CARACTERIZACIÓN DE LA FRACCIÓN PESADA C_{7+} CON LA ECUACIÓN DE ESTADO PC – SAFT

YOVANNY MORENO TARAZONA JUAN DE JESÚS LÓPEZ VARGAS

UNIVERSIDAD SURCOLOMBIANA FACULTAD DE INGENIERIA INGENIERIA DE PETRÓLEOS NEIVA 2011

CARACTERIZACIÓN DE LA FRACCIÓN PESADA C_{7+} CON LA ECUACIÓN DE ESTADO PC – SAFT

YOVANNY MORENO TARAZONA JUAN DE JESÚS LÓPEZ VARGAS

Trabajo de grado para optar al título de Ingeniero de Petróleos

Director CARMEN PINZÓN TORRES QUÍMICA, ESP. EDUCACIÓN MATEMÁTICA CON ÉNFASIS EN LA APLICACIÓN DE LOS SISTEMAS DINÁMICOS.

> UNIVERSIDAD SURCOLOMBIANA FACULTAD DE INGENIERIA INGENIERIA DE PETRÓLEOS NEIVA 2011

No	ota de aceptación
_	
-	
-	
-	
-	
-	
-	Firma del Director
-	Firma del Evaluador
_	
	Firma del Evaluador

Neiva, Noviembre de 2011

DEDICATORIA

Primero que todo le doy gracias infinitas a Dios por sus bendiciones y por ser mi guía espiritual y proveedor de mi fe, y sobre todo por haberme dado la vida, ya que sin ella no estaría aquí.

Gracias a mi querida madre Nieves Tarazona Duarte, por brindarme su amor, comprensión y ser sin duda alguna la precursora de mi formación profesional, gracias a mi novia Andrea Hernández Duarte, por ser el complemento tan necesario en mi vida y por acompañarme indispensablemente durante toda mi formación en la universidad con su sincero amor, gracias a mi abuela Martha Lilia Córdoba de Moreno, por su incondicional e importantísimo apoyo en esta etapa de mi vida, gracias a mi tío José Alexander Moreno Córdoba, por sus consejo y por que el es mi ejemplo a seguir, a mis súper amigos Huginho, Dan, Os, Sheva y Farith (vin), por enseñarme el verdadero significado de la amistad. Muchas gracias a todos por enseñarme muchas cosas y hacer de mí una mejor persona.

Gracias a la Universidad Surcolombiana, por brindar la oportunidad de formarnos con calidad y permitir el desarrollo de una región.

Gracias a todos los docentes que durante este proceso nos formaron con calidad humana y profesional y que sin duda son motivo de agradecimiento y admiración.

Gracias y mil gracias a todos los que durante estos años me acompañaron e hicieron que aunque esta no sea la tierra que me vio nacer la sintiera como propia y sin duda tendrá un recuerdo imborrable en mi memoria.

Orgulloso de ser ingeniero de petróleos de la Universidad Surcolombiana de Neiva.

YOVANNY MORENO TARAZONA

Especial dedicatoria a mi hijo Juan Andrés López Neira, que se ha convertido en el más grande motor para salir adelante en mi vida desde el momento en que llego a este mundo, dedicado a mi madre queridísima Hipolita Vargas de López que con esfuerzos no en vano me ayudo a sacar adelante mi carrera y me formo como persona, con grandes valores. y a mi abuela Hilda María Vargas Pérez (Q.P.D) por su incondicional apoyo cuando se encontraba en este mundo.

JUAN DE JESUS LOPEZ VARGAS

AGRADECIMIENTOS

A la directora de tesis de este proyecto, Carmen Pinzón Torres, química, especialista en educación matemática con énfasis en la aplicación de los sistemas dinámicos, profesora titular de la Universidad Surcolombiana de Neiva, por sus sabios consejos y aportes para que este trabajo fuera una realidad.

YOVANNY MORENO TARAZONA

Gracias a Dios, por guiarme y proveerme de sabiduría durante toda mi vida, sin ella no estaría donde estoy.

Gracias a mi hermosa mamá Hipolita Vargas de López, por ser una fuente inagotable de apoyo y comprensión hacia mí, gracias a mi abuela Hilda María Vargas Pérez (Q.P.D.), por haberme permitido crecer entre ellos, y formarme como una persona íntegra. Gracias a mi directora de tesis Carmen Pinzón, por ser una persona que creyó en mí desde la primera vez que le pedí su apoyo. Gracias a todas las personas que en un punto u otro, mostraron su apoyo incondicional de manera especial en cualquier aspecto de mi vida, gracias a todos por qué me han llevado a ser la persona que soy.

A la Universidad Surcolombiana por darnos la oportunidad de formarnos como ingenieros. A todos los profesores que durante la carrera nos guiaron y compartieron todo su conocimiento en las diversas asignaturas.

JUAN DE JESUS LOPEZ VARGAS

CONTENIDO

	Pág.
LISTA DE FIGURAS	8
LISTA DE TABLAS	9
GLOSARIO	10
RESUMEN	12
ABSTRACT	13
OBJETIVOS	14
1. BASES TEÓRICAS	15
 1.1. ECUACIONES DE ESTADO 1.1.1. Ecuaciones de estado tipo virial 1.1.2. Ecuaciones de estado cúbicas 1.1.3. Ecuaciones de estado para moléculas constituidas por cadenas 1.1.3.1 Teoría de perturbación de cadena rígida (PHCT) 1.1.3.2 Teoría simplificada de perturbación de cadena rígida (SPHCT) 1.1.3.3 Ecuaciones de estado para cadenas de esferas rígidas 1.1.3.4 Teoría de perturbación anisotrópica de cadena 1.1.4 Ecuaciones de estado para fluidos que se asocian 1.1.4.1 Ecuación de estado SAFT 	15 15 17 17 18 18 18 19
2. ECUACIÓN DE ESTADO PC-SAFT	22
2.1. CONTRIBUCIÓN DE REFERENCIA PARA LA CADENA RÍGIDA 2.2. CONTRIBUCIÓN DE DISPERSIÓN 2.3. ECHACIÓN DE ESTADO DO SAETADO LOS DA ALA INDUSTRIA	22 23
2.3. ECUACIÓN DE ESTADO PC-SAFT APLICADA A LA INDUSTRIA DEL PETRÓLEO 2.3.1. Modelamiento del comportamiento de fases de los asfaltenos	27 28
3. CARACTERIZACIÓN DE LA FRACCIÓN PESADA C ₇₊	30
 3.1. COMPONENTES DEL PETRÓLEO 3.1.1. Componentes de la fracción definida 3.1.2. Componentes de la fracción indefinida 3.2. CARACTERIZACIÓN DE LA FRACCIÓN C₇₊ CON LA ECUACIÓN 	30 30 31
DE ESTADO PC-SAFT 3.2.1 Método de caracterización SARA	31 32

3.2.1.1. Componentes de la fase gaseosa	34
3.2.1.2. Componentes de la fase líquida	34
3.2.1.2.1 Pseudocomponentes saturados	34
3.2.1.2.2 Pseudocomponentes aromáticos-resinas	34
3.2.1.2.3. Pseudocomponente asfaltenos	36
3.2.1.3. Ejemplo de aplicación	37
3.2.1.3.1. Componentes de la fase gaseosa	43
3.2.1.3.2. Componentes de la fase líquida	45
3.2.1.3.3. Calculo de los parámetros	49
3.2.2. Método de Caracterización, PNA	51
3.2.3 Ejemplo de aplicación	53
CONCLUSIONES	64
RECOMENDANCIONES	66
REFERENCIAS	67

LISTA DE FIGURAS

	Pág.
Figura 1. Número de segmentos para la serie de n-alcanos	35
Figura 2. Diámetro del segmento para la serie de n-alcanos	36
Figura 3. Energía del segmento para la serie de n-alcanos	37
Figura 4. Número de segmentos y diámetro del segmento para derivados del	benceno
(resinas) y aromáticos polinucleares (aromáticos)	38
Figura 5. Energía del segmento (ε/k), para derivados del benceno (resinas) y arc	omáticos
polinucleares (aromáticos).	39
Figura 6. Número de segmentos (m) y diámetro del segmento (σ), para los asfaltos	enos con
un peso molecular de 1700 g/mol.	40
Figura 7. Energía del segmento (ε/k), para los asfaltenos con un peso molecular	de 1700
g/mol.	41
Figura 8. Porcentaje molar vs. Número del carbono para una mezcla de petróleo	55

LISTA DE TABLAS

	Pág.
Tabla 1. Constantes para las integrales de la ecuación de estado PC-SAFT	24
Tabla 2. Temperatura crítica (Tc), presión crítica (Pc) y factor acéntrico (ω) de los
componentes definidos del petróleo	31
Tabla 3. Parámetros de la ecuación PC-SAFT para componentes puros	32
Tabla 4. Parámetros de la ecuación PC-SAFT para asfaltenos	37
Tabla 5. Análisis SARA	39
Tabla 6. Composición típica de un fluido de yacimiento realizada por cromat	ografía de
gases	41
Tabla 7. Composición de la fase gaseosa	43
Tabla 8. Parámetros de la ecuación PC-SAFT de la fase gaseosa	45
Tabla 9. Composición de la fase líquida	45
Tabla 10. Saturados	47
Tabla 11. Aromáticos-resinas	48
Tabla 12. Parámetro de la ecuación PC-SAFT para los pseusocomponentes	de la fase
líquida	51
Tabla 13. Composición molar de una mezcla de petróleo	53
Tabla 14. División de la fracción <i>Plus</i> hasta C_{80}	56
Tabla 15. Distribución PNA (C_7 - C_{40})	58
Tabla 16. Constantes correlación parámetros PC-SAFT	59
Tabla 17. Caracterización con los parámetros de la ecuación PC-SAFT	60
Tabla 18. Caracterización del Petróleo con la Ecuación PC-SAFT	63

GLOSARIO

~: propiedades reducidas

A1: termino de perturbación de primer orden

A2: termino de perturbación de segundo

A: energía libre de Helmoholtz

a0i: constante de la PC-SAFT

b0i: constante de la PC-SAFT

C: número de carbono

CH: relación de peso carbono/hidrógeno

d: diámetro efectivo

g: función promedio de la distribución de potencial

I: fracción del volumen ocupado por moleculas

k: constante de Boltzman

kij: parámetros de interacción binaria

m: número de segmentos

M: número de sitios de asociación

MW: peso molecular

m1: parámetro de variación lineal entre el índice de refracción vs. (1/MW)

n: índice refracción

N: número total de moléculas

P: presión

Pc: presión crítica

R: constante universal de los gases

SG: gravedad especifica

T: temperatura

Tb: punto de ebullición normal

Tc: temperatura crítica

Tr: temperatura reducida

v: volumen

X: fracción molar

Z: factor de compresibilidad

LISTA DE SIMBOLOS GRIEGOS

Δ: variación

ε: parámetro de interacción entre dos segmentos de esferas rígidas

γ: grado de aromaticidad

η: factor de empaquetamiento

μ: potencial químico

ρ: densidad molar de la cadena de moléculas

σ: diámetro del segmento

ω: factor acéntrico

LISTA DE SUBÍNDICES

A: aromáticos i: componente i j: componente j N: nafténicos P: parafinas

LISTA DE SUPERÍNDICES

A: sitio A

assoc: asociación att: atracción B: sitio B chain: cadena disp: dispersión GI: gas ideal hc: cadena rígida pert: perturbación rep: repulsión res: residual

RESUMEN

La ecuación de estado PC-SAFT corresponde a una nueva generación de ecuaciones de estado que tienen en cuenta los efectos asociativos de las moléculas, por consiguiente es útil la aplicación en crudos. La ecuación de estado PC-SAFT ha demostrado ventajas considerables en la simulación de asfaltenos, ya que predice con exactitud las densidades líquidas y el punto de burbuja del crudo, además de los efectos en la precipitación de asfaltenos como la polidispersidad de los asfaltenos y las resinas. Con esta se obtienen buenos resultados en mezclas polidispersas, de alto peso molecular, polarizables y de diferentes tamaños moleculares, todas esta características de los asfaltenos.

Para el modelamiento del comportamiento de fases de los componentes del petróleo es necesario primero caracterizar su fracción indefinida; para la aplicación de la ecuación PC-SAFT se debe caracterizar el petróleo con unos parámetros específicos. En este trabajo se presenta la caracterización de la fracción C_{7+} mediante dos metodologías: el método de caracterización SARA y el método de caracterización PNA; cada uno de los métodos permitió calcular los parámetros que deben incluirse en la ecuación de estado: el numero de segmentos (m), diámetro de los segmentos (σ) y la energía de interacción entre los segmentos (σ).

El método de caracterización de la fracción C_{7+} SARA divide al crudo en dos grandes grupos: la fase gaseosa y la fase líquida; la fase gaseosa a su vez se divide en cuatro pseudocomponentes (N_2 , CO_2 , metano y componentes ligeros). La fase líquida se divide en tres pseudocomponentes (saturados, aromáticos-resinas y asfaltenos). Para cada uno de los pseudocomponentes de las fases hay correlaciones que permiten calcular los parámetros de la ecuación en función del peso molecular de los componentes puros y de los pseudocomponentes involucrados.

El método de caracterización PNA divide al petróleo en tres componentes según su estructura química (parafinas, nafténicos y aromáticos). Este método de caracterización divide la fracción pesada en números de carbonos sencillos utilizando los diferentes métodos de fraccionamiento desarrollados en la industria petrolera. Una vez dividida la fracción C₇₊ se determina la distribución PNA a cada carbono. Los parámetros de la ecuación PC-SAFT se calculan con una serie de correlaciones donde los tres parámetros se determinan para los componente parafínicos, nafténicos y aromáticos de cada carbono y se determinan los valores totales con una regla de mezclas; con los parámetros establecidos para cada componente, éstos se agrupan en pseudocomponentes de similar peso molecular.

Palabras claves: modelamiento, ecuaciones de estado, PC-SAFT, caracterización, fracción indefinida.

ABSTRACT

The equation of state PC-SAFT corresponds to a new generation if equations of state that take into account overall effect of the molecules, therefore it is useful to apply in crude oils. The equation of state PC-SAFT has proven advantage in the simulation of asphaltene, since this equation accurately predicts liquid densities and bubble point oil, addiction to the effects of asphaltene precipitation and the polydispersity of asphaltenes and resins. The PC-SAFT equation obtained good results in polydisperse mixtures of high molecular weight, and different molecular sizes, all these characteristics of the asphaltenes.

For the modeling of phase behavior of oil components is first necessary to characterize their indefinite fraction; to implement PC-SAFT equation must be characterized oil with specific parameters. In this work we present the characterization of the C_{7+} fraction using two methodologies: the SARA characterization method and the PNA characterization method; each of the methods allowed us to calculate the parameter to be included in the equation of state: the number of segments (m), diameter of the segments (σ) and the interaction energy between segments (σ).

The method of characterization the C_{7+} fraction SARA, divides the oil into two main groups: the gas phase and liquid phase, the gas phase in turn is divided into four pseudocomponents (N_2 , CO_2 , methane and lighter components). The liquid phase is divided into tree pseudocomponents (saturates, aromatics-resins and asphaltenes). For each pseudocomponent of the phase have correlations to calculate to calculate the parameters of the equations as a function of molecular weight of the pure component and pseudocomponent involved.

The PNA characterization method divides the oil into three components according to their chemical structure (paraffins, naphthenic and aromatic). This method divides the heavy fraction characterization in simple carbon numbers using the different methods splitting developed in the oil industry. Once divide C_{7+} fraction distribution is determined by the PNA to each carbon, for this step. The parameters of the PC-SAFT equation are calculated with a series of correlations where the three parameters determine the component paraffinic, naphthenic and aromatic carbon in the total values are determined with a rule of mixtures, and the parameters established for each component, they are grouped into pseudocomponents of similar molecular weight.

Keywords: modeling, equation of state, PC.SAFT, characterization, undefined fraction.

OBJETIVOS

OBJETIVO GENERAL

• Caracterizar la fracción pesada C₇₊ con la ecuación de estado PC-SAFT.

OBJETIVOS ESPECÍFICOS

- Analizar los parámetros que influyen en la aplicación de la ecuación de estado PC- SAFT
- Analizar el método de fraccionamiento que se desarrollará en la caracterización del C₇₊ con la PC SAFT.
- Asignar los parámetros de la ecuación PC- SAFT a cada número de fracciones de carbonos en que se divida la fracción pesada C₇₊.
- Determinar el mejor método de agrupación del número de fracciones de carbonos dentro de un conveniente número de pseudocomponentes que faciliten la utilización de la ecuación PC – SAFT
- Determinar las ventajas de la utilización de la ecuación PC SAFT en la simulación de sistemas de asfaltenos.

1. BASES TEÓRICAS

1.1 ECUACIONES DE ESTADO

La predicción de las propiedades termodinámicas y del equilibrio de fases con ecuaciones de estado es de gran importancia en la industria petrolera. Generalmente las ecuaciones de estado son utilizadas para el cálculo de las propiedades de sistemas de fluidos simples, sin embargo, existe la necesidad de que estas ecuaciones sean capaces de calcular propiedades termodinámicas de sistemas de fluidos complejos y con compuestos macromoleculares. A través del tiempo estas ecuaciones han evolucionado, pasando desde las ecuaciones para moléculas simples, hasta las ecuaciones para moléculas constituidas por cadenas.

1.1.1 Ecuaciones de estado tipo virial. Esta ecuación de estado fue desarrollada empíricamente para modelar relaciones entre la presión, volumen y temperatura de sustancias puras en estado gaseoso, donde establece que a bajas presiones el producto Pv, presenta una relación lineal con la temperatura y que este producto tiene un valor constante cuando la presión tiende a cero, independiente de la naturaleza de la sustancia.

La primera ecuación de estado virial propuesta fue:

$$Pv = c_1 + c_2 P (1.1)$$

Donde c_1 es función de la temperatura y c_2 depende de la temperatura y de la naturaleza del componente estudiado.

Estudios posteriores a presiones más elevadas, demostraron que la relación lineal de *Pv* con la temperatura no es válida, modificando la ecuación de la siguiente forma:

$$Pv = c_1 + c_2 P + c_3 P^2 + c_4 P^3 + \dots (1.2)$$

Donde c_3 y c_4 son funciones de la temperatura y de la naturaleza de la sustancia. Los coeficientes c_1 , c_2 , c_3 , c_4 ,.... son llamados coeficientes viriales. Estos coeficientes viriales representan las interacciones entre moléculas: en las cuales, c_1 representa la contribución del gas ideal en el que las interacciones entre moléculas pueden ser despreciadas, c_2 representa la interacción entre pares de moléculas y así sucesivamente.

