inmtent);

finish(};

96

Figura 69. Codigo vista Registro aplicacion moévil parte 1

dliverride

protected woid onCreate(Bundle savedInstanceState) |
super.onCreate(savedInstanceState);
setComtentView(R. layout.octivity_register);

fimal EditText firstnameEt = (EditText) findViewById(R.id.et_firstnome];

fimal EditText lastnameEt = (EditText) findViewById(R.id.et_lastnmme);

fimal EditText wsernameEt = (EditText) findViewById(R.id.et_uvsernmme);

final EditText emailEt = (EditText) findViewById(R.id.et_emoil);

fimal EditText passwordEt = (EditText) findViewById(R.id.et_password);
mFloatLabelFirstname = [TextInputlayout) findViewById(R.id.floot_lmbel firstnome] ;
mFloatlabellastname = (TextInputlayout) findViewById(R.id.float_lobel lastnome);
mFloatLabellsername = (TextInputlayout) findViewById(R.id.float_lobel vsernmme);
mFloatlabelBmail = (TextInputlayout) FinmdViewById(R.id.floot Lobel_emmil);
mFloatLabelPassword? = (TextInputlayout) findViewById(R.id.floot lmbel possword 2);

Button submitBtm = (Button) FindViewById(R.id.btn_swbmit];
mResponseTv = (TextView) findViewById(R.id.twv_response);

mAPIService = Apilltils.getAPIServicel];

submitBtn.setOnClicklistener(new View OnClicklistener() {
dliverride
public void onClick(View view) {
if (lisDrline()) {
showLoginError("Conexion de red no disponible"];
return;

String first_name = firstnameEt.getText().toString().trim();
String last_name = lastnameEt.getText().toString().trim();
String wsername = uvsernameEt.getText().toString().trim();
String email = emailEt.getText().toString().trin();

String password = passwordEt.getText().toString().trim();

boolean cancel = false;
View focusView = null;

97

Figura 70. Cédigo vista Registro aplicacion movil parte 2

if (Textltils.isEmpty(first_name)) {
mFlpatlabelFirstname . setError("Este campo es requerido”);
focwsView = mFlostlabelFirstname;
cancel = true;

} else if (!isFirstnameVelid(first_name)) {
nFloatLabelFirstname . setError (" Contrasena imvalida™);
focwsView = mFlostlabelFirstname;

cancel = true;

A# Verificor si el ID tiene contenido.

if (Textltils.isEmpty(last_name)) {
mFlpatlabellastname. setError("Este campo es requerido™);
focusView = mFlostlabellastname;
cancel = true;

} else if (!isLastnemeValid(last_namel) {
mFlpatlabellastname . setError("Nimers de identificacion imvalido™);
focusView = mFloatlabellastname;
cancel = true;

b

if (Textltils.isEmptylusernane)) {
mFlpatLabelllsername . setError("Este campo es requerido™);
focusView = mFlostlLabellsername;
cancel = true;

} else if (!lisUsernemeVelid(vsername)) {
mFloatlabelllsername . setError("Nimero de identificeacion imvalido™);
focusView = mFlostlLabellsername;
cancel = true;

b

if (Textltils.isEmptylemaill) {
mFloatlabelEnail. setError("Este campo es requerido”);
focusView = mFlostlabelEnail;
cancel = true;

} else if (!isEmailValid(emaill) {
mFlpatlabelEnail. setError("Nimere de idemtificecion invélido");
focusView = mFlostlabelEnail;

cancel = true;

98

Figura 71. Codigo vista Registro aplicacion moévil parte 3

public void sendPost(String first_name, String last_name, String username, String email, String password) {
mAPIService.savePost(first_name, last_name, username, enail , password) . engueve(new Callback<Post=() {

dliverride
public void onResponse(Call<Post> call, Response<Post> response)

if (!response.isSvccessful()) {
S5tring error = "Ha ccurrido un error. Comtacte &l administrador™;

if [response.errorBody()
.comtentType(] Medi
.subtypel) String
equals(™json")) {
ApiError apiError = ApiError. fromResponseBody(response_errorBody(]);

error = aplError.getMessage();
/fLog.d("LoginActivity”, opiError.getDeveloperMessoge());

b else { . .
try {

Log.d{ t=5 "RegisterActivity", response.errorBody().string(l);

} catch (IDException e) {
e.primtStackTrace(]);

showLoginError(error) ;
return;

I3

if(response.isSuccessful()) {
showResponse (response . body () . toStringl());

showLoginScreen() ;
Log.d(t=g "good”, msg "post submitted to APL.™ + response.body().toString());
}
I
dliverride

public void onFailure(Call<Post> call, Throwable t) |

showloginError(t.getMessage());

99

Figura 72. Cdédigo vista Menu aplicacion movil parte 1

diverride
protected woid onCreate(Bundle savedInstanceState) |

super.onCreate(savedlnstanceStatel ;

if (!SessionPrefs_get(this).isLoggedIn()) {
startActivity(new Intemt(packegelontest this, LoginActivity.class));
finish(]);
return;

setComtentView(R. Layout. octivity_moin) ;