La ecuación (1.2) puede ser representada de la siguiente forma cuando la presión tiende a cero:

$$Pv = c_1 = RT \tag{1.3}$$

1.1.2 Ecuaciones de estado cúbicas. La fase líquida no puede ser modelada con precisión por las ecuaciones viriales ya que existen dificultades en los cálculos de los coeficientes en

amplios rangos de temperatura y presión en la aplicación del modelamiento matemático. van der Waals en 1873 formuló la primera ecuación capaz de predecir la existencia simultánea de una fase líquida y una fase vapor. Esta ecuación es:

$$P = \frac{RT}{v-h} - \frac{a}{v^2} \tag{1.4}$$

Donde a y b son constantes características de cada sustancia. Wei y Sadus¹ en el 2000, concluyen que el primer término de la derecha de esta ecuación representa la contribución repulsiva entre las moléculas, el segundo término representa las interacciones atractivas. La ecuación (1.4) da comienzo a la serie de ecuaciones de estado llamadas ecuaciones cúbicas, debido al término cúbico en el volumen, el cual se aprecia claramente cuando se desea obtener un volumen a una temperatura y presión específica; esta ecuación es:

$$Pv^{3} - Pbv^{2} + (a - RT)v - ab = 0$$
 (1.5)

La ecuación (1.5) presenta algunas limitaciones desde el punto de vista cuantitativo, ya que aunque esta ecuación predice con cierta exactitud el límite de la fase vapor, solo es aplicable a un número limitado de sustancias.

Posteriores trabajos mejoraron el término atractivo de la ecuación de van der Waals, mejorando la predicción de las propiedades de los gases, vapor y de la fase líquida; estas ecuaciones son los modelos de Soave-Redlich-Kwong (1972) y Peng-Robinson (1976). La ecuación de Peng-Robinson es expresada de la siguiente forma:

$$P = \frac{RT}{v - b} - \frac{a_c \alpha}{v(v + b) + b(v - b)}$$
 (1.6)

El parámetro b es determinado a partir de las propiedades críticas de la sustancia, el parámetro a también es función de las propiedades críticas de la sustancia, sín embargo a diferencia de la ecuación de van der Waals, este parámetro es función también de la temperatura y del factor acéntrico de la sustancia.

Los parámetros a_c, b y α de la ecuacion de Peng-Robinson se expresan de la siguiente forma:

$$a = \frac{0.45723553R^2T_c^2}{P_c}$$

$$b = \frac{0.07779607RT_c}{P_c}$$
(1.7)

$$b = \frac{0.07779607RT_C}{P_c} \tag{1.8}$$

$$\alpha = (1 + (0.37464 + 1.54226 \omega - 0.26992 \omega^{2})(1 - T_{r}^{0.5}))^{2}$$

$$T_{r} = \frac{T}{T_{c}}$$
(1.9)

$$T_r = \frac{T}{T_c} \tag{1.10}$$

La ecuación (1.6) se caracteriza por expresar los parámetros como función de las propiedades críticas y el factor acéntrico, además modela con precisión cerca del punto crítico propiedades como la compresibilidad y densidad líquida.

La ecuación de Peng-Robinson predice con mayor exactitud las densidades líquidas de sustancias apolares que la ecuación de Soave. Con el pasar de los años, múltiples modificaciones fueron realizadas a esta ecuaciones cúbicas, tanto para el término repulsivo como para el término atractivo, pero han tenido poca mejoría con respecto a la predicción de la propiedades de mezclas líquidas.

1.1.3 Ecuaciones de estado para moléculas constituidas por cadenas. Estas ecuaciones aplican la teoría molecular de soluciones con macromoléculas asociativas, utilizando el método de la mecánica estadística, así como la teoría de perturbación, que relaciona propiedades moleculares con las propiedades macroscópicas del sistema en estudio. Estos modelos de perturbación utilizan un sistema simple de referencia que caracteriza los aspectos del sistema en estudio donde la diferencia entre el sistema real y el ideal es calculado por términos de corrección denominados términos de perturbación, que generalmente se basan en modelos semiempíricos. La mecánica estadística da una interpretación física más directa al origen de los términos, independiente de su complejidad matemática final.

1.1.3.1 Teoría de perturbación de cadena rígida (PHCT). Flory² en 1965 propone una teoría de comportamiento termodinámico de los sistemas poliméricos basado en el trabajo de Prigogine³ (1957), en el cual explica las propiedades de las moléculas compuestas por cadenas, en que la rotación y la vibración alteran la densidad y por lo tanto la ecuación de estado. El trabajo de Flory se diferencia del de Prigogine, en que las expresiones utilizadas para tener en cuenta las interacciones moleculares se hicieron con la teoría de volumen libre y no con la teoría de redes, sin embargo estos trabajos solo se pueden desarrollar a altas densidades y su labor es limitada en los cálculos de la fase líquida y no tiene en cuenta el comportamiento del gas a densidad cero.

Beret y Prausnitz⁴ en 1975 desarrollaron una ecuación de estado basados en la teoría de perturbación de esfera rígida, que trabaja para moléculas pequeñas, y en el trabajo de Prigogine, denominada teoría de perturbación de cadena rígida (PHCT, Perturbed Hardchain theory). Esta ecuación trabaja para fluidos con moléculas de mayor tamaño y moléculas simples, y es válida para la fase líquida y la fase gaseosa. La ecuación PHCT aplica expresiones más precisas en los términos de repulsión y atracción para aumentar el rango de densidades y temperaturas de aplicabilidad, además corrige el límite de un gas ideal a densidades igual a cero.

La ecuación PHCT se expresa de la siguiente forma:

$$Z = Z(cadena \ rigida) - \frac{a}{RTV}$$
 (1.11)

Aunque esta ecuación calcula con buena precisión las propiedades de la fase líquida, su complejidad matemática la convierte en su principal limitación, debido a que los cálculos de las propiedades para mezclas como por ejemplo un hidrocarburo, consumen mucho tiempo haciendo esta ecuación algo ineficiente.

- **1.1.3.2** Teoría simplificada de perturbación de cadena rígida (SPHCT). Kim⁵ et al. en 1986 desarrollan una versión simplificada de la ecuación PHCT, a la cual le modifican el término atractivo basado en el modelo de composición local de Lee⁶ et al. (1985). La ecuación SPHCT (Simplified perturbed hard-chain theory) es capaz de calcular las propiedades a varias densidades de la fase líquida, provee volúmenes molares y presiones de vapor de componentes puros de igual forma a la ecuación PHCT de manera más sencilla, además calcula propiedades para mezclas con buena precisión, utilizando propiedades de componentes puros.
- **1.1.3.3** Ecuaciones de estado para cadenas de esferas rígidas. En busca del mejoramiento de las ecuaciones de estado para el cálculo de propiedades de fluidos reales es necesario incluir el concepto de cadena rígida. Wethein⁷ en 1987 desarrolla la teoría termodinámica de perturbación (TPT, Thermodynamic perturbed theory), en la cual propone que las moléculas están constituidas por moléculas duras. Chapman⁸ *et al.* en 1988 basado en el modelo TPT crea una ecuación de estado para un factor de compresibilidad de una cadena rígida constituida por *m* segmentos. Esta ecuación es:

$$Z^{hv} = mZ^{hs} - (m-1)\left(1 + \eta \frac{\partial [lng^{hs}(\sigma)]}{\partial \eta}\right)$$
 (1.12)

Donde $g^{hs}(\sigma)$ es una función de correlación sitio-sitio en contacto, σ es el diámetro de la esfera rígida, $\eta = \frac{\pi * m * \rho * \sigma^3}{6}$ es una fracción de empaquetamiento y ρ es una densidad numérica.

En 1994 Ghonasgi y Chapman⁹ modificaron el modelo TPT incorporando informaciones estructuradas a fluidos biatómicos; en este trabajo establecen que la compresibilidad de una cadena rígida puede ser calculada a partir del factor de compresibilidad de una esfera rígida y de una función de correlación sitio-sitio en contacto para esferas rígidas $g^{hs}(\sigma)$ y para diámetros rígidos (g^{hd}) .

1.1.3.4 Teoría de perturbación anisotrópica de cadena. Vimalchand¹⁰ et al 1986, desarrollaron la teoría de perturbación anisotrópica de cadena PACT (Perturbed Asinotropic Chain Theory), donde incluyen explícitamente los efectos de la fuerzas anisotrópicas multipolares en la ecuación de estado PHCT. Esta ecuación aplica para moléculas simples y para moléculas poliméricas de gran tamaño, con sus interacciones anisotrópicas; esta ecuación tiene en cuenta los efectos de las diferencias de tamaño moleculares, también tiene en cuenta la forma y las fuerzas intermoleculares como las fuerzas dipolares y cuadripolares. Esta ecuación es expresada de la siguiente forma:

$$Z = 1 + Z^{rep} + Z^{iso} + Z^{ani} (1.13)$$

De esta forma la ecuación está representada en términos de compresibilidad, donde el término $I+Z^{rep}$ es calculado de la misma forma que el calculado en la ecuación PHCT. Esta ecuación es válida para moléculas grandes y moléculas pequeñas, moléculas polares y apolares, y para todas las densidades de los fluidos. Una inclusión explicita de la fuerzas multipolares permite que las propiedades de mezclas no ideales sean pronosticadas con excelente precisión sin el uso de un parámetro de interacción binaria.

1.1.4 Ecuaciones de estado para fluidos que se asocian. Ikonomou y Donohue¹¹ en 1986 incorporaron un modelo de equilibrio infinito y monómero-dímero a la ecuación PACT, creando una ecuación de estado denominada teoría de perturbación asociada anisotrópica de cadena (APACT, Associated Perturbed Anisotropic Chain Theory). Esta ecuación tiene en cuenta las interacciones isotrópicas de repulsión y atracción, interacciones anisotrópicas debido a momentos dipolares y cuadripolares de la moléculas y enlaces de hidrógeno. Esta ecuación es capaz de calcular propiedades termodinámicas de componentes puros que se asocian, o como mezclas de más de un componente que se asocian. Escrita en términos de compresibilidad la ecuación APACT se representa por:

$$Z = 1 + Z^{rep} + Z^{att} + Z^{assoc} (1.14)$$

1.1.4.1 Ecuación de estado SAFT. Esta ecuación fue desarrollada por Champan¹² *et al.* (1989,1990¹³) y por Huang y Radoz¹⁴ (1990,1991¹⁵). La ecuación SAFT (Statistitcal Associating Fluid Theory) fue desarrollada basada en los trabajos de Wertheim¹⁶ en 1984 y 1986¹⁷, quien en su trabajo expande el término de energía libre de Helmholtz en una serie de integrales de función de distribución molecular y potencias de asociación. Wertheim basa su trabajo en argumentos físicos simplificando la energía libre de Helmholtz y estableciendo una relación entre este término debido a la asociación, con la densidad del monómero. Chapman *et al.* derivan la expresión de la energía libre de Helmholtz comparando con simulaciones realizadas obteniendo buenos resultados, Huang y Radoz utilizan esta ecuación en compuestos puros y mezclas dando buenos resultados en ambos casos.

La ecuación SAFT utiliza un sistema de referencia incorporando la longitud de la cadena, que hace relación al tamaño y forma molecular, además utiliza el concepto de asociación molecular que es mucho más preciso que el término de esferas rígidas. Como esta ecuación está basada en términos de perturbación, fuerzas moleculares como la dispersión y la inducción no son consideradas, haciendo que esta ecuación sea utilizada en un amplio número de fluidos como los polímeros y los fluidos polares.

El modelo SAFT considera que las moléculas son formadas a partir de segmentos de esferas rígidas. Primeramente el fluido está constituido solamente por esferas rígidas de igual tamaño, y los efectos de esferas rígidas son tenidos en cuenta. Luego las fuerzas atractivas son incluidas a cada esfera, la energía de dispersión puede ser descrita por una

potencia de interacción apropiada. En tercer lugar se forman las cadenas con enlaces covalentes. Por último se forma la asociación y los efectos asociativos son incluidos. La energía libre de Helmholtz residual está presente en este proceso. Así para la energía libre de Helmholtz se tiene:

$$A^{res} = A - A^{GI} \tag{1.15}$$

De forma general la ecuación de estado SAFT pude ser representada como:

$$A^{res} = A^{hc} + A^{disp} + A^{assoc} (1.16)$$

En forma adimensional:

$$\tilde{a}^{res} = \tilde{a}^{hc} + \tilde{a}^{disp} + \tilde{a}^{assoc} \tag{1.17}$$

El término \tilde{a} es la energía libre de Helmholtz adimensional, y es definida como:

$$\tilde{a}^{res} = \frac{A^{res}}{NkT} = \frac{A^{res}}{RT} \tag{1.18}$$

Las interacciones repulsivas se encuentran totalmente representadas en la contribución de la cadena y no presenta contribución en las interacciones atractivas. El término de dispersión es el encargado de representar las fuerzas de inducción. El término de asociación representa las interacciones altamente direccionadas y de pequeño valor como los enlaces de hidrógeno, así todos los términos de la ecuación SAFT constituyen propiedades residuales.

La contribución de la cadena rígida es representada por:

$$\tilde{a}^{hc} = \bar{m}\tilde{a}^{hs} - \sum_{i=1}^{n \ comp} x_i(m_i - 1) \ln g_{ii}^{hs}$$
(1.19)

El término \tilde{a}^{hs} representa la contribución de la esfera rígida en la energía libre de Helmholtz residual molecular adimensional, x_i es la fracción molar del componente i, m_i es un parámetro que representa el número de segmentos que forman la cadena, g_{ii}^{hs} representa una función promedio de la distribución de potencial de enlaces de segmentos esféricos del componente i (Chapman et al. 1990), \overline{m} representa un promedio ponderado de segmentos de cada tipo de molécula y está representada por la siguiente ecuación:

$$\overline{m} = \sum_{i=1}^{n \ comp} x_i m_i \tag{1.20}$$

El segundo término en la ecuación (1.19) representa la formación de una cadena por enlaces covalentes entre segmentos esféricos. El término que se refiere a la esfera rígida es representado por la siguiente ecuación:

$$\tilde{a}^{hs} = \frac{A^{hs}}{NkT} = \frac{1}{\xi_0} \left[\frac{3\xi_1 \xi_2}{1 - \xi_3} + \frac{\xi_2^3}{\xi_3 (1 - \xi_3)^2} + \left(\frac{\xi_2^3}{\xi_3^2} - \xi_0 \right) \ln \left(1 - \xi_3 \right) \right]$$
(1.21)

Donde

$$\xi_n = \frac{\pi}{6} \rho \sum_{i=1}^{n \ comp} x_i \ m_i \ d_i^n \qquad n \in \{0,1,2,3\}$$
 (1.22)

La función promedio de distribución de potencial de enlace, se representa de la siguiente forma:

$$g_{ij}^{hs} = \frac{1}{1 - \xi_3} + \left(\frac{d_i d_j}{d_i + d_j}\right) \frac{3\xi_2}{(1 - \xi_3)^2} + \left(\frac{d_i d_j}{d_i + d_j}\right)^2 \frac{2\xi_2}{(1 - \xi_3)^3}$$
(1.23)

La ecuación SAFT, considera un término que involucra la contribución de cadena rígida impone la formación de una cadena molecular por la unión de segmentos esféricos.

En términos generales, la ecuación SAFT modela exactamente las moléculas de diferentes tamaños, ya que está basada en la mecánica estadística, prediciendo con exactitud los efectos de la temperatura, presión y composición en el comportamiento de fases de los fluidos, predice el comportamiento de la fase de polímeros, calculando inclusive el incrustamiento en los procesos con polímeros. Esta ecuación modela una molécula como una cadena de segmentos esféricos unidos; este modelo requiere de un número de segmentos en una cadena molecular, el diámetro o volumen del segmento y la atracción de van de Waals entre segmentos; estos parámetros son ajustados a la densidad del líquido saturado y a la presión de vapor. La ecuación SAFT predice con exactitud en soluciones poliméricas la asociación entre moléculas teniendo en cuenta el efecto de la asimetría del tamaño, la polidispersidad, la ramificación de la cadena y los grupos funcionales, en la predicción del comportamiento de fases.

La ecuación SAFT es la base de las ecuaciones denominadas familias de ecuaciones SAFT, como por ejemplo la ecuación de la teoría estadística de fluidos asociativos con esfera rígida (HS-SAFT, Hard-Sphere Statistical Associating Fluid Theory), que es la más simple de estas ecuaciones, y la ecuación de la teoría estadística de fluidos asociativos de cadena perturbada (PC-SAFT, Perturbed Chain Statistical Associating Fluid Theory); esta última ecuación es de interés en el presente trabajo.

2. ECUACIÓN DE ESTADO PC-SAFT

La ecuación de estado PC-SAFT (Perturbed-Chain Statistical Associating Fluid Theory), teoría estadística de fluidos asociativos con cadena perturbada, fue desarrollada por Gross y Sadowski¹⁸ (2000 y 2001). En esta ecuación se desarrolla una expresión para la dispersión, para moléculas constituidas por cadenas, aplicando una teoría de perturbación, ajustando las constantes apropiadas para el modelo. La PC-SAFT divide las interacciones moleculares entre repulsión y atracción, donde las interacciones de repulsión son descritas por una expresión de cadena rígida, bajo el mismo concepto desarrollado por Chapman *et al.* en 1988. Las interacciones de atracción se dividen en interacciones de dispersión y una contribución gracias a la asociación. La ecuación PC-SAFT utiliza como referencia un fluido constituido por cadenas rígidas, donde las moléculas esféricas son utilizadas en las modificaciones realizadas en la ecuación SAFT.

En la ecuación PC-SAFT, la energía libre de Helmholtz residual consiste en la contribución de referencia de la cadena rígida y de la contribución de la dispersión:

$$\tilde{a}^{res} = \frac{A^{res}}{NkT} = \tilde{a}^{hc} + \tilde{a}^{disp} \tag{2.1}$$

2.1. CONTRIBUCIÓN DE REFERENCIA PARA LA CADENA RÍGIDA

La contribución de referencia para la cadena rígida está representada por:

$$\tilde{a}^{hc} = m\tilde{a}^{hs} - \sum_{i} x_{i}(m_{i} - 1) ln g_{ii}^{hs}(\sigma_{ii})$$
(2.2)

Donde *m* es un número promedio de segmentos en la mezcla:

$$m = \sum_{i} x_i m_i \tag{2.3}$$

La energía libre de helmholtz para un fluido constituido por esferas rígidas se da en un segmento por:

$$\widetilde{a}^{hs} = \frac{A^{hs}}{NkT} = \frac{1}{\xi_0} \left[\frac{3\xi_1 \xi_2}{(1 - \xi_3)} + \frac{(\xi_2)^3}{\xi_3 (1 - \xi_3)^2} + \left[-\xi_0 + \frac{(\xi_2)^3}{(\xi_3)^2} \right] \ln(1 - \xi_3) \right]$$
(2.4)

La función de distribución radial del fluido de esferas rígidas es:

$$g_{ij}^{hs} = \frac{1}{(1-\xi_3)} + \left(\frac{d_i \cdot d_j}{d_i + d_j}\right) \frac{3\xi_2}{(1-\xi_3)^2} + \left(\frac{d_i \cdot d_j}{d_i + d_j}\right)^2 \frac{2\xi_2^2}{(1-\xi_3)^3}$$
(2.5)

Con ξ_m definido por:

$$\xi_m = \frac{\pi}{6} \rho \sum_i x_i m_i d_i^m \qquad m = \{0,1,2,3\}$$
 (2.6)

El diámetro del segmento del componente i, d_i , es dependiente de la temperatura, y está dado por:

$$d_i(T) = \sigma_i \left[1 - 0.12 \exp\left(\frac{-3 \varepsilon}{kT}\right) \right] \tag{2.7}$$

2.2. CONTRIBUCIÓN DE DISPERSIÓN

La ecuación PC-SAFT define el fluido de referencia de la misma manera que la ecuación SAFT; una vez realizado ésto, se procede al cálculo de la parte atractiva de las interacciones entre las cadenas, para ésto es utilizada la teoría de perturbación de Barker y Hederson¹⁹ (1967). Esta teoría es de segundo orden, donde la teoría libre de Helmholtz se da como la suma de las contribuciones de primer y segundo orden, a través de:

$$\frac{A^{disp}}{NkT} = \frac{A_1}{NkT} + \frac{A_2}{NkT} \tag{2.8}$$

La ecuación de Barker y Hederson (1967) deriva su teoría para moléculas esféricas. Esta teoría es extendida a moléculas constituidas por cadenas, teniendo en cuenta que cada segmento de una cadena tiene forma esférica. La interacción total entre dos moléculas constituidas por cadenas, está dada por la suma de todas las interacciones individuales segmento-segmento. También la ecuación de Barker y Hederson hace uso de una función de distribución radial promedio, y trata a los segmentos de una cadena individualmente, ésto hace posible una aplicación de la teoría de perturbación para mezclas.

La ecuación de estado puede ser fácilmente extendida a mezclas aplicando las reglas de mezclas de un fluido, ejemplo de ello es que datos de simulaciones para mezclas de cadenas cortas mostraron que una estructura de cadena no generará errores adicionales significativos para la regla de mezclas de un fluido. Aplicando las reglas de mezclas para un fluido, los términos de perturbación son:

$$\frac{A_1}{kTN} = -2 \pi \rho I_1(\eta, m) \sum_i \sum_j x_i x_j m_i m_j \left[\frac{\varepsilon_{ij}}{kT}\right] (\sigma_{ij})^3$$
 (2.9)

$$\frac{A_2}{kTN} = -\pi \rho m \left(1 + Z^{hc} + \rho \frac{\partial (Z^{hc})}{\partial \rho} \right)^{-1} I_2(\eta, m) \sum_i \sum_j x_i x_j m_i m_j \left[\frac{\varepsilon_{ij}}{kT} \right] (\sigma_{ij})^3$$
 (2.10)

Con esta definición, la contribución de dispersión para la energía libre de Helmholtz está dada por:

$$\tilde{a}^{disp} = -2 \pi \rho I_1(\eta, m) (m^2 \varepsilon \sigma^3) - \pi \rho m C_1 I_2(\eta, m) (m^2 \varepsilon^2 \sigma^3)$$
 (2.11)

Donde C_1 está definido por:

$$C_{1} = \left(1 + Z^{hc} + \rho \frac{\partial [Z^{hc}]}{\partial \rho}\right)^{-1} = \left(1 + m \frac{8 \eta^{-2} \eta^{2}}{(1-n)^{4}} + (1-m) \frac{20 \eta^{-27} \eta^{2} + 12 \eta^{3} - 2 \eta^{4}}{[(1-\eta)(2-\eta)]^{2}}\right)^{-1}$$
(2.12)

Por otra parte:

$$m^2 \varepsilon \sigma^3 = \sum_{i}^{NC} \sum_{j}^{NC} x_i x_j m_i m_j \left[\frac{\varepsilon_{ij}}{k T} \right] (\sigma_{ij})^3$$
 (2.13)

$$m^2 \varepsilon^2 \sigma^3 = \sum_{i}^{NC} \sum_{j}^{NC} x_i x_j m_i m_j \left[\frac{\varepsilon_{ij}}{k T} \right]^2 (\sigma_{ij})^3$$
 (2.14)

Las reglas de combinación convencionales, son empleados para determinar los parámetros para un par de segmentos diferentes:

$$\sigma_{ij} = \left(\frac{\sigma_i + \sigma_j}{2}\right)$$

$$\varepsilon_{ij} = \sqrt{\varepsilon_i \,\varepsilon_j} \left(1 - k_{ij}\right)$$
(2.15)
$$(2.16)$$

$$\varepsilon_{ij} = \sqrt{\varepsilon_i \,\varepsilon_j} \, \left(1 - k_{ij} \right) \tag{2.16}$$

Las integrales de la teoría de perturbación son distribuidas por una simple serie de densidades:

$$I_1(\eta, m, T) = I_1(\eta, m) = \sum_{i=0}^{6} a_i(m) \eta^i$$

$$I_2(\eta, m, T) = I_2(\eta, m) = \sum_{i=0}^{6} b_i(m) \eta^i$$
(2.17)
(2.18)

$$I_2(\eta, m, T) = I_2(\eta, m) = \sum_{i=0}^6 b_i(m)\eta^i$$
 (2.18)

Gross y Sadowski en el 2001, demostraron que la dependencia de cada coeficiente de las series de potencia del número de segmentos puede ser descrita por la correlación propuesta por Liu y Hu²⁰ en 1996, la cual es:

$$a_i(m) = a_{0i} + \frac{m-1}{m} a_{1i} + \frac{m-1}{m} \frac{m-2}{m} a_{2i}$$
 (2.19)

$$a_{i}(m) = a_{oi} + \frac{m-1}{m} a_{1i} + \frac{m-1}{m} \frac{m-2}{m} a_{2i}$$

$$b_{i}(m) = b_{oi} + \frac{m-1}{m} b_{1i} + \frac{m-1}{m} \frac{m-2}{m} b_{2i}$$
(2.19)

En el modelo PC-SAFT, las constantes a_{0i} , a_{1i} , a_{2i} , b_{0i} , b_{1i} y b_{2i} , fueron determinados a partir de regresiones de propiedades termo-físicas de n-alcanos puros, mostradas en la tabla 1.

Tabla 1. Constantes para las Integrales-Ecuación de Estado PC-SAFT

i	a_{0i}	a_{1i}	a_{2i}	b_{0i}	b_{1i}	b_{2i}
0	0.910563145	-0.30840169183	-0.09061483510	0.72409469413	-0.57554980753	0.09768831158
1	0.636128145	0.18605311592	0.45278428064	2.23827918609	0.69950955214	-0.25575749816
2	2.68613478914	-2.50300472559	0.59627007280	-4.00258494846	3.89256733895	-9.15585615297
3	-26.5473624915	21.41979362970	-1.72419829131	-21.00357681490	-17.21547164780	20.64207597440
4	97.7592087835	-65.25588533040	-4.13021125312	26.85564136270	192.67226446500	-38.80443005210
5	-159.591540866	83.31868048090	13.77663186970	206.55133840700	-161.82646164900	93.62677407700
6	91.2977740839	-33.74692292970	-8.67284703680	-355.60235612200	-165.20769345600	-29.66690558520

Fuente: Yuri Guerrieri Pereira²¹

La ecuación para el factor de compresibilidad puede ser derivada usando la siguiente relación termodinámica:

$$Z = 1 + \eta \left(\frac{\partial [\tilde{\alpha}^{res}]}{\partial \eta} \right) \tag{2.21}$$

En términos de compresibilidad la ecuación puede ser escrita como:

$$Z = 1 + Z^{hc} + Z^{disp} (2.22)$$

La contribución residual de la cadena rígida para el factor de compresibilidad está dada por:

$$Z^{hc} = m Z^{hs} - \sum_{i=1}^{NC} x_i (m-1) \frac{1}{g_{ii}^{hs}} \rho \frac{\partial [g_{ii}^{hs}]}{\partial \rho}$$
 (2.23)

Donde \mathbb{Z}^{hs} es la contribución residual de la esfera rígida, prevista por:

$$Z^{hs} = \frac{\xi_3}{(1-\xi_3)} + \frac{3\,\xi_1\xi_2}{\xi_0(1-\xi_3)^2} + \frac{3\xi_2^3 - \xi_3\,\xi_2^3}{\xi_0\,(1-\xi_3)^3} \tag{2.24}$$

Por otra parte:

$$\rho \frac{\partial g_{ij}^{hs}}{\partial \rho} = \frac{\xi_3}{(1-\xi_3)^2} + \left(\frac{d_i d_j}{d_i + d_j}\right) \left(\frac{3 \xi_2}{(1-\xi_3)^2} + \frac{6 \xi_2 \xi_3}{(1-\xi_3)^3}\right) + \left(\frac{d_i d_j}{d_i + d_j}\right)^2 \left(\frac{4 \xi_2^2}{(1-\xi_3)^3} + \frac{6 \xi_2^2 \xi_3}{(1-\xi_3)^4}\right)$$
(2.25)

La contribución de dispersión para el factor de compresibilidad puede ser escrita como:

$$Z^{disp} = -2 \pi \rho \frac{\partial(\eta I_1)}{\partial \eta} (m^2 \varepsilon \sigma^3) - \pi \rho m \left[C_1 \frac{\partial(\eta I_2)}{\partial \eta} + C_2 \eta I_2 \right] (m^2 \sigma^2 \sigma^3)$$
 (2.26)

Donde:

$$\frac{\partial(\eta I_1)}{\partial \eta} = \sum_{i=0}^6 a_i(m)(i+1)\eta^i \tag{2.27}$$

$$\frac{\partial(\eta I_2)}{\partial \eta} = \sum_{i=0}^{6} b_i(m)(i+1)\eta^i$$
 (2.28)

Y C_2 es una abreviación definida como:

$$C_{2} = \frac{\partial C_{1}}{\partial \eta} = -C_{1}^{2} \left(m \frac{-4\eta^{2} + 20\eta + 8}{(1 - \eta)^{5}} + (1 - m) \frac{2\eta^{3} + 12\eta^{2} - 48\eta + 40}{[(1 - \eta)(2 - \eta)]^{3}} \right)$$
(2.29)

Este último término muestra la contribución de las interacciones de asociación.

En el modelo PC-SAFT, al igual que en el modelo SAFT, la energía libre de Helmholtz de asociación para mezclas es un promedio lineal en función de la fracción molar, la cual utilizada para los componentes puros es:

$$\frac{a^{assoc}}{RT} = \sum_{i} x_{i} = \left[\sum_{Ai} \left(ln X^{Ai} - \frac{X^{Ai}}{2} \right) + \frac{M_{i}}{2} \right]$$
 (2.30)

Donde M_i es un número de sitios de asociación en la molécula i, X^{Ai} es la fracción molar de las moléculas i no relacionadas con el sitio A, la sumatoria en A_i representa la suma de todos los sitios de asociación de la molécula i (A_i , B_i , C_i ,), y la sumatoria i representa la suma de todas las moléculas. La fracción de moléculas de tipo i no relacionadas con el sitio A pueden ser determinadas como:

$$X^{Ai} = \left[1 + \rho \sum_{j} \sum_{Bj} X^{Bj} \Delta^{AjBj}\right]^{-1} \tag{2.31}$$

La fuerza de asociación Δ^{AjBj} es determinada por:

$$\Delta^{AjBj} = g_{ij}(d_{ij})^{seg} \left[\exp\left(\frac{\varepsilon^{AjBj}}{kT}\right) - 1 \right] (d_{ij})^3 k^{AjBj}$$
 (2.32)

Donde:

$$d_{ij} = \frac{(d_{ii} + d_{jj})}{2} \tag{2.33}$$

Y el término $g_{ij}(d_{ij})^{seg}$ es una expresión para la función de distribución radial para mezclas, derivada por Mansoori²² et al en 1971: $g_{ij}(d_{ij})^{seg} \approx g_{ij}(d_{ij})^{hs}$, definida anteriormente en la ecuación (2.5).

Dos parámetros del componente puro determinan las interacciones de asociación entre los sitios A_i y B_i para un componente i, los cuales son: la energía de asociación ε^{AiBj}/k y el

volumen efectivo de asociación k^{AiBi} . Gross y Sadowski²³ en el 2002 manejaron reglas simples de asociación cruzada, donde para muchos sistemas, los valores apropiados de los parámetros de asociación cruzada pueden ser determinados a partir de los parámetros de asociación para componentes puros, calculados de la siguiente forma:

$$\varepsilon^{AiBj} = \frac{1}{2} \left(\varepsilon^{AiBi} + \varepsilon^{AjBj} \right) \tag{2.34}$$

$$k^{AiBj} = \sqrt{k^{AiBi}k^{AjBj}} \left(\frac{\sqrt{\sigma_{ii}\sigma_{jj}}}{1/2(\sigma_{ii} + \sigma_{ij})} \right)^3$$
 (2.35)

En la solución de la ecuación de estado PC-SAFT es necesario el uso de los parámetros de los componentes puros, donde para sustancias constituidas por fluidos no asociativos es necesario calcular únicamente parámetros para cada componente, los cuales son: m (número de segmentos), σ (diámetro del segmento) y ε/k (parámetro de energía de dispersión). Para los sistemas conformados por fluidos asociativos, otros dos términos deben ser calculados: ε^{AB}/k (energía de asociación) y k^{AB} (volumen de asociación efectivo). En ambos casos se recomienda incluir el parámetro de interacción binaria k_{ij} , para el cual Gross y Sadowski en el 2002 recomiendan como estimación inicial dar un valor de k_{ij} =0, cuando los datos binarios son válidos para una temperatura o un amplio rango de temperatura.

La identificación de los anteriores parámetros para sustancias complejas, como los asfaltenos (compuestos por polímeros) por ejemplo, son más difíciles que los compuestos de cadenas cortas, ya que los compuestos poliméricos tienen mayor grado de incertidumbre a la hora de la estimación de los parámetros. La determinación de la caracterización de los parámetros para hidrocarburos basados en metodologías presentadas en la literatura es el objetivo del presente trabajo.

2.3. ECUACIÓN DE ESTADO PC-SAFT APLICADA A LA INDUSTRIA DEL PETRÓLEO.

La aplicación de la ecuación PC-SAFT en la industria petrolera es escasa, debido a su reciente desarrollo, sin embargo se ha demostrado que su aplicación en el modelamiento de sistemas de hidrocarburos arroja excelentes resultados en comparación con datos experimentales²⁴. Por lo anterior es indispensable obtener información de la utilización de la ecuación PC-SAFT, para futuros trabajos en el modelamiento del comportamiento de fases de los fluidos del yacimiento.

Esta ecuación modela el comportamiento de fases de los fluidos en función de la temperatura, presión y composición del sistema, lo cual es clave en los yacimientos de petróleo dentro de su vida productiva, donde los cambios de temperatura, la depleción natural del yacimiento, los cambios de presión durante la producción y el cambio de composición de los fluidos durante su explotación, son variables que se manejan constantemente en la industria petrolera. La ecuación de estado PC-SAFT permite determinar con excelentes resultados el punto de burbuja del crudo y las densidades líquidas²⁵, importante para los cálculos del equilibrio líquido-líquido y sus parámetros, incluyendo el parámetro de solubilidad. Las ecuaciones de estado cúbicas dan pobres resultados en el cálculo de la densidad del líquido y no describe adecuadamente el comportamiento de fases de mezclas de moléculas con grandes diferencias de tamaño como las que presenta las complejas mezclas de hidrocarburos en el petróleo²⁶. La ecuación de estado PC-SAFT modela los efectos relacionados con procesos en la producción del petróleo como la inyección de gas utilizada en el recobro mejorado del crudo, la contaminación de los fluidos de perforación a base de aceite y la polidispersidad de los asfaltenos en el comportamiento de fases de esta fracción del petróleo, los cuales generan

cuantiosas pérdidas económicas debido a la depositación de éstos en las líneas de producción, además que se obtienen mejores resultados para la compresibilidad líquida del crudo en dependencia con la presión²⁷.

2.3.1. Modelamiento del comportamiento de fases de los asfaltenos. La principal razón del éxito de la ecuación de estado PC-SAFT en la industria petrolera, es su capacidad de modelar correctamente el comportamiento de fases de los asfaltenos²⁸, lo cual implica un entendimiento de sus mecanismos de precipitación y depositación de esta fracción del petróleo. Esta ecuación es excelente en el modelamiento de los asfaltenos, ya que la ecuación de estado PC-SAFT predice buenos resultados en mezclas polidispersas, de alto peso molecular, polarizables y de diferentes tamaños moleculares, todas esta características de los asfaltenos, cuya fracción no se conoce exactamente su estructura molecular.

La ecuación de estado PC-SAFT demuestra el efecto de la polidispersidad de los asfaltenos y de la resinas en el comportamiento de fases de los asfaltenos, el cual se explica basándose en el tamaño molecular y la interacción de van der Waals.

En la literatura se presentan dos tipos de interacciones de los asfaltenos: la primera basada en la solución molecular, donde los asfaltenos son moléculas que se solubilizan en el petróleo, y su precipitación es tratada como un equilibrio líquido-líquido y líquido-sólido, donde el tamaño de la molécula y la atracción de van der Waals se relacionan con la polaridad molecular, la cual domina el comportamiento de fases de los asfaltenos en el fluido del yacimiento, y donde las resinas y los aromáticos que son compuestos polarizables solubilizan los asfaltenos, mientras que los saturados, que son menos polarizables, desestabilizan los asfaltenos. El segundo tipo de interacción que se propone para los asfaltenos es el enfoque micelar, donde los asfaltenos son estabilizados por resinas a través de interacciones polares-polares, donde el tamaño molecular y las interacciones no polares de van der Waals dominan el comportamiento de fases de los asfaltenos. Para cualquiera de estos dos enfoques la utilización de la ecuación PC-SAFT es válida, donde el modelamiento de los asfaltenos se realiza para un equilibrio líquido-líquido²⁹.

La ecuación PC-SAFT presenta una ventaja en el modelamiento de asfaltenos con respecto a las ecuaciones de estado cúbicas, las cuales son las más utilizadas en las simulaciones de los fluidos de yacimiento. El equivalente de la ecuación 2.22 para las ecuaciones cúbicas, consiste de un término repulsivo y un término atractivo.

$$Z = 1 + Z^{repulsivo} + Z^{atractivo}$$
 (2.36)

Dejando de lado el término atractivo de la ecuación SRK:

$$P = \frac{RT}{V - h} \tag{2.37}$$

La ecuación puede ser reescrita como:

$$Z = 1 + \frac{Pb}{RT} \tag{2.38}$$

El término repulsivo en el factor de compresibilidad:

$$Z^{repulsivo} = \frac{Pb}{RT} \tag{2.39}$$

Así, el término atractivo del factor de compresibilidad es:

$$Z^{atractivo} = Z^{cúbica} - 1 - \frac{Pb}{RT}$$
 (3.40)

Como se observa en la ecuación 2.39, el término repulsivo de una ecuación de estado cúbica para una temperatura constante está obligada a incrementar proporcionalmente con la presión; a altas presiones el término atractivo se aproximara a cero, para que el valor del término de los gases ideales y el término atractivo se anulen, lo que conlleva a que a altas presiones, el factor de compresibilidad, se aproxima al término repulsivo (ecuación 2.39). No existe evidencia experimental de que el volumen líquido deba disminuir de forma lineal con 1/P, para presiones por encima de cierto nivel, es por ello que las ecuaciones de estado cúbicas presentan algunos problemas de exactitud con datos experimentales para las compresibilidades isotérmicas a altas presiones.