Toolbar toolbar = (Toolbar) findViewById(R.id.teolbar);

setSupportActionBar (toolbar);

toolbar. setTitleTextAppearance(context this, R.style.RobotoBoldTextAppearance);
getSupportActionBar() . setTitle("Home");

DrewerLayout drawer = findViewById(R.id.drower_Lloyout);
ActionBarDrawerToggle toggle = mew ActionBarDrawerTogglel

winity: this, drawer, toolbar, "Open mevigation drawer", "Close navigation drawer"];

drawer .addlrawerListener(toggle) ,‘I
toggle.syncState();

NavigationView navigationView = (NavipetionView) FindViewById(R.id.nowv_view); //

navigationView . setNavigationltemSelectedlistener(this);

{fstartActivity(new Intent(this, HomeActivity.closs));

fifinish();
HomeFragnent fragmenmt = new HomeFragment();
getSupportFragnentManager() .beginTransaction() . replace(R. id . conteiner, fragmemt) .

100

Este es el menv del Lodo

addToBackStack (mull) .commit(]);

Figura 73. Cédigo vista Menu aplicacion moévil parte 2

~public veid onBackPressed() {

DrewerLayout drewer = (Drewerlayout) findViewById(R.id.drower_Lloyout);

if (drawer.isDrawerOpen(GravityCompat.START)) {
drawer .closelrawer (GravityCompat . START);

I else {
super.onBackPressed();

¥

if (getFragmentManager().getBackStackEntryCount (=004
getFragmentManager () .popBackStack();

{StatementiithEnptyBody,/
dliverride
public boolean onlavigetionltemSelected(Menultem item) {

// Hondle novigotion view item clicks here.

imt id = item.getItemId();

boolean fragnenmtTraslacion = false;
Fragment fragmenmt = null;

if (id == R.id.nov_home) {
fragmnent = new HomeFragment(]);
fragmentTraslacion = true;
getSupportActionBar() . setTitle(iten. getTitle());

fireturn true;

¥

else if (id == R.id.now_hipertension) {
fragment = new HipertensionZFragment(];
fragmentTraslacion = true;
getSupportActionBar() . setTitle(iten. getTitle());

¥

else if (id == R.id.nov_diobetes) {
fragmnent = new DisbetesFragment(];

fragmentTraslacion = true;
petSvpportActionBar() . setTitlel(iten. oetTitle()):

101

Figura 74. Cédigo vista Menu aplicacion moévil parte 3

else if (id == R.id.cerrarsesion) {
SessionPrefs.get(MainActivity.this) . loglutl);
startActivity(mew Imtemt(packagefontest this, LoginActivity.class));
finish(]);
return truee;

if (fragmentTraslacion)d
getSupportFragnentfanager() .beginTransaction() .replace(R.id. conteiner, fragnent) . eddToBackStack (mull) . commit(];

DrewerLayout drewer = (Drewerlayout) findViewById(R.id.drower_Lloyout);
drawer .closelrawer (GravityCompat . START) ;

return true;

giverride
public boolean onCreatelpticnsMenu(Menu menu) {
/¢ Inflote the menu; this odds items to the oction bor if it Is present.

getMenvInflater(). inflate(R.nenu. menu_oppointments, menu);

return true;

dlverride
public boolean onOpticnsItemSelected(Menultem item) {
// Hondle oction bor item clicks here. The oction bor mill
'/ outomoticolly hondle clicks on the Home/Up button, so Long

'/ os you specify o porent octivity in AndroidMonifest.xml.

int id = item.getItemId();

JSfnoinspection SimplifioblelfStotement

if (id == R.id.ection_settings) {
SessionPrefs.get(MainfActivity.this) . logDut();
startActivity(mew Imtemt(packageContest this, LoginActivity.class));
finish(]);
return true;

102

Figura 75. Codigo vista formulario Edad aplicacion movil

public View onCreateView(QNonNull LayoutInflater inflater

Viewbroup container, Bundle savedInstanceState) {

View view = inflater.inflate(R.layout.frogoent_edod, container, sttachlofoot false);
EditText edad= (EditText) wiew.findViewById(R.id.edad_in];

Button button = (Button) view.findViewById(R.id.btnedod);

Bundle datosRecuperados = getArguments();

button.setOnClickListener(new View. OnClicklListener()

{
diverride
public woid onClick(View w)
{
S5tring nombre? = edad.getText().toString();
if (!Textltils.isEmpty(nombre2)) {
Bundle datosEnviar = new Bundle();
/fdotosEnvior. putString(“nombre”, nombre) ;
datosEnviar . put5tring(“edad”, nombre2) ;
PesoFragment nuevoFragmento = new PesoFragment(];
nuevoFragnento . setArguments (datosEnviar) ;
FragnentTransaction transaction = getFragnertManager() . beginTransaction();
transaction.replace(R.id.conteiner, nuevoFragmento);
transaction.addToBackStack(nwll);
¢/ Commit o lo tronsoccion
transaction.comnit(]);
Felsed
edad. setError("Error, Por favor ingresa tuw edad");
}
]
b
returm view;

103