En la ecuación de estado PC-SAFT, tanto el término de la cadena rígida y el término atractivo, influyen en el factor de compresibilidad de la fase líquida a altas presiones sin acercarse a un valor constante, estas expresiones son más flexibles y permiten una descripción más precisa de las interacciones moleculares y las respuestas volumétricas a los cambios de presión³⁰.

3. CARACTERIZACIÓN DE LA FRACCIÓN PESADA C7+

La caracterización de la fracción C_{7+} es un trabajo que se realiza para desarrollar el cálculo del equilibrio de fases de los fluidos de yacimientos con base en su composición; esta caracterización se ejecuta con el objetivo de calcular propiedades como la temperatura crítica (Tc), la presión crítica (Pc), y el factor acéntrico (ω), las cuales son necesarias para la utilización de ecuaciones de estado en el modelamiento de sistemas de crudo. En la utilización de la ecuación de estado PC-SAFT, otros son los parámetros que se deben calcular y asignar a cada pseudocomponente, como se mencionó anteriormente (2.2); estos parámetros son: el número de segmentos (m), el diámetro del segmento (σ), la energía del segmento (σ) y un parámetro de interacción (σ), asignado a cada par binario.

3.1. COMPONENTES DEL PETRÓLEO

La industria del petróleo ha divido los sistemas de petróleo crudo y de gas condensado en dos componentes:

- Los componentes de la fracción definida
- Los componentes de la fracción indefinida

3.1.1. Componentes de la fracción definida. Los componentes de la fracción definida son los constituyentes del petróleo, que incluyen compuestos inorgánicos (N_2 , CO_2 , H_2S) y los hidrocarburos ligeros (C_1 , C_2 , C_3 , iC_4 , nC_4 , iC_5 , nC_5 y C_6). La Tc, Pc y ω para los componentes definidos son determinados experimentalmente, y sus valores están tabulados. En la tabla 2 se encuentran los valores de estas propiedades físicas para los componentes definidos.

Al igual que las propiedades físicas anteriormente mencionadas, los parámetros de la ecuación de estado PC–SAFT para los componentes definidos también se han determinado experimentalmente y sus valores igualmente se encuentran tabulados. Este trabajo fue desarrollado por Gross y Sadowski³¹, quienes determinaron estos parámetros a un gran número de componentes puros constituyentes del petróleo, divididos en n-alcanos, cicloalcanos, aromáticos polinucleares, aromáticos, derivados aromáticos polinucleares y gases como se pueden apreciar en la tabla 3. Los valores de los parámetros de los componentes definidos son tomados de estos datos experimentales, los cuales son válidos para sistemas de petróleo y de gas condensado.

3.1.2. Componentes de la fracción indefinida. Son los componentes pesados que se encuentran agrupados en la denominada fracción plus, como el C_{7+} . Esta fracción indefinida es sometida a una caracterización para conocer sus propiedades físicas. La caracterización consiste en dividir esa fracción indefinida en grupos de hidrocarburos con un número de carbono simple, donde algunas de sus propiedades físicas son consideradas iguales a las de un componente puro, y debido al gran número de componentes que tiene el petróleo es necesario agruparlos en grupos denominados pseudocomponentes, los cuales facilitan el manejo de ecuaciones de estado en el modelamiento del comportamiento de fases de una mezcla de hidrocarburos.

Tabla 2. Temperatura Crítica (Tc), Presión Crítica (Pc) y Factor Acéntrico (ω) de los componentes definidos del petróleo.

Tc (K)	Pc (bar)	ω
126.2	33.9	0.04
304.2	73.8	0.225
373.2	89.4	0.1
190.6	46	0.008
305.4	48.8	0.098
369.8	42.5	0.152
408.1	36.5	0.176
425.2	38	0.193
460.4	33.8	0.227
469.5	33.7	0.251
507.4	29.7	0.296
	126.2 304.2 373.2 190.6 305.4 369.8 408.1 425.2 460.4 469.5	126.2 33.9 304.2 73.8 373.2 89.4 190.6 46 305.4 48.8 369.8 42.5 408.1 36.5 425.2 38 460.4 33.8 469.5 33.7

Fuente: Pedersen y Christensen³²

3.2. CARACTERIZACIÓN DE LA FRACCIÓN C₇₊ CON LA ECUACIÓN DE ESTADO PC-SAFT.

La caracterización de esta fracción indefinida con la ecuación de estado PC-SAFT, tiene como objetivo calcular los parámetros de esta ecuación a cada número de componentes y/o pseudocomponentes. Existen dos métodos para determinar estos parámetros a los fluidos de yacimientos:

1) Separando los componentes del crudo según su polaridad (saturados, aromáticos, resinas y asfaltenos); este es el método de caracterización SARA.

- 2) De acuerdo a su estructura química (parafinas, nafténicos y aromáticos), éste es el método de caracterización PNA.
- **3.2.1 Método de caracterización SARA.** Esta caracterización del petróleo que incluye la fracción C₇₊, se realiza para ajustar los parámetros de la ecuación PC-SAFT a los componentes del hidrocarburo, esencialmente con el fin de modelar la precipitación y depositación de asfaltenos para lo cual la ecuación PC-SAFT es ampliamente recomendada.

Tabla 3. Parámetros de la ecuación PC-SAFT para componentes puros: m es el número de segmentos que conforma una molécula, σ es el diámetro del segmento en angstroms, ϵ/K es la energía de interacción entre un par de segmentos en K.

Componente	m	σ(A°)	e/k (K)		
n-alcanos					
metano	1	3.7039	150.03		
etano	1.6069	3.5206	191.42		
propano	2.002	3.6184	208.11		
butano	2.3316	3.7086	222.88		
pentano	2.6896	3.7729	231.2		
hexano	3.0576	3.7983	236.77		
heptano	3.4831	3.8049	238.4		
octano	3.8176	3.8373	242.78		
nonano	4.2079	3.8448	244.51		
decano	4.6627	3.8384	243.87		
undecano	4.9082	3.8893	248.82		
dodecano	5.306	3.8959	249.21		
tridecano	5.6877	3.9143	249.78		
tetradecano	5.9002	3.9396	254.21		
pentadecano	6.2855	3.9531	254.14		
hexadecano	6.6485	3.9552	254.7		
eicosano	7.9849	3.9869	257.75		
Cicloalcanos					
ciclopentano	2.3655	3.7114	265.83		
metilciclopentano	2.613	3.8253	265.12		
etilciclopentano	2.9062	3.8873	270.5		
ciclohexano	2.5303	3.8499	278.11		

Tabla 3. Continuación

metilciclohexano	2.6637	3.9993	282.33	
etilciclohexano	2.8256	4.1039	294.04	
cicloheptano	2.687	3.9352	296.15	
ciclooctano	2.9222	4.0028	304.67	
Aron	náticos polir	nucleares		
benceno	2.4653	3.6478	287.35	
naftaleno	3.0915	3.8333	348.4	
antraceno	3.5291	4.0922	402.13	
fenantreno	3.489	4.1053	403.06	
nafaceno	4.6432	3.8942	407.6	
criseno	5.1201	3.84	385.73	
pireno	3.6847	4.1151	427.35	
Aromáticos y derivados aromáticos polinucleares				
tolueno	2.8149	3.7169	285.69	
etilbenceno	3.0799	3.7974	287.35	
propilbenceno	3.3438	3.8438	288.13	
butilbenceno	3.7662	3.8727	283.07	
tetralina	3.3131	3.875	325.07	
bifenilo	3.8877	3.8151	327.42	
1 -metilnaftaleno	3.4064	3.8961	345.71	
1 -fenilnaftaleno	4.7634	3.8582	336.53	
metilterfenilo	5.6273	3.7967	329.18	
Gases				
nitrógeno	1.2053	3.313	90.96	
dióxido de	2.0729	2.7852	169.21	
carbono	1.6010	2.6172	224.02	
disulfuro de carbono	1.6919	3.6172	334.82	
$\begin{array}{c} \text{Carbono} \\ \text{Ting at } al^{33} \end{array}$				

Fuente: P. David Ting et al³³

La caracterización SARA determina los parámetros para un sistema de petróleo vivo donde la relación gas – aceite (GOR) describe la relación entre ellos; para esta caracterización el petróleo se divide en dos fases, gaseosa y líquida, a su vez, a cada fase se le asigna el número de pseudocomponentes que mejor represente el sistema del fluido, y en los cuales

sea conveniente el cálculo de los parámetros de la ecuación PC - SAFT. Ting³⁴ *et al* en el 2003 divide el petróleo vivo en 7 pseudocomponentes, basados en el análisis cromatográfico y en un análisis SARA (Saturados, Aromáticos, Resinas y Asfaltenos).

- **3.2.1.1.** Componentes de la fase gaseosa. La fase gaseosa será divida en 4 pseudocomponentes: CO₂, N₂, metano y pseudocomponentes ligeros. Los parámetros de la ecuación de estado PC-SAFT para el CO₂, N₂ y el metano fueron determinados por Gross et al, y se pueden apreciar en la tabla 3. Los pseudocomponentes ligeros corresponden a los gases más pesados que el metano, cuya composición y pesos moleculares son determinados a través de una cromatografía de gases. Los parámetros para estos pseudocomponentes ligeros se determinan según su peso molecular promedio. Ting et al en el 2003 formularon una serie de correlaciones para calcular estos parámetros para la serie de n-alcanos con base en los datos suministrados por Gross et al en el 2001; González³⁵ en el 2008 corrigió estas correlaciones con el fin de precisar los parámetros para el modelamiento del comportamiento de fases de los hidrocarburos (Figuras 1 y 2).
- **3.2.1.2. Componentes de la fase líquida.** La fase líquida será dividida en tres pseudocomponentes: saturados, aromáticos-resinas y asfaltenos; los parámetros serán calculados a cada grupo, con base en su peso molecular promedio, grado de aromaticidad y naturaleza de los asfaltenos.
- **3.2.1.2.1 Pseudocomponentes saturados.** Los saturados son la fracción no polar del petróleo, que incluye hidrocarburos saturados lineales (n-alcanos/n-parafinas), cíclicos (nafténos) y ramificados (isoparafinas). Los saturados no hacen parte de la fracción más pesada, por el contrario están distribuidos desde el C₁₀ al C₂₉. Para el cálculo de los parámetros de la ecuación PC-SAFT se debe determinar el peso molecular promedio, y con él, utilizar las correlaciones formuladas por González para la serie de n-alcanos (figura 1, 2 y 3).
- **3.2.1.2.2 Pseudocomponentes aromáticos-resinas.** Los aromáticos son la fracción del petróleo que contienen uno o más anillos aromáticos, son más polarizables que la fracción saturada y están distribuidos desde el C_{10} al C_{20} , son solubles en tolueno e insolubles en nheptano; las resinas por su lado son la fracción del petróleo que se solubiliza cuando éste se disuelve en un n-alcano.

Las resinas son un producto intermedio en la transformación del crudo en asfaltenos, son de peso molecular alto, por lo tanto están incluidas en la fracción pesada del petróleo (C₃₀₊). Los parámetros de los aromáticos y resinas se pueden calcular separadamente, pero reportadas como un solo pseudocomponente. Ting en el 2003, formuló correlaciones para el cálculo de los parámetros de la ecuación PC-SAFT para los componentes aromáticos polinucleares, necesarios para los cálculos de la fracción aromática, y para los derivados del benceno, necesarios para los cálculos de los parámetros de la resinas. González en el 2008 reformuló estas correlaciones para el número de segmentos (*m*), donde se evidencia una

relación lineal con el peso molecular de la fracción (figura 4), el diámetro del segmento (σ) y energía del segmento (ε/K) como función del peso molecular promedio (figura 5).

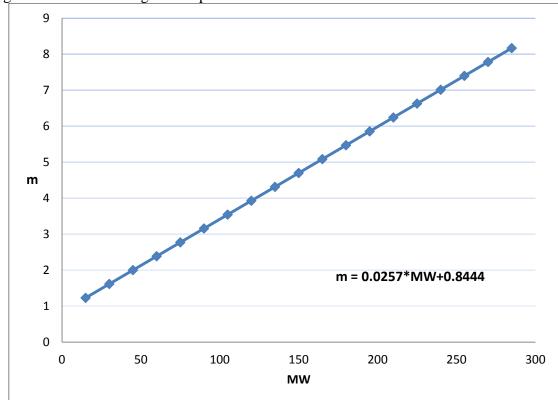


Figura 1. Número de segmentos para la serie de n-alcanos

Fuente: Doris Lucia González Rodríguez³⁶

Para ajustar estas correlaciones a los parámetros de los aromáticos y resinas como un pseudocomponente, es necesario incluir el término grado de aromaticidad (γ), el cual determina la tendencia del pseudocomponente aromáticos-resinas a comportarse como un aromático polinuclear ($\gamma=1$) o un componente derivado del benceno ($\gamma=0$), el valor de este parámetro se obtiene ajustado a propiedades como la presión de saturación, la densidad del petróleo muerto y el volumen de titulación del crudo a condiciones ambientales (análisis SARA).

Las correlaciones para calcular los parámetros del pseudocomponente aromáticos-resinas son:

$$m = (1 - \gamma)(0.0223 \, MW + 0.751) + \gamma \, (0.0101 \, MW + 1.7296) \tag{3.1}$$

$$\sigma = (1 - \gamma) \left(4.1377 - \frac{38.1483}{MW} \right) + \gamma \left(4.6169 - \frac{93.98}{MW} \right)$$
 (3.2)

$$\frac{\varepsilon}{K} = (1 - \gamma)(0.00436 \, MW + 283.93) + \gamma \left(508 - \frac{234100}{MW^{1.5}}\right) \tag{3.3}$$

4 3.95 3.9 3.85 3.8 3.75 σ 3.7 3.65 σ = 4.047 - 4.8013Ln(MW)/MW 3.6 3.55 3.5 0 50 100 150 200 250 300 MW

Figura 2. Diámetro del segmento para la serie de n-alcanos

Fuente: Doris Lucia González Rodríguez

3.2.1.2.3. Pseudocomponentes asfaltenos. Alboudwarej³⁷ *et al* en el 2003, dividieron el petróleo en cuatro pseudocomponentes, basados igualmente en un análisis SARA (Saturados, Aromáticos, Resinas y Asfaltenos), donde los asfaltenos son tratados como una mezcla de especies autoasociados con una distribución de números de agregación o masa molar aparente, donde con cálculos de presión de vapor con osmometría, determinaron que los asfaltenos tienen un peso molecular de 1700 g/mol.

Los parámetros de los asfaltenos se encuentran entre los derivados del benceno y los aromáticos polinucleares, dependiendo del grado de aromaticidad, a un peso molecular de 1700 g/mol (figura 4 y 5); se puede establecer un rango en la determinación de los parámetros para este pseudocomponente (tabla 4). Los asfaltenos generalmente conforman una pequeña fracción del petróleo, así que pequeños cambios en sus parámetros no afectan significativamente los cálculos de sus propiedades físicas.

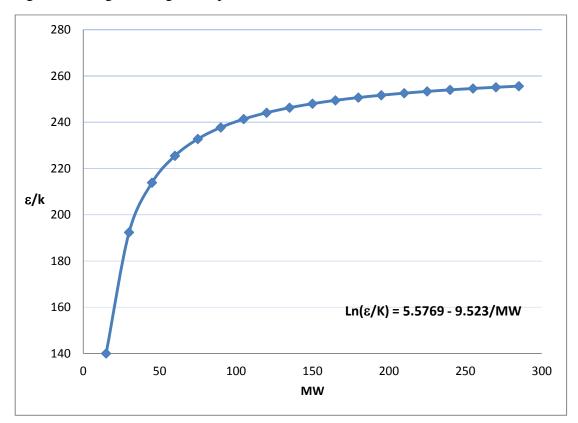
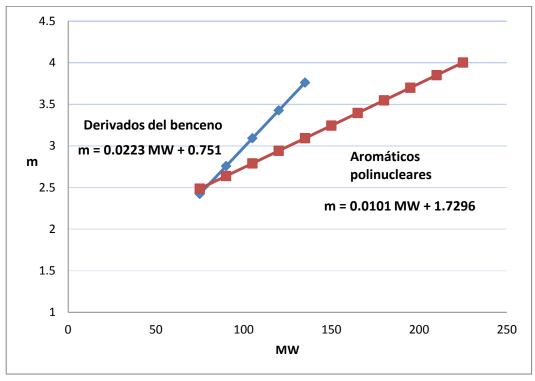


Figura 3. Energía del segmento para la serie de n-alcanos


Tabla 4. Parámetros de la ecuación PC-SAFT para asfaltenos.

Parámetros	Asfaltenos MW = 1700 g/mol
m	19 - 39
σ (A°)	4.1 - 4.5
ε/k (K)	296 - 504

Fuente: Doris Lucia González Rodríguez

3.2.1.3. Caracterización de la fracción C_{7+} mediante el método de caracterización SARA. Para la caracterización de la fracción pesada C_{7+} mediante el método SARA se tiene la información en la tabla 6, que corresponde a datos de composición de un crudo a presión atmosférica (caracterización instantanea) y separada dentro de la fase gaseosa y fase líquida, además de los datos de un análisis SARA del fluido en la tabla 5.

Figura 4. Número de segmentos y diámetro del segmento para derivados del benceno (resinas) y aromáticos polinucleares (aromáticos).

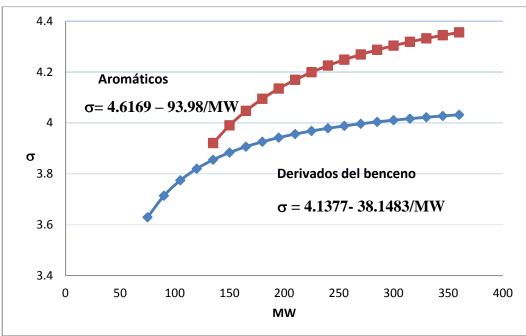
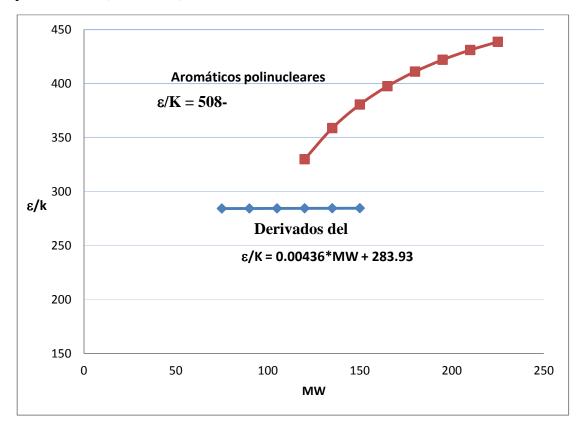
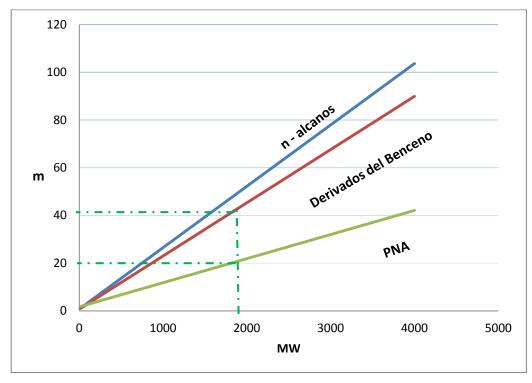


Figura 5. Energía del segmento (ε/k) , para derivados del benceno (resinas) y aromáticos polinucleares (aromáticos).




Tabla 5. Análisis SARA de un crudo

Componentes	% peso
SATURADOS	64.9
AROMATICOS	16.3
RESINAS	12.6
ASFALTENOS	6.2

Fuente: Doris Lucia González Rodríguez

La caracterización se realiza a la fase gaseosa, cuya composición se encuentra en la tabla 7; y a la fase líquida cuya composición se encuentra en la tabla 9.

Figura 6. Número de segmentos (m) y diámetro del segmento (σ), para los asfaltenos con un peso molecular de 1700 g/mol.

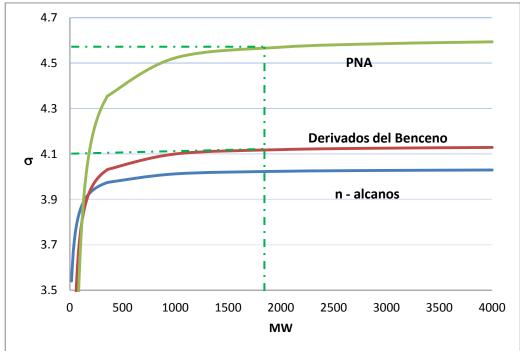


Figura 7. Energía del segmento (ϵ/k) , para los asfaltenos con un peso molecular de 1700 g/mol.

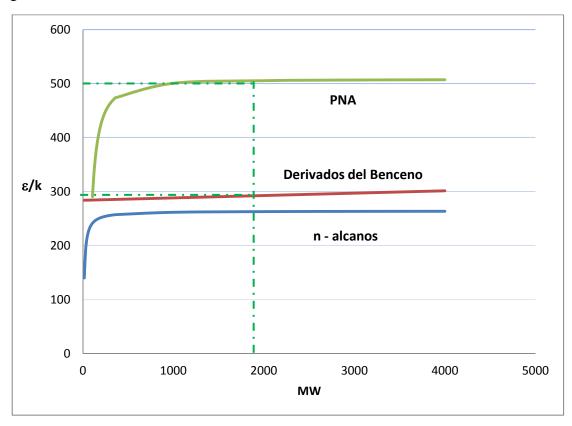


Tabla 6. Composición de un fluido de yacimiento realizada por cromatografía de gases.

Componente	nombre	MWi	Gas (% mol)	Liquido (% peso)
CO2	dióxido de carbono	44.01	0.51	0
N2	nitrógeno	28.013	0.528	0
C1	metano	16.043	71.325	0
C2	etano	30.07	10.436	0
C3	propano	44.097	7.44	0
iC4	i-butano	58.123	1.401	0.05

Tabla 6. Continuación

iC5 i-pentano 72.15 1.26 0.321 nC5 n-pentano 72.15 1.436 0.527 C6 hexano 86.18 1.282 1.699 metilciclopentano 84.16 0.152 0.281 benceno 78.11 0.041 0.075 ciclo-hexano 84.16 0.061 0.225 C7 heptano 100.2 0.434 2.424 metilciclohexano 98.19 0.085 0 C8 octano 114.23 0.157 3.263 etilbenceno 106.17 0.003 0.11 metaparaxileno 106.17 0.003 0.11 metaparaxileno 106.17 0.004 0.229 ortoxileno 106.17 0.004 0.229 C9 nonano 128.26 0.036 3.426 C10 decano 134 0.012 4.071 C11 undecano 147 0.002 3.609 C12	nC4	n-butano	58.123	3.353	0.28
C6 hexano 86.18 1.282 1.699 metilciclopentano 84.16 0.152 0.281 benceno 78.11 0.041 0.075 ciclo-hexano 84.16 0.061 0.225 C7 heptano 100.2 0.434 2.424 metilciclohexano 98.19 0.085 0 tolueno 92.14 0.029 0.351 C8 octano 114.23 0.157 3.263 etilbenceno 106.17 0.003 0.11 metaparaxileno 106.17 0.004 0.392 ortoxileno 106.17 0.004 0.229 C9 nonano 128.26 0.036 3.426 C10 decano 134 0.012 4.071 C11 undecano 147 0.002 3.609 C12 dodecano 161 3.237 C13 tridecano 175 3.266 C14 tetradecano 206	iC5	i-pentano	72.15	1.26	0.321
metiliciclopentano 84.16 0.152 0.281 benceno 78.11 0.041 0.075 ciclo-hexano 84.16 0.061 0.225 C7 heptano 100.2 0.434 2.424 metilciclohexano 98.19 0.085 0 tolueno 92.14 0.029 0.351 C8 octano 114.23 0.157 3.263 etilbenceno 106.17 0.003 0.11 metaparaxileno 106.17 0.004 0.392 ortoxileno 106.17 0.004 0.229 C9 nonano 128.26 0.036 3.426 C10 decano 134 0.012 4.071 C11 undecano 147 0.002 3.609 C12 dodecano 161 3.237 C13 tridecano 175 3.266 C14 tetradecano 190 3.105 C15 pentadecano 206 2.931	nC5	n-pentano	72.15	1.436	0.527
benceno 78.11 0.041 0.075 ciclo-hexano 84.16 0.061 0.225 C7 heptano 100.2 0.434 2.424 metilciclohexano 98.19 0.085 0 tolueno 92.14 0.029 0.351 C8 octano 114.23 0.157 3.263 etilbenceno 106.17 0.003 0.11 metaparaxileno 106.17 0.004 0.392 ortoxileno 106.17 0.004 0.229 C9 nonano 128.26 0.036 3.426 C10 decano 134 0.012 4.071 C11 undecano 147 0.002 3.609 C12 dodecano 161 3.237 C13 tridecano 175 3.266 C14 tetradecano 190 3.105 C15 pentadecano 206 2.931 C16 hexadecano 222 2.71 <t< td=""><td>C6</td><td>hexano</td><td>86.18</td><td>1.282</td><td>1.699</td></t<>	C6	hexano	86.18	1.282	1.699
ciclo-hexano 84.16 0.061 0.225 C7 heptano 100.2 0.434 2.424 metilciclohexano 98.19 0.085 0 tolueno 92.14 0.029 0.351 C8 octano 114.23 0.157 3.263 etilbenceno 106.17 0.003 0.11 metaparaxileno 106.17 0.004 0.299 ortoxileno 106.17 0.004 0.229 C9 nonano 128.26 0.036 3.426 C10 decano 134 0.012 4.071 C11 undecano 147 0.002 3.609 C12 dodecano 161 3.237 C13 tridecano 175 3.266 C14 tetradecano 190 3.105 C15 pentadecano 206 2.931 C16 hexadecano 222 2.71 C17 heptadecano 237 2.519 <t< td=""><td>metilciclopentano</td><td></td><td>84.16</td><td>0.152</td><td>0.281</td></t<>	metilciclopentano		84.16	0.152	0.281
C7 heptano 100.2 0.434 2.424 metiliciclohexano 98.19 0.085 0 tolueno 92.14 0.029 0.351 C8 octano 114.23 0.157 3.263 etilbenceno 106.17 0.003 0.11 metaparaxileno 106.17 0.004 0.392 C9 nonano 128.26 0.036 3.426 C10 decano 134 0.012 4.071 C11 undecano 147 0.002 3.609 C12 dodecano 161 3.237 C13 tridecano 175 3.266 C14 tetradecano 190 3.105 C15 pentadecano 206 2.931 C16 hexadecano 222 2.71 C17 heptadecano 251 2.542 C19 nonadecano 263 2.452 C20 eicosano 275 2.223 <	benceno		78.11	0.041	0.075
metilciclohexano 98.19 0.085 0 tolueno 92.14 0.029 0.351 C8 octano 114.23 0.157 3.263 etilbenceno 106.17 0.003 0.11 metaparaxileno 106.17 0.014 0.392 ortoxileno 106.17 0.004 0.229 C9 nonano 128.26 0.036 3.426 C10 decano 134 0.012 4.071 C11 undecano 147 0.002 3.609 C12 dodecano 161 3.237 C13 tridecano 175 3.266 C14 tetradecano 190 3.105 C15 pentadecano 206 2.931 C16 hexadecano 222 2.71 C17 heptadecano 251 2.542 C19 nonadecano 263 2.452 C20 eicosano 275 2.223 C21	ciclo-hexano		84.16	0.061	0.225
tolueno 92.14 0.029 0.351 C8 octano 114.23 0.157 3.263 etilbenceno 106.17 0.003 0.11 metaparaxileno 106.17 0.014 0.392 ortoxileno 106.17 0.004 0.229 C9 nonano 128.26 0.036 3.426 C10 decano 134 0.012 4.071 C11 undecano 147 0.002 3.609 C12 dodecano 161 3.237 C13 tridecano 175 3.266 C14 tetradecano 190 3.105 C15 pentadecano 206 2.931 C16 hexadecano 222 2.71 C17 heptadecano 237 2.519 C18 octadecano 251 2.242 C19 nonadecano 263 2.452 C20 eicosano 275 2.223 C21 <td< td=""><td>C7</td><td>heptano</td><td>100.2</td><td>0.434</td><td>2.424</td></td<>	C7	heptano	100.2	0.434	2.424
C8 octano 114.23 0.157 3.263 etilbenceno 106.17 0.003 0.11 metaparaxileno 106.17 0.014 0.392 ortoxileno 106.17 0.004 0.229 C9 nonano 128.26 0.036 3.426 C10 decano 134 0.012 4.071 C11 undecano 147 0.002 3.609 C12 dodecano 161 3.237 C13 tridecano 175 3.266 C14 tetradecano 190 3.105 C15 pentadecano 206 2.931 C16 hexadecano 222 2.71 C17 heptadecano 237 2.519 C18 octadecano 251 2.542 C20 eicosano 275 2.223 C21 heneicosano 291 2.041 C22 docosano 305 1.965 C23 t	metilciclohexano		98.19	0.085	0
etilbenceno 106.17 0.003 0.11 metaparaxileno 106.17 0.014 0.392 ortoxileno 106.17 0.004 0.229 C9 nonano 128.26 0.036 3.426 C10 decano 134 0.012 4.071 C11 undecano 147 0.002 3.609 C12 dodecano 161 3.237 C13 tridecano 175 3.266 C14 tetradecano 190 3.105 C15 pentadecano 206 2.931 C16 hexadecano 222 2.71 C17 heptadecano 237 2.519 C18 octadecano 251 2.542 C19 nonadecano 263 2.452 C20 eicosano 275 2.223 C21 heneicosano 291 2.041 C22 docosano 318 1.827 C24 tetracosano	tolueno		92.14	0.029	0.351
metaparaxileno 106.17 0.014 0.392 ortoxileno 106.17 0.004 0.229 C9 nonano 128.26 0.036 3.426 C10 decano 134 0.012 4.071 C11 undecano 147 0.002 3.609 C12 dodecano 161 3.237 C13 tridecano 175 3.266 C14 tetradecano 190 3.105 C15 pentadecano 206 2.931 C16 hexadecano 222 2.71 C17 heptadecano 237 2.519 C18 octadecano 251 2.542 C19 nonadecano 263 2.452 C20 eicosano 275 2.223 C21 heneicosano 291 2.041 C22 docosano 305 1.965 C23 tricosano 318 1.827 C24 tetracosano <td< td=""><td>C8</td><td>octano</td><td>114.23</td><td>0.157</td><td>3.263</td></td<>	C8	octano	114.23	0.157	3.263
ortoxileno 106.17 0.004 0.229 C9 nonano 128.26 0.036 3.426 C10 decano 134 0.012 4.071 C11 undecano 147 0.002 3.609 C12 dodecano 161 3.237 C13 tridecano 175 3.266 C14 tetradecano 190 3.105 C15 pentadecano 206 2.931 C16 hexadecano 222 2.71 C17 heptadecano 237 2.519 C18 octadecano 251 2.542 C19 nonadecano 263 2.452 C20 eicosano 275 2.223 C21 heneicosano 291 2.041 C22 docosano 305 1.965 C23 tricosano 318 1.827 C24 tetracosano 345 1.767 C26 hexacosano 359	etilbenceno		106.17	0.003	0.11
C9 nonano 128.26 0.036 3.426 C10 decano 134 0.012 4.071 C11 undecano 147 0.002 3.609 C12 dodecano 161 3.237 C13 tridecano 175 3.266 C14 tetradecano 190 3.105 C15 pentadecano 206 2.931 C16 hexadecano 222 2.71 C17 heptadecano 237 2.519 C18 octadecano 251 2.542 C19 nonadecano 263 2.452 C20 eicosano 275 2.223 C21 heneicosano 291 2.041 C22 docosano 305 1.965 C23 tricosano 318 1.827 C24 tetracosano 345 1.767 C26 hexacosano 359 1.683 C27 heptacosano 374	metaparaxileno		106.17	0.014	0.392
C10 decano 134 0.012 4.071 C11 undecano 147 0.002 3.609 C12 dodecano 161 3.237 C13 tridecano 175 3.266 C14 tetradecano 190 3.105 C15 pentadecano 206 2.931 C16 hexadecano 222 2.71 C17 heptadecano 237 2.519 C18 octadecano 251 2.542 C19 nonadecano 263 2.452 C20 eicosano 275 2.223 C21 heneicosano 291 2.041 C22 docosano 305 1.965 C23 tricosano 318 1.827 C24 tetracosano 345 1.767 C26 hexacosano 359 1.683 C27 heptacosano 374 1.815	ortoxileno		106.17	0.004	0.229
C11 undecano 147 0.002 3.609 C12 dodecano 161 3.237 C13 tridecano 175 3.266 C14 tetradecano 190 3.105 C15 pentadecano 206 2.931 C16 hexadecano 222 2.71 C17 heptadecano 237 2.519 C18 octadecano 251 2.542 C19 nonadecano 263 2.452 C20 eicosano 275 2.223 C21 heneicosano 291 2.041 C22 docosano 305 1.965 C23 tricosano 318 1.827 C24 tetracosano 331 1.849 C25 pentacosano 345 1.767 C26 hexacosano 374 1.815	C9	nonano	128.26	0.036	3.426
C12 dodecano 161 3.237 C13 tridecano 175 3.266 C14 tetradecano 190 3.105 C15 pentadecano 206 2.931 C16 hexadecano 222 2.71 C17 heptadecano 237 2.519 C18 octadecano 251 2.542 C19 nonadecano 263 2.452 C20 eicosano 275 2.223 C21 heneicosano 291 2.041 C22 docosano 305 1.965 C23 tricosano 318 1.827 C24 tetracosano 331 1.849 C25 pentacosano 345 1.767 C26 hexacosano 359 1.683 C27 heptacosano 374 1.815	C10	decano	134	0.012	4.071
C13 tridecano 175 3.266 C14 tetradecano 190 3.105 C15 pentadecano 206 2.931 C16 hexadecano 222 2.71 C17 heptadecano 237 2.519 C18 octadecano 251 2.542 C19 nonadecano 263 2.452 C20 eicosano 275 2.223 C21 heneicosano 291 2.041 C22 docosano 305 1.965 C23 tricosano 318 1.827 C24 tetracosano 331 1.849 C25 pentacosano 345 1.767 C26 hexacosano 359 1.683 C27 heptacosano 374 1.815	C11	undecano	147	0.002	3.609
C14 tetradecano 190 3.105 C15 pentadecano 206 2.931 C16 hexadecano 222 2.71 C17 heptadecano 237 2.519 C18 octadecano 251 2.542 C19 nonadecano 263 2.452 C20 eicosano 275 2.223 C21 heneicosano 291 2.041 C22 docosano 305 1.965 C23 tricosano 318 1.827 C24 tetracosano 331 1.849 C25 pentacosano 359 1.683 C27 heptacosano 374 1.815	C12	dodecano	161		3.237
C15 pentadecano 206 2.931 C16 hexadecano 222 2.71 C17 heptadecano 237 2.519 C18 octadecano 251 2.542 C19 nonadecano 263 2.452 C20 eicosano 275 2.223 C21 heneicosano 291 2.041 C22 docosano 305 1.965 C23 tricosano 318 1.827 C24 tetracosano 331 1.849 C25 pentacosano 345 1.767 C26 hexacosano 359 1.683 C27 heptacosano 374 1.815	C13	tridecano	175		3.266
C16 hexadecano 222 2.71 C17 heptadecano 237 2.519 C18 octadecano 251 2.542 C19 nonadecano 263 2.452 C20 eicosano 275 2.223 C21 heneicosano 291 2.041 C22 docosano 305 1.965 C23 tricosano 318 1.827 C24 tetracosano 331 1.849 C25 pentacosano 345 1.767 C26 hexacosano 359 1.683 C27 heptacosano 374 1.815	C14	tetradecano	190		3.105
C17 heptadecano 237 2.519 C18 octadecano 251 2.542 C19 nonadecano 263 2.452 C20 eicosano 275 2.223 C21 heneicosano 291 2.041 C22 docosano 305 1.965 C23 tricosano 318 1.827 C24 tetracosano 331 1.849 C25 pentacosano 345 1.767 C26 hexacosano 359 1.683 C27 heptacosano 374 1.815	C15	pentadecano	206		2.931
C18 octadecano 251 2.542 C19 nonadecano 263 2.452 C20 eicosano 275 2.223 C21 heneicosano 291 2.041 C22 docosano 305 1.965 C23 tricosano 318 1.827 C24 tetracosano 331 1.849 C25 pentacosano 345 1.767 C26 hexacosano 359 1.683 C27 heptacosano 374 1.815	C16	hexadecano	222		2.71
C19 nonadecano 263 2.452 C20 eicosano 275 2.223 C21 heneicosano 291 2.041 C22 docosano 305 1.965 C23 tricosano 318 1.827 C24 tetracosano 331 1.849 C25 pentacosano 345 1.767 C26 hexacosano 359 1.683 C27 heptacosano 374 1.815	C17	heptadecano	237		2.519
C20 eicosano 275 2.223 C21 heneicosano 291 2.041 C22 docosano 305 1.965 C23 tricosano 318 1.827 C24 tetracosano 331 1.849 C25 pentacosano 345 1.767 C26 hexacosano 359 1.683 C27 heptacosano 374 1.815	C18	octadecano	251		2.542
C21 heneicosano 291 2.041 C22 docosano 305 1.965 C23 tricosano 318 1.827 C24 tetracosano 331 1.849 C25 pentacosano 345 1.767 C26 hexacosano 359 1.683 C27 heptacosano 374 1.815	C19	nonadecano	263		2.452
C22 docosano 305 1.965 C23 tricosano 318 1.827 C24 tetracosano 331 1.849 C25 pentacosano 345 1.767 C26 hexacosano 359 1.683 C27 heptacosano 374 1.815	C20	eicosano	275		2.223
C23 tricosano 318 1.827 C24 tetracosano 331 1.849 C25 pentacosano 345 1.767 C26 hexacosano 359 1.683 C27 heptacosano 374 1.815	C21	heneicosano	291		2.041
C24 tetracosano 331 1.849 C25 pentacosano 345 1.767 C26 hexacosano 359 1.683 C27 heptacosano 374 1.815	C22	docosano	305		1.965
C25 pentacosano 345 1.767 C26 hexacosano 359 1.683 C27 heptacosano 374 1.815	C23	tricosano	318		1.827
C26 hexacosano 359 1.683 C27 heptacosano 374 1.815	C24	tetracosano	331	_	1.849
C27 heptacosano 374 1.815	C25	pentacosano	345		1.767
-	C26	hexacosano	359		1.683
C28 octacosano 388 1.421	C27	heptacosano	374		1.815
	C28	octacosano	388		1.421

Tabla 6. Continuación

C29	nonacosano	402		1.528
C30+	triacontano	580		37.786
	plus			
MW			24.95	234.65

Fuente: Doris Lucia González Rodríguez (Tabla 3.1)

3.2.1.3.1. Componentes de la fase gaseosa

La composición de la fase gaseosa (tabla 7), se tomó de la cromatografía del crudo (tabla 6).

Tabla 7. Composición de la fase gaseosa

Compos	MWi	fracción molar	MWi*Xi	
CO2 dióxido de		44.01	0.0051	0.224451
CO2	carbono	44.01	0.0051	0.224431
N2	nitrógeno	28.013	0.00528	0.14790864
C1	metano	16.043	0.71325	11.4426698
C2	etano	30.07	0.10436	3.1381052
C3	propano	44.097	0.0744	3.2808168
iC4	i-butano	58.123	0.01401	0.81430323
nC4	n-butano	58.123	0.03353	1.94886419
iC5	i-pentano	72.15	0.0126	0.90909
nC5	n-pentano	72.15	0.01436	1.036074
C6	hexano	86.18	0.01282	1.1048276
metilciclopentano		84.16	0.00152	0.1279232
benceno		78.11	0.00041	0.0320251
ciclohexano		84.16	0.00061	0.0513376
C7	heptano	100.2	0.00434	0.434868
metilciclohexano		98.19	0.00085	0.0834615
tolueno		92.14	0.00029	0.0267206
C8	octano	114.23	0.00157	0.1793411
etilbenceno		106.17	0.00003	0.0031851
metaparaxileno		106.17	0.00014	0.0148638
ortoxileno		106.17	0.00004	0.0042468
C9	nonano	128.26	0.00036	0.0461736
C10	decano	134	0.00012	0.01608
C11	undecano	147	0.00002	0.00294
MW aparente			1	25.07

Fuente: Doris Lucia González Rodríguez (Tabla 3.12)

El CO₂, el N₂ y el metano son tres pseudocomponentes cuyos valores fueron establecidos por Gross y Sadowsky en el 2001 (tabla 3). La composición restante de la tabla 7 se agrupa dentro del pseudocomponente ligero, donde se debe calcular el peso molecular promedio para el cálculo de los parámetros; se recomienda que si el contenido de CO₂ es muy bajo, de debe agrupar con el N₂ como un solo pseudocomponente. La fracción molar correspondiente al pseudocomponente ligero corresponde a la suma de las fracciones molares de los gases más pesados que el metano, el cual es de 0.27638; la ecuación 3.4 se utiliza para calcular el peso molecular del psuedocomponente ligero.

$$MW_{ligero} = \frac{MW_{fase\,gas} - (X_{metano} * MW_{metano}) - (X_{CO2} * MW_{CO2}) - (X_{N2} * MW_{N2})}{X_{ligero}}$$

$$MW_{ligero} = \frac{25.07 - (0.71325 * 16.043) - (0.0051 * 44.01) - (0.00528 * 28.013)}{0.27638}$$

$$MW_{ligero} = 47.9602266$$

Con este peso molecular se calculan los parámetros de la ecuación PC-SAFT con las correlaciones propuestas por González en el 2008.

Número de segmentos (*m*)

$$m = 0.0257 * MW + 0.8444$$

$$m = 0.0257 * 47.9602266 + 0.8444$$

$$m = 2.07697$$

Diámetro del segmento (σ)

$$\sigma = 4.047 - 4.8013 * \frac{Ln(MW)}{MW}$$

$$\sigma = 4.047 - 4.8013 * \frac{Ln(47.9602266)}{47.9602266}$$

$$\sigma = 3.74196364\dot{A}$$

Energía del segmento (ε/K)

$$Ln\left(\frac{\varepsilon}{k}\right) = 5.5769 - \frac{9.523}{MW}$$

$$Ln\left(\frac{\varepsilon}{k}\right) = 5.5769 - \frac{9.523}{47.9602266} = 5.37833964$$

$$\frac{\varepsilon}{k} = 216.662239 K$$

La fase gaseosa queda caracterizada como se presenta en la tabla 8:

Tabla 8. Parámetros de la ecuación PC-SAFT de la fase gaseosa

Componente	MW	X mol	m	σ (A°)	ε/k (K)
CO2	44.01	0.0051	2.0729	2.7852	169.21
N2	28.013	0.0053	1.2053	3.3130	90.960
C1	16.043	0.7133	1.0000	3.7039	150.03
Ligeros	47.960	0.2764	2.0770	3.7420	216.66

3.2.1.3.2. Componentes de la fase líquida. La composición (tabla 9), se tomo de la cromatografía del crudo (tabla 6) y representados según el análisis SARA (tabla 5).

Tabla 9. Composición de la fase líquida

Componente	MW	% WT	moles	% molar
iC4 + nC4	58.123	0.33	0.006	1.3487
iC5 + nC5	72.15	0.848	0.012	2.7919
C6	86.18	1.699	0.02	4.683
C7	100.2	2.424	0.024	5.7465
C8	114.23	3.263	0.029	6.7853
C9	128.26	3.426	0.027	6.345
metilciclopentano	84.16	0.281	0.003	0.7931
benceno	78.11	0.075	0.001	0.2281
ciclohexano	84.16	0.225	0.003	0.6351
metilciclohexano	98.19	0	0	0
tolueno	92.14	0.351	0.004	0.9049

Tabla 9. Continuación

etilbenceno	106.17	0.11	0.001	0.2461
metaparaxileno	106.17	0.392	0.004	0.877
ortoxileno	106.17	0.229	0.002	0.5124
C10	134	4.071	0.03	7.2166
C11	147	3.609	0.025	5.8318
C12	161	3.237	0.02	4.7759
C13	175	3.266	0.019	4.4332
C14	190	3.105	0.016	3.8819
C15	206	2.931	0.014	3.3797
C16	222	2.71	0.012	2.8997
C17	237	2.519	0.011	2.5247
C18	251	2.542	0.01	2.4057
C19	263	2.452	0.009	2.2146
C20	275	2.223	0.008	1.9202
C21	291	2.041	0.007	1.666
C22	305	1.965	0.006	1.5304
C23	318	1.827	0.006	1.3647
C24	331	1.849	0.006	1.3269
C25	345	1.767	0.005	1.2166
C26	359	1.683	0.005	1.1136
C27	374	1.815	0.005	1.1528
C28	388	1.421	0.004	0.87
C29	402	1.528	0.004	0.9029
C30+	580	37.786	0.065	15.4753
		234.65	0.421	100
		MW	moles	

Con el porcentaje en peso y el peso molecular se calcula el número de moles y el porcentaje molar de cada componente. A la mezcla se determina qué fracción corresponde a los saturados (tabla 10), aromáticos-resinas (tabla 11) y asfaltenos (tabla 12), multiplicando el porcentaje en peso de cada fracción, por los porcentajes en peso del análisis SARA.

Tabla 10. Saturados

Componente	Masa Saturados	# moles	MW	% moles	x masa	x moles	x moles * mw
iC4 + nC4	0.33	0.006	58.123	1.3487	0.003	0.013	0.784
iC5 + nC5	0.848	0.012	72.15	2.7919	0.008	0.028	2.014
C6	1.699	0.02	86.18	4.683	0.017	0.047	4.036
C7	2.424	0.024	100.2	5.7465	0.024	0.057	5.758
C8	3.263	0.029	114.23	6.7853	0.033	0.068	7.751
C9	3.426	0.027	128.26	6.345	0.034	0.063	8.138
C10	2.642	0.02	142.29	4.6836	0.026	0.047	6.664
C11	2.342	0.016	156.31	3.7849	0.023	0.038	5.916
C12	2.101	0.013	170.34	3.0995	0.021	0.031	5.28
C13	2.12	0.012	184.37	2.8771	0.021	0.029	5.305
C14	2.015	0.011	198.39	2.5193	0.02	0.025	4.998
C15	1.902	0.009	212.42	2.1935	0.019	0.022	4.659
C16	1.759	0.008	226.45	1.8819	0.018	0.019	4.262
C17	1.635	0.007	240.47	1.6385	0.016	0.016	3.94
C18	1.65	0.007	254.5	1.5613	0.016	0.016	3.973
C19	1.591	0.006	268.53	1.4373	0.016	0.014	3.86
C20	1.443	0.005	282.55	1.2462	0.014	0.012	3.521
C21	1.325	0.005	296.56	1.0813	0.013	0.011	3.207
C22	1.275	0.004	310.59	0.9932	0.013	0.01	3.085
C23	1.186	0.004	324.61	0.8857	0.012	0.009	2.875
C24	1.2	0.004	338.64	0.8612	0.012	0.009	2.916
C25	1.147	0.003	352.67	0.7896	0.011	0.008	2.785
C26	1.092	0.003	366.69	0.7227	0.011	0.007	2.65
C27	1.178	0.003	380.72	0.7481	0.012	0.007	2.848
C28	0.922	0.002	394.74	0.5646	0.009	0.006	2.229
C29	0.992	0.002	408.77	0.586	0.01	0.006	2.395
C30+	21.394	0.036	590	8.6134	0.214	0.086	50.819
total	64.9	0.297		70.4691	0.649	0.705	156.668
	masa	moles		% moles	x masa	x moles	x moles * mw

$$MW_{saturados} = \frac{(X \text{ moles}*MW)_{total}}{X \text{ moles}_{total}}$$

$$MW_{saturados} = \frac{156.668}{0.705} = 222.3210$$
(3.5)

Tabla 11. Aromáticos-Resinas

Componente	Masa Aromáticos	# moles	MW	% moles	x masa	x moles	x moles*MW
	+ Resinas						moles · W W
metilciclopentano	0.281	0.003	84.16	0.793	0.003	0.008	0.667
benceno	0.075	0.001	78.11	0.228	0.001	0.002	0.178
ciclo-hexano	0.225	0.003	84.16	0.635	0.002	0.006	0.534
metilciclohexano	0	0	98.19	0	0	0	0
tolueno	0.351	0.004	92.14	0.905	0.004	0.009	0.834
etilbenceno	0.11	0.001	106.17	0.246	0.001	0.002	0.261
xileno	0.621	0.006	106.17	1.389	0.006	0.014	1.475
C10	1.177	0.01	116.31	2.403	0.012	0.024	2.795
C11	1.043	0.008	127.21	1.948	0.01	0.019	2.478
C12	0.935	0.007	140.84	1.578	0.009	0.016	2.222
C13	0.944	0.006	154.51	1.451	0.009	0.015	2.242
C14	0.897	0.005	171.7	1.241	0.009	0.012	2.132
C15	0.847	0.004	190.93	1.054	0.008	0.011	2.012
C16	0.783	0.004	211.17	0.881	0.008	0.009	1.86
C17	0.728	0.003	228.39	0.757	0.007	0.008	1.729
C18	0.735	0.003	242.3	0.72	0.007	0.007	1.745
C19	0.709	0.003	249.58	0.674	0.007	0.007	1.683
C20	0.642	0.002	257.06	0.594	0.006	0.006	1.526
C21	0.59	0.002	277.41	0.505	0.006	0.005	1.401
C22	0.568	0.002	291.31	0.463	0.006	0.005	1.349
C23	0.528	0.002	301.93	0.415	0.005	0.004	1.254
C24	0.534	0.002	312.58	0.406	0.005	0.004	1.269
C25	0.511	0.002	326.47	0.372	0.005	0.004	1.213
C26	0.486	0.001	340.36	0.339	0.005	0.003	1.155

Tabla 11. Continuación

C27	0.525	0.001	357.53	0.348	0.005	0.003	1.246
C28	0.411	0.001	371.43	0.263	0.004	0.003	0.975
C29	0.442	0.001	385.33	0.272	0.004	0.003	1.049
C30+	13.203	0.023	570	5.502	0.132	0.055	31.362
total	28.9	0.111		26.384	0.289	0.264	68.649
	Masa	moles		% moles	x masa	x moles	x moles *
							mw

$$MW_{a+r} = \frac{(X \, moles*MW)_{total}}{X \, moles_{total}} \tag{3.6}$$

$$MW_{a+r} = \frac{68.649}{0.264} = 260.03$$

Para los asfaltenos, el peso molecular es de 1700, dato suficiente para el cálculo de los parámetros. Para estimar el grado de aromaticidad, se deben calcular propiedades como la densidad del petróleo muerto, la densidad del petróleo vivo a varias presiones y el índice de refracción del petróleo muerto. Para este caso el índice de aromaticidad es de 0.01.

3.2.1.3.3. Cálculo de los parámetros

Saturados:

Número de segmentos (m)

$$m = 0.0257 * MW + 0.8444$$

$$m = 0.0257 * 222.3210 + 0.8444$$

$$m = 6.558$$

Diámetro del segmento (σ)

$$\sigma = 4.047 - 4.8013 * \frac{Ln(MW)}{MW}$$

$$\sigma = 4.047 - 4.8013 * \frac{Ln(222.3210)}{222.3210}$$

$$\sigma = 3.93 \, \dot{A}$$

Energía del segmento (ε/K)

$$Ln\left(\frac{\varepsilon}{k}\right) = 5.5769 - \frac{9.523}{MW}$$
 $Ln\left(\frac{\varepsilon}{k}\right) = 5.5769 - \frac{9.523}{222.3210} = \frac{\varepsilon}{k} = 253.171 \, K$

Aromáticos-resinas

Número de segmentos (m)

$$m = (1 - \gamma)(0.0223 \, MW + 0.751) + \gamma (0.0101 \, MW + 1.7296)$$

$$m = (1 - 0.01)(0.0223 * 260.03 + 0.751) + 0.01 (0.0101 * 260.03 + 1.7296)$$

$$m = 6.5277$$

Diámetro del segmento (σ)

$$\sigma = (1 - \gamma) \left(4.1377 - \frac{38.1483}{MW} \right) + \gamma \left(4.6169 - \frac{93.98}{MW} \right)$$

$$\sigma = (1 - 0.01) \left(4.1377 - \frac{38.1483}{260.03} \right) + 0.01 \left(4.6169 - \frac{93.98}{260.03} \right)$$

$$\sigma = 3.994$$

Energía del segmento (ε/K)

$$\frac{\varepsilon}{K} = (1 - \gamma)(0.00436 \, MW + 283.93) + \gamma \left(508 - \frac{234100}{MW^{1.5}}\right)$$

$$\frac{\varepsilon}{K} = (1 - 0.01)(0.00436 * 260.03 + 283.93) + 0.01 \left(508 - \frac{234100}{260.03^{1.5}}\right)$$

$$\frac{\varepsilon}{k} = 286.735$$

Asfaltenos

Para los asfaltenos, los parámetros se debe ajustar al rango mencionado anteriormente, para este caso se toma los valores promedios de este rango, un cambio en los valores de estos parámetros no afectara el cálculo de propiedades, ya que los asfaltenos solo equivalen al 6.2% del total del fluido.

Tabla 12. Parámetro de la ecuación PC-SAFT para los pseusocomponentes de la fase líquida.

Pseudocomponente	MW	X mol	m	σ(A°)	εκ (Κ)
Saturados	222.321	0.705	6.558	3.93	253.171
Aromáticos/Resinas	260.03	0.264	6.5277	3.994	286.735
Asfaltenos	1700	0.031	29	4.3	400

El método de caracterización SARA, es ideal cuando se desea modelar el comportamiento de fases de los asfaltenos, con el fin de determinar sus condiciones de precipitación, ya que la caracterización del crudo se realiza directamente a la fracción del petróleo correspondiente a los asfaltenos, además se caracterizan los saturados y las resinas, los cuales influyen en la precipitación de los asfaltenos.

3.2.2. Método de Caracterización, PNA. Este método de caracterización de la fracción C₇₊, consiste en una serie de pasos que son descritos a continuación:

• La fracción C₇₊ debe ser dividida en hidrocarburos con un número de carbono simple. Para hacer esta división existen diversos métodos, todos aplicados en la industria del petróleo, donde la distribución molar de la fracción es función del peso molecular o del número de átomos de carbono.

En este trabajo será utilizado el método de Pedersen³⁸ *et al*, el cual propone una relación exponencial entre la fracción molar de un componente y el correspondiente número de carbono.

 Asignar los parámetros de la ecuación de estado PC-SAFT a cada fracción de carbonos en la que fue divida la fracción C₇₊

Para calcular los parámetros de cada fracción es necesario determinar el contenido de parafinas, nafténicos y aromáticos de cada fracción, para ello es necesario hacer una determinación PNA. Esta determinación o caracterización se puede realizar de diversas maneras: con un análisis "true boilling point" acompañado de un análisis cromatográfico

según la norma ASTM D-2892, un proceso de destilación o con datos del índice de refracción; estos métodos son todos a nivel de laboratorio; también existen diferentes correlaciones propuestas en la literatura, donde su valor es significativamente aproximado a los datos experimentales; estos métodos son:

- 1) El método de Ness y Westerns³⁹, el cual describe la cantidad de carbonos parafínicos, nafténicos y aromáticos con propiedades para cada fracción como la densidad, el índice de refacción y el peso molecular.
- 2) El método API (Riazi-Daubert) ⁴⁰, el cual con una serie de correlaciones, determina la distribución PNA a cada fracción del petróleo; este método será utilizado en el presente trabajo para determinar esta distribución.

Pedersen⁴¹ et al, propone que se determine el contenido de parafinas, nafténicos y aromáticos a cada una de las fracciones desde el $C_7 - C_{40}$, y para las fracciones del C_{40} - C_{80} , asumir que es la misma que la determinada en la fracción C_{40} .

Se calcula el número de segmentos (m) y la energía de interacción (ε/K) a la parte de parafinas y nafténicos en un conjunto, y a la parte aromática de la fracción (i) del número de carbón de la siguiente forma:

$$m_{PN,i} = a_1 + a_2 * MW_i (3.7)$$

$$m_{A,i} = b_1 + b_2 * MW_i (3.8)$$

$$\frac{\varepsilon_{PN,i}* m_{PN,i}}{K} = c_1 + c_2 * MW_i \tag{3.9}$$

$$\frac{\varepsilon_{A,i} * m_{A,i}}{\kappa} = d_1 + d_2 * MW_i \tag{3.10}$$

Donde *K* es la constante de Boltzmann, *MW* el peso molecular. Las otras constantes son definidas a continuación:

$$a_1 = m_{PN,7} - a_2 * MW_{PN,7} (3.11)$$

$$b_1 = m_{benceno} - b_2 * MW_{benceno} (3.12)$$

$$c_1 = \frac{\varepsilon_{PN,7} * m_{PN,7}}{K} - c_2 * MW_{PN,7}$$
 (3.13)

$$d_1 = \frac{\varepsilon_{benceno} * m_{benceno}}{K} - d_2 * MW_{benceno}$$
 (3.14)

Donde:

$$m_{PN,7} = \frac{m_{n-heptano} * X_{P,i} + m_{ciclohexano} * X_{N,i}}{X_{P,i} + X_{N,i}}$$
(3.15)

$$MW_{PN,7} = \frac{MW_{n-heptano} * X_{P,i} + MW_{ciclohexano} * X_{N,i}}{X_{P,i} + X_{N,i}}$$
(3.16)

 x_P y x_N son las fracciones de parafinas y nafténicos que comprende cada fracción i. Los parámetros de la ecuación de estado PC-SAFT para el benceno, n-heptano y ciclohexano, se pueden observar en la tabla 3.

Para el cálculo del número de segmentos (m) y de la energía de interacción (ϵ/K) de la fracción i completa se debe aplicar la siguiente regla de mezclas:

$$m_i = X_{PN,i} * m_{PN,i} + X_{A,i} * m_{A,i} (3.17)$$

$$\varepsilon_{i} = X_{PN,i}^{2} * \varepsilon_{PN,i} + X_{PN,i}^{2} * \varepsilon_{PN,i} + X_{PN,i} * X_{A,i} * \sqrt{\varepsilon_{PN,i} * \varepsilon_{A,i}}$$
 (3.18)

3.2.3. Caracterización de la fracción C₇₊ mediante el método de caracterización PNA.

Tabla 13. Composición Molar de una Mezcla de Petróleo.

COMPONENTE	% MOL	MW	SG
N2	0.69		
CO2	0.12		
C1	47.06		
C2	5.69		
C3	4.39		
IC4	0.95		
NC4	2.42		
IC5	1.11		
NC5	1.46		
C6	2.26		
C7	3.93	91.9	0.735
C8	4.52	105.2	0.745

Tabla 13. Continuación

C9	3.23	121	0.784
C10	2.3	134.7	0.789
C11	2.03	150.3	0.794
C12	1.88	166.4	0.806
C13	1.62	181.4	0.819
C14	1.76	194	0.832
C15	1.39	209.4	0.834
C16	1.03	222.4	0.844
C17	1.22	240.9	0.841
C18	0.85	256	0.847
C19	0.97	268.2	0.86
C20+	7.12	447	0.906

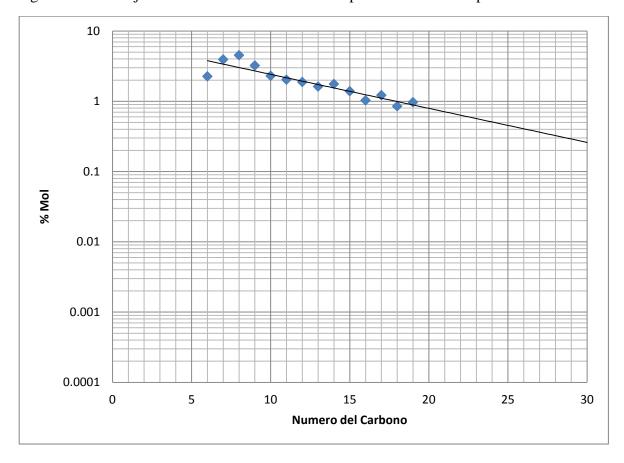
Fuente: Pedersen, Thomanssen y Fredenslund⁴²

En primer lugar se desarrolla el fraccionamiento a la mezcla de petróleo mostrada en la tabla 13, con el método de Pedersen, se grafica la relación logarítmica entre el número del carbono del C_7 al C_{19} , y se determina su tendencia para la asignación de la composición molar de las fracciones en la que fue dividida la fracción C_{20+} (Figura 7), para este caso se dividirá la fracción pesada hasta el C_{80} (Tabla 14) y se determinará su fracción molar con la ecuación de la línea de tendencia presentada en la figura 7.

$$\% \ molar = 7.3668e^{-0.111C}$$
 (3.19)

Donde C es el número de carbono correspondiente a cada fracción.

En segundo lugar se determina la distribución PNA de las diferentes fracciones, con el método API (Riazi- Daubert):


$$x_p + x_n + x_a = 1 (3.20)$$

Para fracciones del petróleo con peso molecular menor a 300 se utilizan las siguientes correlaciones:

$$x_p = 2.57 - 2.877 * SG + 0.02976 * CH$$
 (3.21)

$$x_n = 0.52641 - 0.7494 x_p - 0.0218 * m (3.22)$$

Figura 8. Porcentaje molar vs. Número del carbono para una mezcla de petróleo

Para fracciones de petróleo con peso molecular mayor 300 se utiliza las correlaciones siguientes:

$$x_p = 1.9382 + 0.074855 * m - 0.19966 * CH$$
 (3.23)

$$x_n = -0.4226 - 0.00777 * m + 0.107625 * CH$$
 (3.24)

Donde m es un parámetro basado en la observación de la variación lineal entre el índice refractivo y (1/MW) para cada grupo de hidrocarburos, su estimación se obtiene de la siguiente forma:

$$m = MW (n - 1.475) (3.25)$$

Donde n es el índice de refracción del hidrocarburo líquido a 20°C, cuya correlación es:

$$n = \left(\frac{1+2I}{1-I}\right)^{0.5} \tag{3.26}$$

Tabla 14. División de la Fracción *Plus* Hasta C_{80}

Componente	Fracción	Componente	Fracción	Componente	Fracción
C7	3.93	C32	0.2111859	C57	0.0131673
C8	4.52	C33	0.1889984	C58	0.011784
C9	3.23	C34	0.169142	C59	0.0105459
C10	2.3	C35	0.1513717	C60	0.009438
C11	2.03	C36	0.1354684	C61	0.0084464
C12	1.88	C37	0.121236	C62	0.007559
C13	1.62	C38	0.1084988	C63	0.0067648
C14	1.76	C39	0.0970997	C64	0.0060541
C15	1.39	C40	0.0868983	C65	0.0054181
C16	1.03	C41	0.0777687	C66	0.0048488
C17	1.22	C42	0.0695982	C67	0.0043394
C18	0.85	C43	0.0622861	C68	0.0038835
C19	0.97	C44	0.0557423	C69	0.0034755
C20	0.8001016	C45	0.0498859	C70	0.0031104
C21	0.7160419	C46	0.0446448	C71	0.0027836
C22	0.6408137	C47	0.0399544	C72	0.0024911
C23	0.573489	C48	0.0357567	C73	0.0022294
C24	0.5132375	C49	0.0320001	C74	0.0019952
C25	0.4593161	C50	0.0286381	C75	0.0017856
C26	0.4110598	C51	0.0256294	C76	0.001598
C27	0.3678733	C52	0.0229367	C77	0.0014301
C28	0.3292241	C53	0.020527	C78	0.0012798
C29	0.2946354	C54	0.0183704	C79	0.0011454
C30	0.2636807	C55	0.0164404	C80	0.0010251
C31	0.235978	C56	0.0147131		_

I es un parámetro que representa la fracción del volumen total ocupado por moléculas; este parámetro se calcula mediante la siguiente correlación para fracciones con MW entre 70 y 700:

$$I = 1.2419 \times 10^{-2} \exp[7.272 \times 10^{-4} MW + 3.3223 SG - 8.867 \times 10^{-4} MW * SG] MW^{0.006438} SG^{-1.6117}$$
 (3.27)

Donde *MW* y *SG* son el peso molecular y la gravedad específica de la fracción, respectivamente. Por otro lado en la ecuación 3.28, *CH* representa la relación de peso carbono-hidrógeno y está determinada por:

$$CH = 8.7743x10^{-10}(\exp(7.176x10^{-3}T_b + 30.06242SG - 7.35x10^{-3}T_bSG))T_b^{-0.98445}SG^{-18.2753}$$
(3.28)

Donde *Tb* es el punto de ebullición normal:

$$T_b = 3.76587(\exp(3.7741x10^{-3}M + 2.98404SG - 4.25288x10^{-3}MSG))M^{0.40167}SG^{-1.58262}$$
 (3.29)

La ecuación 3.29 es para fracciones con un peso molecular entre 70-300. Para fracciones con un peso molecular superior a 300:

$$T_b = 9.3369(\exp(1.6514x10^{-4}M + 1.4103SG - 7.5152x10^{-4}MSG))M^{0.5369}SG^{-0.7276}$$
 (3.30)

La distribución PNA para las fracciones de C_7 - C_{40} , se encuentran en la tabla 3.15

Tabla 15. Distribución PNA (C_7 - C_{40})

Fracción	X_{P}	X_N	X_A
7	0.6293109	0.2130929	0.1575962
8	0.5768565	0.2468898	0.1762538
9	0.523027	0.2780155	0.1989575
10	0.4828769	0.296906	0.2202171
11	0.4665268	0.3093136	0.2241596
12	0.4371103	0.3168857	0.246004
13	0.4017771	0.3173901	0.2808328
14	0.3682768	0.3140576	0.3176656
15	0.3602112	0.3141344	0.3256544
16	0.3426499	0.3093476	0.3480025
17	0.3469255	0.3180374	0.3350372
18	0.3331026	0.3093381	0.3575594
19	0.3077027	0.28902	0.4032773
20	0.2883922	0.2669868	0.4446211
21	0.2762369	0.2528556	0.4709075
22	0.2653199	0.237103	0.4975771
23	0.2510985	0.2217238	0.5271778
24	0.2416648	0.206112	0.5522232
25	0.2341234	0.1927793	0.5730973
26	0.2248482	0.1748331	0.6003187
27	0.2157815	0.1559128	0.6283057
28	0.2085735	0.13993	0.6514965
29	0.2016655	0.1237488	0.6745857
30	0.1945742	0.1062579	0.6991679
31	0.1859024	0.0837381	0.7303595
32	0.1790514	0.0649539	0.7559947
33	0.172258	0.0454876	0.7822544
34	0.167359	0.0308393	0.8018017
35	0.1609937	0.011329	0.8276773
36	0.1561749	0	0.8438251
37	0.1499015	0	0.8500985
38	0.1451646	0	0.8548354
39	0.1406702	0	0.8593298
40	0.1360144	0	0.8639856

Con la distribución PNA, se calculan los parámetros de la ecuación PC-SAFT utilizando las ecuaciones de la 3.7 a la 3.10. Las constante a_2 , b_1 , b_2 , c_2 , d_1 y d_2 son definidas por Pedersen *et al* (tabla 16); las constante a_1 y c_1 deben ser calculadas para cada fracción, ya que estas dependen de su respectiva distribución PNA. La caracterización de la fracción pesada se muestra en la tabla 17.

El siguiente paso es agrupar las fracciones en diferentes pseudocomponentes, para esto se agruparan en pseudocomponentes de similar peso molecular (tabla 18) y se calculan las propiedades con las siguientes reglas de mezcla para la fracción del número de carbono de M a N:

$$m = \frac{\sum_{i=M}^{N} z_i M W_i m_i}{\sum_{i=M}^{N} z_i M W_i}$$
(3.31)

$$\varepsilon/k = \frac{\sum_{i=M}^{N} z_i M W_i \varepsilon/k_i}{\sum_{i=M}^{N} z_i M W_i}$$
 (3.32)

Tabla 16. Constantes correlación parámetros PC-SAFT

constante	sub índice 1	sub índice 2
a		2.9636x10-2
b	1.1415	1.3490x10-2
c		6.6287
d	70.486	8.1665

Fuente: pedersen⁴² et al (tabla 3.16)

Tabla 17. Caracterización con los Parámetros de la Ecuación PC-SAFT

FRACCION	c_1	a_1	$m_{pn,i}$	m_a	$(\varepsilon/k)_{pn,i}$	$(\varepsilon/k)_a$	m_i	$(\varepsilon/k)_i$
7	144.653423	0.28762257	3.10304257	2.42305	249.555043	349.271992	2.99587835	224.965039
8	140.145016	0.24585715	3.38727315	2.57144	248.809936	364.050882	3.2434795	223.837831
9	135.410766	0.20356147	3.78951747	2.77379	247.388612	381.655605	3.5874309	222.820405
10	131.939343	0.17347066	4.17433066	2.96265	245.982872	395.917	3.90749784	222.362347
11	130.056971	0.15745746	4.54358546	3.13802	244.543562	407.622641	4.22851447	222.5879
12	127.757403	0.13816985	4.90956585	3.31339	243.397917	418.089178	4.51690018	222.846395
13	125.481161	0.11936287	5.30566287	3.50225	242.288983	428.188593	4.7992054	224.134406
14	123.404988	0.10244569	5.91110169	3.78554	240.670904	441.448248	5.23588381	227.249929
15	122.789601	0.09747343	6.20248943	3.92044	239.952332	447.088847	5.45933009	228.458671
16	121.831434	0.08976895	6.72823295	4.16326	238.793788	456.320768	5.83561606	231.673287
17	121.405603	0.08635936	7.08045536	4.32514	238.089038	461.899499	6.15732233	231.006506
18	121.044852	0.08347774	7.34429774	4.44655	237.609696	465.816982	6.30818082	234.045181
19	120.726498	0.08093999	7.93447999	4.71635	236.604289	473.800396	6.63668118	241.877185
20	121.131644	0.08417044	8.23407044	4.85125	236.095156	477.459108	6.72999725	250.117407
21	121.447392	0.08669357	8.71076957	5.06709	235.386676	482.907843	6.99493354	256.982691
22	122.114418	0.09203967	8.98283967	5.1885	234.972959	485.773538	7.09486319	264.044083
23	122.445777	0.09470358	9.34113558	5.35038	234.511121	489.392155	7.2372979	272.880919
24	123.40151	0.10241754	9.70448154	5.51226	234.025929	492.798235	7.38943968	281.175795
25	124.361261	0.11021018	10.0975422	5.68763	233.545265	496.26936	7.57023344	288.849295
26	125.905178	0.12284531	10.4658093	5.84951	233.075284	499.288744	7.69455871	299.017767
27	127.844291	0.13889329	10.8078533	5.9979	232.624946	501.913336	7.78573243	310.077379
28	129.757075	0.1549252	11.1795172	6.15978	232.1776	504.632308	7.90917589	320.106242
29	131.988773	0.17389397	11.494846	6.29468	231.76928	506.79129	7.98688825	330.400879
30	134.783824	0.19807153	11.8746555	6.45656	231.290214	509.262982	8.08649692	342.06411
31	139.076323	0.23617571	12.2091197	6.59146	230.734991	511.229985	8.10620848	357.116048

Tabla 17. Continuación

32 1	43.393543	0.27579562	12.5747356	6.73985	230.168182	513.302744	8.16359328	370.476325
33 1	148.74993	0.3269745	12.9519105	6.88824	229.508699	515.286198	8.20857771	384.772856
34 1	53.510046	0.37458744	13.3255194	7.03663	228.903043	517.185997	8.28307717	396.161954
35 1	61.047539	0.45484929	13.6428693	7.14455	228.017946	518.518101	8.26435783	411.02391
36	166.1753	0.5135728	14.0275888	7.29294	227.327914	520.285372	8.34472294	421.331278
37	166.1753	0.5135728	14.2646768	7.40086	227.267126	521.526147	8.42975635	425.868189
38	166.1753	0.5135728	14.5906728	7.54925	227.186768	523.174289	8.57141552	429.875369
39	166.1753	0.5135728	14.8573968	7.67066	227.123644	524.475338	8.68162	433.513026
40	166.1753	0.5135728	15.1833928	7.81905	227.049504	526.010641	8.82070678	437.463629
41	166.1753	0.5135728	17.4060928	8.8308	226.618021	535.103388	9.99716344	444.553687
42	166.1753	0.5135728	17.8209968	9.01966	226.549398	536.574771	10.2167687	445.700781
43	166.1753	0.5135728	18.2359008	9.20852	226.483898	537.9858	10.4363739	446.800767
44	166.1753	0.5135728	18.6508048	9.39738	226.421312	539.340114	10.6559792	447.856489
45	166.1753	0.5135728	19.0657088	9.58624	226.361451	540.641065	10.8755844	448.870566
46	166.1753	0.5135728	19.4806128	9.7751	226.304139	541.891745	11.0951897	449.845415
47	166.1753	0.5135728	19.8955168	9.96396	226.249217	543.095014	11.3147949	450.783269
48	166.1753	0.5135728	20.3104208	10.15282	226.196539	544.253518	11.5344001	451.686195
49	166.1753	0.5135728	20.7253248	10.34168	226.145971	545.369708	11.7540054	452.556108
50	166.1753	0.5135728	21.1402288	10.53054	226.097387	546.445861	11.9736106	453.394787
51	166.1753	0.5135728	21.5551328	10.7194	226.050674	547.484094	12.1932159	454.203884
52	166.1753	0.5135728	21.9700368	10.90826	226.005725	548.486376	12.4128211	454.984937
53	166.1753	0.5135728	22.3849408	11.09712	225.962443	549.454543	12.6324264	455.73938
54	166.1753	0.5135728	22.7998448	11.28598	225.920735	550.390307	12.8520316	456.468549
55	166.1753	0.5135728	23.2147488	11.47484	225.880519	551.295269	13.0716368	457.173694
56	166.1753	0.5135728	23.6296528	11.6637	225.841714	552.170923	13.2912421	457.855983
57	166.1753	0.5135728	24.0445568	11.85256	225.804249	553.018673	13.5108473	458.516509

Tabla 17. Continuación

58	166.1753	0.5135728	24.4594608	12.04142	225.768055	553.83983	13.7304526	459.156298
59	166.1753	0.5135728	24.8743648	12.23028	225.733069	554.635626	13.9500578	459.776311
60	166.1753	0.5135728	25.2892688	12.41914	225.69923	555.407218	14.1696631	460.37745
61	166.1753	0.5135728	25.7041728	12.608	225.666484	556.155695	14.3892683	460.960565
62	166.1753	0.5135728	26.1190768	12.79686	225.634778	556.882079	14.6088735	461.526455
63	166.1753	0.5135728	26.5339808	12.98572	225.604064	557.587334	14.8284788	462.075872
64	166.1753	0.5135728	26.9488848	13.17458	225.574295	558.27237	15.048084	462.609524
65	166.1753	0.5135728	27.3637888	13.36344	225.54543	558.938043	15.2676893	463.128081
66	166.1753	0.5135728	27.7786928	13.5523	225.517426	559.585163	15.4872945	463.632173
67	166.1753	0.5135728	28.1935968	13.74116	225.490247	560.214494	15.7068997	464.122399
68	166.1753	0.5135728	28.6085008	13.93002	225.463856	560.826761	15.926505	464.599323
69	166.1753	0.5135728	29.0234048	14.11888	225.438219	561.422648	16.1461102	465.063478
70	166.1753	0.5135728	29.4383088	14.30774	225.413306	562.002804	16.3657155	465.515371
71	166.1753	0.5135728	29.8532128	14.4966	225.389084	562.567843	16.5853207	465.955481
72	166.1753	0.5135728	30.2681168	14.68546	225.365527	563.11835	16.804926	466.384263
73	166.1753	0.5135728	30.6830208	14.87432	225.342607	563.654876	17.0245312	466.802149
74	166.1753	0.5135728	31.0979248	15.06318	225.320299	564.177949	17.2441364	467.20955
75	166.1753	0.5135728	31.5128288	15.25204	225.298577	564.688068	17.4637417	467.606854
76	166.1753	0.5135728	31.9277328	15.4409	225.277421	565.185708	17.6833469	467.994433
77	166.1753	0.5135728	32.3426368	15.62976	225.256807	565.671322	17.9029522	468.372639
78	166.1753	0.5135728	32.7575408	15.81862	225.236716	566.14534	18.1225574	468.741809
79	166.1753	0.5135728	33.1724448	16.00748	225.217127	566.608173	18.3421627	469.102262
80	166.1753	0.5135728	33.5873488	16.19634	225.198022	567.060212	18.5617679	469.454303

Tabla 18. Caracterización del Petróleo con la Ecuación PC-SAFT

Componente	m	e/k
N2	1.2053	1.2053
CO2	2.0729	2.07290
C1	1	150.030
C2	1.6069	191.420
C3	2.002	208.110
IC4	2.2616	216.530
NC4	2.3316	222.880
IC5	2.3655	265.830
NC5	2.6896	231.20
C6	3.0576	236.770
C7	2.9959	224.965
C8	3.2435	223.838
C9	3.5874	222.820
C10-C11	4.0654	222.473
C12-C14	4.8692	224.870
C15-C16	5.6272	229.893
C17-C19	6.3626	235.556
C20-C24	7.0673	263.935
C25-C30	7.8151	312.632
C31-C37	8.2400	391.067
C38-C49	10.0673	443.288
C50-C80	13.8041	458.881

El diámetro del segmento (σ), se determina al igualar la densidad del líquido de cada fracción del número de carbono a presión atmosférica y 288.15 K⁴³.

El método de caracterización PNA, no necesariamente se utiliza para modelar el comportamiento de fases de los asfaltenos y sus condiciones de precipitación, por el contrario su utilización es conveniente en la simulación de datos PVT arrojando excelentes resultados al momento de compararlos con datos experimentales⁴⁴.

CONCLUSIONES

- La caracterización de la fracción pesada C₇₊ con la ecuación de estado PC-SAFT se realizó mediante dos metodologías; el método de caracterización SARA, cual divide al petróleo en fracciones según su polaridad y el método de caracterización PNA el cual divide al petróleo según su estructura química.
- La caracterización de la fracción pesada mediante la ecuación de estado PC-SAFT se hace con base en la determinación de los parámetros: numero de segmentos (m), diámetro del segmento (σ) y la energía de interacción entre segmentos (ε).
- El método de caracterización SARA divide la fracción pesada en porcentaje en peso de saturados, aromáticos, resinas y asfaltenos. La asignación de los parámetros mediante este método de caracterización, se realiza mediante una serie de correlaciones propuestas por González; las correlaciones para los incluye a los n-alcanos, ya que los saturados en la fracción C₇₊ se distribuyen del C₉ al C₂₉, los saturados representa a los n-alcanos (n-parafinas), los alcanos ramificados (isoparafinas) y los alcanos cíclicos (naftenos). Los aromáticos y resinas se agrupan en un solo pseudocomponente, cuyos parámetros son definidos en términos de su grado de aromaticidad; los asfaltenos corresponden al tercer pseudocomponente en que se divide la fracción pesada, esta los parámetros de esta fracción se ajustan en un valor medio entre los valores de los derivados del benceno y los aromáticos polinucleares, el ajuste de estos valores no interfieren con importancia en los cálculos del comportamiento de fases, ya que el porcentaje correspondiente a los asfáltenos es mínimo.
- El método de caracterización PNA, divide la fracción pesada en números de carbonos simples con los métodos de fraccionamiento citados en la literatura petrolera, en esta trabajo se utilizo el método de Perdersen et al.
- La asignación de los parámetros en el método de caracterización PNA, se realiza mediante una serie de correlaciones propuestas por Pedersen *et al*. Estas correlaciones determinan los parámetros para la fracción aromática y la fracción parafinica-nafténica, para ello se debe determinar el contenido de parafinas, nafténicos y aromáticos de las fracciones C₇-C₄₀ y para las fracciones del C₄₀-C₈₀ asumir que son la misma que la determinada en la fracción C₄₀. Para determinar la distribución PNA se utilizó el método de Riazi-Daubert. Los parámetros de cada fracción son ajustados a los valores de los parámetros del n-heptano, ciclohexano y benceno. Las fracciones se agrupan en pseudocomponentes de similar peso molecular, y los parámetros se calculan con reglas de mezcla.
- El método de caracterización SARA se recomienda utilizar cuando se desea modelar el comportamiento de fases de los asfaltenos ya que ya que la caracterización del crudo se

realiza directamente a la fracción del petróleo correspondiente a los asfaltenos, además se caracterizan los saturados y las resinas, los cuales influyen en la precipitación de los asfaltenos. El método de caracterización PNA es recomendable utilizar cuando se desea hacer simulaciones de datos PVT; comparados con datos experimentales arrojan excelentes resultados.

• La ecuación PC-SAFT presenta una ventaja en el modelamiento de asfaltenos con respecto a las ecuaciones de estado cúbicas, las cuales son las más utilizadas en las simulaciones de los fluidos de yacimiento, ya que no existe evidencia experimental de que el volumen líquido deba disminuir de forma lineal vs. 1/P, para presiones por encima de cierto nivel como las que presenta las ecuaciones cúbicas, en la ecuación de estado PC-SAFT, tanto el término de la cadena rígida y el término atractivo, influyen en el factor de compresibilidad de la fase líquida a altas presiones sin acercarse a un valor constante, estas expresiones son más flexibles y permiten una descripción más precisa de las interacciones moleculares y las respuestas volumétricas a los cambios de presión.

RECOMENDACIONES

El siguiente paso a realizar después de la caracterización C_{7+} con los parámetros de la ecuación PC-SAFT es el modelamiento del comportamiento de fases del petróleo, en especial para modelar los asfaltenos. Software comerciales como VLXE software 45 y Multiflash (MF) software 46 , incluyen en sus programas la ecuación PC-SAFT acompañada del modelamiento de componentes poliméricos y la ecuación de estado PC-SAFT con términos de asociaciones polares.

REFERENCIAS BIBLIOGRÁFICAS

- 1. WEI, Y.S y SADUS, R.J. "Equations of state for the calculation of fluid-phase equilibria". *AIChE journal*. Vol. 46. No 1. 2000. 169-196 p.
- 2. FLORY, P.J. *J. Amer. Chem. Soc.* Vol. 87. 1965. 1833 p. citado en WEI, Y.S y SADUS, R.J. "Equations of state for the calculation of fluid-phase equilibria". *AIChE journal*. Vol. 46. No 1. 2000. 169 p.
- 3. PRIGOGINE. I. *North-Holland, Amsterdam* 1957 citado en WEI, Y.S y SADUS, R.J. "Equations of state for the calculation of fluid-phase equilibria". *AIChE journal*. Vol. 46. No 1. 2000. 169 p.
- 4. BERET, S y PRAUSNITZ, J.M. *AIChE*. Vol 26. 1975. 1123 p. citado en WEI, Y.S y SADUS, R.J. "Equations of state for the calculation of fluid-phase equilibria". *AIChE journal*. Vol. 46. No 1. 2000. 169 p.
- 5. KIM, C.H. *et al. AIChe*. Vol 32. 1986. 1726 p. citado en WEI, Y.S y SADUS, R.J. "Equations of state for the calculation of fluid-phase equilibria". *AIChE journal*. Vol. 46. No 1. 2000. 169 p.
- 6. LEE, K.H; LOMBARDO, M y SANDLER, S.I. "Fluid phase equilib". Vol 21. 1985. 177 p. citado en WEI, Y.S y SADUS, R.J. "Equations of state for the calculation of fluid-phase equilibria". *AIChE journal*. Vol. 46. No 1. 2000. 169 p.
- 7. WERTHEIN. M.S. "Thermodynamic perturbation theory of polymerization". *J. Chem. Phys.* Vol 87. 1987. 7323 p.
- 8. CHAPMAN, W.G; JACKSON, G y GUBBINS, K.E. "Phase equilibria of associating fluids. Chain molecules with multiple bonding sites". *Mol. Phys.* Vol 65. 1988. 1057 p.
- 9. GHONASGI, D y CHAPMAN, W.G. *J. Chem. Phys.* Vol 100. 1994. 6633 p. citado en WEI, Y.S y SADUS, R.J. "Equations of state for the calculation of fluid-phase equilibria". *AIChE journal*. Vol. 46. No 1. 2000. 169 p.

- 10. KIM, C.H et al. *AIChE*. Vol 32. 1986. 1726 p. citado en WEI, Y.S y SADUS, R.J. "Equations of state for the calculation of fluid-phase equilibria". *AIChE journal*. Vol. 46. No 1. 2000. 169 p.
- 11. IKONOMOU, G.D. y DONOHUE, M.D. *AIChE J.* Vol 32. 1986. 1716 p. citado en WEI, Y.S y SADUS, R.J. "Equations of state for the calculation of fluid-phase equilibria". *AIChE journal*. Vol. 46. No 1. 2000. 169 p.
- 12. CHAPMAN, W.G. *et al.* "SAFT equation-of-state solution model for associating fluids, fluid phase equilibria". Vol 52. 1989. 31-38 p.
- 13. CHAPMAN, W.G. *et al.* "New reference equation of state for associating fluids". *Mol. Phys.* Vol 29. 1990. 1709 p.
- 14. HUANG, S.H y RADOSZ, M. "Equation of state for small, large, polydisperse and associating molecules". *Ind. Eng. Chem. Res.* Vol 29. 1990. 2284-2294 p.
- 15. HUANG, S.H y RADOSZ, M. "Equation of state for small, large, polydisperse and associating molecules". *Ind. Eng. Chem. Res.* Vol 29. 1991. 2284-2294 p.
- 16. WERTHEIM, M.S. "Fluids with highly directional attractive forces. I statistical thermodynamics". *J. Stat. Phys.* Vol 35. 1984a. 19-34 p.
 - WERTHEIM, M.S. "Fluids with highly directional attractive forces. II thermodynamics perturbation theory and integral equations". *J. Stat. Phys.* Vol 35. 1984b. 35-74 p.
- 17. WERTHEIM, M.S. "Fluids with highly directional attractive forces. III multiple attraction sites". *J. Stat. Phys.* Vol 42. 1986a. 459-476 p.
 - WERTHEIM, M.S. "Fluids with highly directional attractive forces. IV equilibrium polymerization". *J. Stat. Phys.* Vol 42. 1986b. 477-492 p.
 - WERTHEIM, M.S. "Fluids of dimerizing hard spheres, and fluid mixtures of hard spheres". *J. Stat. Phys.* Vol 85. 1986c. 2929-2936 p.
- 18. GROSS, J y SADOWSKI, G. "Perturbed-chain SAFT: an equation of state based on a perturbed theory for chain molecules". *Ind. Eng. Chem. Res.* Vol 40. 2001. 1244-1260 p.

- GROSS, J y SADOWSKI, G. "Application of perturbed theory to hard-chain reference fluid: an equation of state for square-well chains". *Fluid phase equilibria*. Vol 168. 2000. 183-199 p.
- 19. BARKER, J.A y HEDERSON, D. "Perturbed theory and equation of state for fluids: the square-well potential". *J. chem. Phys.* Vol 47. 1967. 2856 p.
- 20. LIU, H y HU, Y. *Fluid phase equilibria*. Vol 122. 1996. 122 p. citado por GROSS, J y SADOWSKI, G. "Perturbed-chain SAFT: an equation of state based on a perturbed theory for chain molecules". *Ind. Eng. Chem. Res.* Vol 40. 2001. 1244-1260 p.
- 21. GUERRIERI, Yuri. "Modelagen Simulação do equilibrio de fases em plantas de polietileno utilizando a equação de estado PC-SAFT". *Universidade estadual de campinas faculdade de engenharia química*. 2007. 100 p.
- 22. MANSOORI, G.A. *et al. J. Chem. Phys.* Vol 54. 1971. 1523 p. citado en GROSS, J y SADOWSKI, G. "Application of perturbed theory to hard-chain reference fluid: an equation of state for square-well chains". *Fluid phase equilibria*. Vol 168. 2000. 183-199 p.
- 23. GROSS, J y SADOWSKI, G. "Modeling of polymer systems using the perturbed-chain statistical associating fluid theory equation of state". *Ind. Eng. Chem. Res.* Vol 41. 2002a. 1084-1093 p.
 - GROSS, J y SADOWSKI, G. "Application of the perturbed-chain SAFT equation of state associating systems". *Ind. Eng. Chem. Res.* Vol 41. 2002b. 5510-5515 p.
- 24. PEDERSEN, Karen; CALSEP y SORENSEN, Casper. *Calsep inc.* "PC-SAFT equation of state applied to petroleum reservoir fluids". SPE 110483. 2007.
- 25. VARGAS, Francisco *et al.* "Modeling Asphaltene Phase Behavior in Crude Oil Systems Using the Perturbed Chain Form of the Statistical Associating Fluid Theory (PC-SAFT) Equation of State". *Department of Chemical and Biomolecular Engineering, Rice University, Houston, Texas and Data Quality Group, Schlumberger, Houston, Texas, 2008. Energy and Fuels 2009.*
- 26. TING, David *et al.* "Application of the PC-SAFT equation of the state to asphaltene phase behavior". *Rice University, Currently with Shell Global Solutions (US) Inc.Westhollow Technology Center, Houston, TX 77082.Department of Chemical Engineering, Rice University, Houston, TX 7700. 1 p.*

- 27. GONZÁLEZ, Doris Lucia y JAMALUDDIN, Schlumberger. "A holistic approach to production assurance". SPE 103900. 2006.
- 28. VARGAS, Francisco *et al.* "Modeling Asphaltene Phase Behavior in Crude Oil Systems Using the Perturbed Chain Form of the Statistical Associating Fluid Theory (PC-SAFT) Equation of State". *Department of Chemical and Biomolecular Engineering, Rice University, Houston, Texas and Data Quality Group, Schlumberger, Houston, Texas*, 2008. *Energy and Fuels* 2009.
- 29. TING, David *et al.* "Application of the PC-SAFT equation of the state to asphaltene phase behavior". *Rice University, Currently with Shell Global Solutions (US) Inc.Westhollow Technology Center, Houston, TX 77082.Department of Chemical Engineering, Rice University, Houston, TX 7700. 5-7 p.*
- 30. PEDERSEN, Karen y CHRISTENSEN, Peter. "Phase behavior of petroleum reservoir fluids". *Taylor y Francis*. 2007. 274-280 p.
- 31. GROSS, J y SADOWSKI, G. "Perturbed-chain SAFT: an equation of state based on a perturbed theory for chain molecules". *Ind. Eng. Chem. Res.* Vol 40. 2001. 1244-1260 p.
- 32. PEDERSEN, Karen y CHRISTENSEN, Peter. "Phase behavior of petroleum reservoir fluids". *Taylor y Francis*. 2007. 83 p.
- 33. TING, David *et al.* "Application of the PC-SAFT equation of the state to asphaltene phase behavior". *Rice University, Currently with Shell Global Solutions (US) Inc.Westhollow Technology Center, Houston, TX 77082.Department of Chemical Engineering, Rice University, Houston, TX 7700. 5-7 p.*
- 34. TING, D.L. "Thermodynamic stability and phase behavior of asphaltenes in oil and of other highly asymmetric mixtures". *Ph.D thesis. Rice university. Houston, USA.* 2003.
- 35. GONZÁLEZ, Doris Lucia. "Modeling of asphaltene precipitation and deposition tendency using the PC-SAFT equation of state". *Ph.D thesis. Rice university. Houston, USA*. 2008.

- 36. GONZÁLEZ, Doris Lucia. "Modeling of asphaltene precipitation and deposition tendency using the PC-SAFT equation of state". *Ph.D thesis. Rice university. Houston, USA*. 2008. 60 p.
- 37. ALBOUDWAREJ, H. *et al.* "Regular solution model of asphaltene precipitation from bitumen". *AIChE J.* Vol 49. 2003. 2948-2956 p.
- 38. AHMED, Tarek. "Equation of state and PVT analysis: applications for improved reservoir modeling". *Gulf publishing company. Houston, Texas.* 2007. 104-105 p.
- 39. NES, K y WESTERNS, H.A van. "Aspect of the constitution of mineral oils". *Elsevier. New York.* 1951.
- 40. RIAZI, M.R. "Characterization and properties of petroleum fractions". ASTM. 2005.
- 41. PEDERSEN, Karen; *CALSEP* y SORENSEN, Casper, *Calsep inc.* "PC-SAFT equation of state applied to petroleum reservoir fluids". *SPE* 110483. 2007.
- 42. PEDERSEN, K.S *CALSEP*; THOMASSEN, P. *STATOIL* y FREDENSLUND, A. *University technical of Denmark*. "On the dangers of *tuning* equation of state parameters". *SPE* 014487. 1985.
- 43. PEDERSEN, Karen; *CALSEP* y SORENSEN, Casper, *Calsep inc.* "PC-SAFT equation of state applied to petroleum reservoir fluids". *SPE* 110483. 2007.
- 44. PEDERSEN, Karen; *CALSEP* y SORENSEN, Casper, *Calsep inc.* "PC-SAFT equation of state applied to petroleum reservoir fluids". *SPE* 110483. 2007
- 45. LAURSEN, Torben. "VLXE license overview". VLXE. 2008.
- 46. Multiflash software user guide, Infochem Computer Service Ltda. London, UK. 2007.